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Seismic noise analysis

Single station noise measurements: H/V

~<1 Hz

Array measurements

~>1 Hz



Influence of local geology on seismic ground motion: seismic noise

With seismic noise we mean all the seismic signal

that is recorded by the instruments while they are

working (passive acquisition)

In the high frequency range (> 1-2 Hz) it is mainly

related to human activity (although local

meteorological conditions may play a role)

In the low frequency range (<1 Hz) it is mainly 

dominated by wave generated by tides, water waves 

striking coast, large scale meteorological conditions)



After McNamara and Buland (2004)

Power spectral density of 1 year of recording



After McNamara and Buland (2004)

Power spectral density: comparison with earthquake data

Local and teleseimic 

events show PDS 

affecting different 

frequency bands



After McNamara and Buland (2004)

Power spectral density : spatial variability

Moving away from the 

Ocean the spectral 

amplitudes are strongly 

reduced (especially 

between 2 and 10 s)!



After McNamara and Buland (2004)

Power spectral density : influence of human activity

Cars are mainly affecting

high frequencies (low 

periods)



After Bonnefoy-Claudet. (2004)

Power spectral density : influence of human activity



After Gorbatikov et al.  (2004)

Power spectral density : influence of human activity

The life-style is clearly 

mapped into the noise 

variations!



After Yamanaka et al. (1993)

Seismic noise : time variability

At 0.3 s the variation of 

seismic noise amplitude 

correlates well with 

human activity!

At 6.5 s the variation of 

seismic noise amplitude 

correlates well with 

ocean disturbance!



Influence of local geology on seismic ground motion: seismic noise

Although the source of seismic noise are not yet 

well known and the composition of the noise wave 

field is not yet clear (body waves? surface waves? 

what a percentage? only fundamental or higher 

modes?)

Seismic noise was found to be  a useful tool for site 

effect investigation.



Horizontal-to-vertical (H/V) spectral ratio or Nakamura method

The method was proposed already in 1971 by 

Nogoshi and Igarashi.

They showed the relationship between this ratio and 

the ellipticity of Rayleigh waves.

Since the lowest frequency maximum of the 

ellipticity coincide with the resonance frequency of a 

site they use the H/V spectral ratio as an indicator of 

the underground structure.

Only in 1989 Nakamura made the method popular 

but he claimed that the H/V spectral ratio was a 

reliable estimation of the site response!



Horizontal-to-vertical (H/V) spectral ratio or Nakamura method

The Nogoshi interpretation of the method is based

on surface waves and was followed by many

authors

- H/V is related to ellipticity of Rayleigh waves

- The ellipticity is frequency dependent and exibits a

sharp peak around the fundamental frequency of

the site when the impedance contrast is high

enough. The peak is due to the vanishing of the

vertical component, corresponding to a reversal of

the rotation sense of the fundamental mode

Rayleigh wave.



After Konno and Ohmachi (1998)

Horizontal-to-vertical (H/V) spectral ratio or Nakamura method



Soil: 

s,Vs

Rock: 

b, Vb
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Some properties of the Fourier Transform

Applications: linear system (source*path*site*instrument), time-delay of propagation 

(e.g. array analysis), solving differential equations, etc…

Parseval identity 
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If X(f) is the Fourier transform of x(t) and Y(f) is the Fourier 

transform of y(t)

The Fourier transform of x(t-) is X(f)e-i2f and the Fourier 

transform of y(t-2) is Y(f)e-i4f

The time delay   correspond in the frequency domain to a 

phase shift 2f

Multiplying the spectrum for the phasor e-i2f only modifies 

the phase but not the amplitude of the spectrum in fact:
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The Fourier trasform of Y(f) is then:
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The modulus of H(f) can be simply calculated by computing 

the modulus of the numerator and of the denominator

The modulus of the numerator is:
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After Konno and Ohmachi (1998)

Horizontal-to-vertical (H/V) spectral ratio or Nakamura method

Good agreement

between the lowest

frequency peak in the

H/V spectral ratio, the

theoretical ellipticity

and the S-wave

transfer function



Horizontal-to-vertical (H/V) spectral ratio or Nakamura method

-Is the H/V peak a good estimate of site

amplification?

Since ellipticity tend to become infinitive for large

impedance contrast this might be a shorthcoming.

After Konno and Ohmachi (1998)



Horizontal-to-vertical (H/V) spectral ratio or Nakamura method

After Konno and Ohmachi (1998)

- Is the H/V peak a good 

estimate of site amplification?

The effect of smoothing the 

spectra should be considered



Horizontal-to-vertical (H/V) spectral ratio or Nakamura method

-Are only Rayleigh waves determining the shape of 

H/V?

The effect of Love wave cannot be neglected but it 

varies depending on the relative proportion between 

Rayleigh and Love waves.

Two assumptions are generally made:

The ratio between Love and Rayleigh wave is 

frequency independent (most of the time the 

Rayleigh and Love wave contribution are 

considered identical)

The ratio between vertical and horizontal forces at 

the noise sources are identical (the ratio betwen 

Love and Rayleigh wave is frequency dependent)



Horizontal-to-vertical (H/V) spectral ratio or Nakamura method

Nakamura assumes that surface waves are 

eliminated in the spectral ratio and therefore H/V is 

related to the S-wave transfer function

Main assumptions are:

1)The vertical component is not amplified at the 

fundamental resonance frequency

2)The H/V on rock is equal to 1

3) the ratio  b between surface wave and body 

waves in the vertical noise wavefield is much 

smaller than 1

4) The product of b and the H/V ratio due only to the 

surface wave part of the wavefield is much smaller 

than the true horizontal transfer function



Horizontal-to-vertical (H/V) spectral ratio or Nakamura method

1) and 2) can be easily accepted based on 

experience

However:

3) is valid only for high impedance contrasts but 

then 4) cannot be accepted because the 

ellipticity in these cases tend to infinitive! 

Most of seismological community prefers the 

explanation based on surface waves although 

the importance of body waves cannot be ruