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Why do earthquakes happen!
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Thermo chemical convection
http://geo.mff.cuni.cz/~cizkova/Anim/animace.htm

From Namazu.... ...to complex fluid dynamics
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Why do earthquakes happen!?
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How does land jump with an earthquake?
Evidence from GPS stations above subduction zone
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Earthquake (complex) cycle
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Dynamic rupture and stress transfer

rupture velocities of a dynamic rupture model of a magnitude 7.7 on the southernmost San Andreas fault www.scec.org

When a fault fails during an earthquake, it modifies the stress field in its surroundings. The modification of the stress
pattern can give a rough idea of where the next shocks are more likely occur.
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Dynamic rupture and stress transfer

Coulomb stress imparted by the M=5.0 Off-Tohoku rupture and its M=7.% afiersheck to Japan Trench, Sagami Trough and Kanto Fragment

Most of Sagami trough is brought farther from failure, but basal surface of Kanio o
fragment—possibie source of 1855 M~7.3 Ansei-Edo quake—Is stressed ~
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Tohoku-oki event:
Tectonic setting

This earthquake was the result

of thrust faulting along or near

the convergent plate boundary

where the Pacific Plate subducts
beneath Japan.

This map also shows the rate
and direction of motion of the
Pacific Plate with respect to the

Eurasian Plate near the Japan
Trench.The rate of convergence
at this plate boundary is about

100 mm/yr (9 cm/year).

This is a fairly high convergence
rate and this subduction zone is

very seismically active.
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Historical seismicity and aftershocks
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USGS - CMT - Seismic Moment solution

March 11, 2011, NEAR EAST COAST OF HONSHU, JAPAN, MW=9.1
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Shakemap - Instrumental Intensity

USGS ShakeMap : NEAR THE EAST COAST OF HONSHU, JAPAN
Fri Mar 11, 2011 05:46:23 GMT M 8.9 N38.32 E142.37 Depth: 24.4km ID:c0001xgp
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USGS - Finite fault model

Cross-section of slip distribution.The strike direction of the fault plane is indicated by the

black arrow and the hypocenter location is denoted by the red star.The slip amplitude

are showed in color and motion direction of the hanging wall relative to the footwall is
indicated by black arrows. Contours show the rupture initiation time in seconds.
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Depth (km)

USGS - Finite fault model

Basemap of subduction zone showing the area of the trench
constrained in this example. Earthquake locations from the gCMT
catalog and EHB catalog (gray circles, sized according to
magnitude) are shown. Maroon rectangle indicates the area shown
in cross section (c); all earthquakes within this area may be used to
constrain trench geometry.

Variation in dip of best-fitting fault planes from the gCMT catalog for all events used to
constrain trench geometry across the plane of the cross-section. Individual event dips
are shown with small dark gray circles, sized with magnitude. Large mechanisms indicate
the average dip in 20km bins across the plane of the cross-section. Light gray
mechanisms represent a bulk average; dark gray represents a moment-weighted average.
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Cross-section of subduction zone taken perpendicular to the average strike of gCMTs
that match selection criteria and whose equivalent EHB or NEIC locations lie within the
maroon box from Figure |.
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Depth (km)

USGS - Finite fault model
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Cross-section of subduction zone taken perpendicular
to the average strike of gCMTs that match selection
criteria and whose equivalent EHB or NEIC locations
lie within the maroon box from Figure 1. Gold CMTs
are mechanisms from the gCMT catalog plotted at
their equivalent EHB catalog location, used to
constrain trench strike and dip. Orange CMTs are
mechanisms without EHB locations, placed instead at
the equivalent event location in the NEIC catalog, and
also used to constrain geometry. Light and dark gray
circles are events from the EHB catalog in front and
behind the plane of the cross-section, respectively, but
not used to constrain geometry because either (i) they
did not have a corresponding mechanism in the
gCMT catalog, or (ii) their mechanism in the gCMT
catalog did not match selection criteria. The trench
location is marked with a red square. Probability
density functions for EHB and NEIC locations are
shown as green lines, scaled by a factor of x20 for
display purposes. The black solid line describes the
best fitting planar geometry; the red dashed line the
best-fitting non-planar geometry. The initial locations
of the 'new event' used to help constrain geometry are
shown by black circles and marked with arrows
corresponding to the gCMT epicentroid and NEIC
epicenter. PDFs for these locations are shown in red.
The best-fitting fault plane from the gCMT catalog for
the new event (if available) is shown with a black
dashed line.

An expanded cross-section will show the fit between
the non-planar geometry and deeper earthquake data
(maroon circles), also used to help constrain this
geometry. On this section, gray lines represent 100
bootstrapped interfaces computed with a random
selection of the input data.



Co-seismic slip
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M. Simons, F. Ortega, J. Jiang, A. Sladen, and S. Minson at Caltech as part of the ARIA project.
All orginal GEONET RINEX data provided to Caltech by the Geospatial Information Authority (GSI) of Japan.
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Displacement(cm)
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GPS and GM signals

Accelerometer TKY006 (lat=35.699 lon=139.503) compared with GPS JAE1 (lat=35.675 lon=139.531)
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The figure shows the comparison between this GPS signal - twice differentiated - and the
accelerometric signal, in the [0.005Hz - 0.125Hz] range.



Long period GM
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Ground motion animation: time scales...
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Courtesy of Takashi Furumura



@ A strong ground acceleration of
over 2933 cm/s/s was observed in
K-NET Tsukidate observation
station (Miyagi pref.) near the
hypocenter, and a strong ground
acceleration propagated in broad
area from Ibaraki to southern
Iwate. The distribution of strong
ground acceleration is extending
to three areas: between lwate and
Miyagi prefecture, Fukushima pref.,
between Tochigi and Ibaraki pref.
Therefore, it is assumed that a
huge fault slip have occurred on
the east of these areas.The ground
acceleration is decaying drastically
just after the border of Itoigawa-
Shizuoka Tectonic Line, and it
suggests that the wave attenuated
at around this area.
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Woaveforms

Maximum acceleration and
maximum displacement of ground
motion in Ishinomaki and
Rikuzentakata where ground
motion was strong. The arrival of 2
strong seismic wave groups is seen
after about 50 seconds. They
suggest that a strong seismic wave
was radiated from the 2 major
asperities of the Miyagi coast and
Iwate coast.

Two long-period pulses (40-50
second) was found in ground
displacement and its amplitude is
more than 50 to 100cm.The long-
period of ground motion that
lasted for 100 and several tens of
seconds, indicates the long time
rupture process of the fault in this
massive earthquake.
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Rupture from ground motion
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Near-source acceleration waveforms

display two remarkable phases of

ground motion which suggest the

existence of a least two areas of large slip.

In the northern part of the source area the
first phase is predominant while in the South
this phase is not visible.

These two phases of ground motion suggest
large slip areas in the North and South regions
respectively.

The remarkable differences in grow characteristics of
intensity values for the Miyagi and Ibaraki regions indicate
they originate from different slip areas.

A small ground motion phase is observed between the two
large distinct phase at some stations (FKS013, FKS004,
MYGO017, MYGO15).

Other secondary phases are also observed suggesting a very
complex source process
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IWTO009 2011/03/11 14:46:32 Seismic Intensity : 5.47
MYGO003 2011/03/11 14:46:32 Seismic Intensity : 5.55
MYGO15 2011/03/11 14:46:34 Seismic Intensity : 5.99

MYGO017 2011/03/11 14:46:37 Seismic Intensity : 5.83

ek

il

FKS004 2011/03/11 14:46:38 Seismic Intensity : 5.39

FKS013 2011/03/11 14:46:45 Seismic Intensity : 5.34

IBRO0O1 2011/03/11 14:47:01 Seismic Intensity : 5.60

IBRO11 2011/03/11 14:47:06 Seismic Intensity : 5.61

CHB012 2011/03/11 14:47:07 Seismic Intensity : 5.12

R

0 100

Source: Knet-NIED

200

Time [s]

The first phase is predominant

Both phases are distinct

The second phase is predominant

The first phase is not visible

45 — R
40 Al
d e 4
4 ) ",,
oy O - 2011/3/11 14:46
= y M:9.0 Depth:24km
*' ey s O%Y &
35 . : v ”.:., . . "a" '-.; x '.:' :
L 5 f”\"' o * » 4 3
T : T Ec—
135 140 145
— x T G al(SHzPGA)

0 200 400

600 800 1000

Strong motion distribution at Eastern Japan (5HzPGA)
This PGA is commonly used as an index for the alarm

to stop the train operation.



Comparison with Type II Design
Spectra, JRA Design Specifications of

Tsukidate
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ound motion - Worldwide

Japan Earthquake (My=9.0), Global Displacement Wavefield
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Ground motion - USA

March 11, 2011, NEAR EAST COAST OF HONSHU, JAPAN, M=8.9

2011/03/11 05:52:35 UTC (372 s)
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Finite fault model from backprojection
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Ocean bottom data EERBEYT —TNRBEH AT ATRUSKEBEED  faf )
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The observation record of the
ocean bottom pressure gauge.At -
around 14:46, the ground | i T I

motion of the earthquake (M9)

reaches the pressure gauge and e
at TM| (coast-side), the sea level { | | * I
is gradually rising from that
point. _— e e
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The sea level rose 2 m, and after
| minutes, the level went
drastically up to 3m, which
makes 5 m of elevation in total.
At TM2: located 30km toward
the land, a same elevation of sea
level was recorded with 4
minutes delay from TMI. 1440 S el 2N
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Tsunami animation: time scales...

http://outreach.eri.u-tokyo.ac.jp/eqvolc/201 103 _tohoku/eng/

http://supersites.earthobservations.org/honshu.php

http://egseis.geosc.psu.edu/~cammon/Japan20| [EQ/

“Earthquake Research Institute, University of Tokyo, Prof. Takashi
Furumura and Project Researcher Takuto Maeda”
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http://outreach.eri.u-tokyo.ac.jp/eqvolc/201103_tohoku/eng/
http://eqseis.geosc.psu.edu/~cammon/Japan2011EQ/
http://eqseis.geosc.psu.edu/~cammon/Japan2011EQ/
http://supersites.earthobservations.org/honshu.php
http://supersites.earthobservations.org/honshu.php

Any strategy for seismic risk reduction should
be outlined trying to answer two basic
questions:

& When, where and how big we have to expect a
strong earthquake to strike a region!?

< What should we expect when it occurs?
The answer to the first question is matter for
earthquake prediction,

while the second one is matter for
sound seismic & tsunami hazard assessment...



Earthquake effects

ground shaking liquefaction
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Expectations...

“Estimated magnitude and
long-term possibilities
within 30 years of
earthquakes on regions of

offshore based on Jan. I,
2011”7

“Estimated magnitude and
long-term possibilities within
30 years of earthquakes on
regions of offshore based on
Jan. 1,2008”

Evaluation of Major Subduction-zone Earthquakes flb%?ﬁ = HT ﬁjﬁ ﬁZIS%B '

[So-called
Tokail Earthquake

| (Reference value)
J\MB.0  87%

r

Tokachi-Oki
M3.1 0.3-2%

simultaneous
occurrence with
MNemuro-oki
Ma.3

MNorthern Sannku-Oki

MBO 05-10%
M7 1-7.6 About 90%

Miyagi-ken-Oki

M75 99%
simultansous occumence with

close to the trench in southem
Sannku-Ok

Sanrku-Cki to Boso-Okl
along the Japan Trench
Tsunami earthquakes

Mtg2 About 20%

(About 6% for specific region)
Mormal faults type
Fukushima-ken-Okilj | m22 4-7%

M7 4 | (1-2% for specific region)

Mt the scale of an earthquake that |
measures by a tsunami height

About 7% and less

Il..u"'u.l..l-.. EAdA~rFr - - V- o - alk ol -




Tsunami Assessment method
for NPP in JSCE, Japan

The TSUNAMI EVALUATION SUBCOMMITTEE,
Nuclear Civil Engineering Committee, JSCE

Masafumi Matsuyama (CRIEPI)

History of TES

B Phase I 1999-2000
The maximum and minimum water levels by deterministic method
— “Tsunami assessment method for NPP in Japan; 2002)”

. Phase II 2003'2005 Tsunaml Assessment Method for

Probabilistic Tsunami Hazard Analysis for the max. and min. water levels TENIIR O SV TVTARE N S

Numerical simulation of nonlinear dispersion wave theory with soliton fission
and split wave-breaking

Tsunami wave force on breakwater

B Phase III 2006-2008

Topography change due to tsunami
Development of probabilistic Tsunami Hazard Analysis

Phase IV 2009-2011
Revising of Tsunami assessment method for NPP in Japan,

Now

Niigata meeting, November 2010
http://www.jnes.go.jp/seismic-symposium | O/presentationdata/3_sessionB.html
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General parametric study in the near field

Tsunami Assessment method
for NPP in JSCE, Japan

The TSUNAMI EVALUATION SUBCOMMITTEE,
Nuclear Civil Engineering Committee, JSCE

Masafumi Matsuyama (CRIEPT)

Deterministic method (2002)
Main flow chart
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‘F". / General parametric study
" / - location
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|ch

1427 144 1467,

Fukushima Daiichi NPS

N

Sub flow 1

Verification of fault model(s) and numerical
calculation system on the basis of historical tsunami(s)

_ Sub flow 2 1

Estimation of the design water levels on the basis of
parametric study in terms of basis tsunamis

v

Design high water level
Design low water level

!

End

tide fF—

/ E WERH

Summary of Evaluation

"1C.

*e

Maximum water level =4.4m + O.P.+1.3m = O.P.+5.7m
Minimum water level = -3.6m — O.P.==0.0m = O.P.-3.6m

R/B

O.P+10~13m__|S/B| T/B

Mean tide level
O.P.+0.8m
e

0O.P.-3.6m
Minimum water level

Maximum water level
O.P+5.7m IP -
va

Fukushima Daiichi NPS

We assessed and confirmed the safety of the
nuclear plants based on the JSCE method
which was published in 2002.

Niigata meeting, November 2010

http://www.jnes.go.jp/seismic-symposium | O/presentationdata/3_sessionB.html
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Tsunami Assessment method Logic-tree

for NPP in JSCE, Japan

The TSUNAMI EVALUATION SUBCOMMITTEE,
Nuclear Civil Engineering Committee, JSCE

Masafumi Matsuyama (CRIEPI)

Annaka et al.(2007)
occurrence Magnitude Recurrence Estimation Cases of
area range interval model tsunami
. hazard
- A2, B2, C2,D1
» & o3 e
A2 B2 c2 A%_]?%_E:_Z’_P.Z
4 8 & 2
™ A2, B2,C2,I8

Estimation of tsunami hazard with Epistemic uncertainty

Probabilistic Tsunami Hazard Analysis Fractile hazard curve
(PTHA) 0 0 Annaka et al.(2007)
. [ i T I [average.
§ 10_1: ; Ei §:§§fractlle
# Probabilistic estimation of tsunami risk me o -
« Estimation of the deterministic design tsunamis < ° |
_,;»10-3"" \\‘{\""""""""?4'0'63y'éé'r's'
— — Y\ \ =
e o TR . : N SR A\ -
# Considering uncertainties in estimation 2107 ;\;\.‘\1\:\\
SF = LR =
= Errors in fault parameters EP VAN |
= s : . =
= Errors in the numerical calculation system N " \\ |
(numerical simulation, topography data) 107 \\ \ :
= Incomplete knowledge and data about the 1077l oV NS

earthquake process

0 10 20 30
Tsunami height m

=N
()

Niigata meeting, November 2010

http://www.jnes.go.jp/seismic-symposium | O/presentationdata/3_sessionB.html
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Tsunami Assessment method
for NPP in JSCE, Japan

The TSUNAMI EVALUATION SUBCOMMITTEE,
Nuclear Civil Engineering Committee, JSCE

Masafumi Matsuyama (CRIEPI)

A brief review of recent activities

\ R )
h [,

AN

' * @ Almost ten years have passed

after tsunami manual released.

j © u Recent advances and new knowledge
it Tsunami source model (fault model)

= Re-evaluation of historical tsunami faults
ﬂ = Spatial inhomogeneity in terms of slip
~ Numerical simulation

= New simulation method of crustal motion
(GMS, Grand Motion Simulator by NIED*)

= New simulation method of far field tsunami’,
Nonlinear dispersion theory "

*National Research Institute for Earth Science and Disaster Prevention, Japan 26

Niigata meeting, November 2010
http://www.jnes.go.jp/seismic-symposium | O/presentationdata/3_sessionB.html
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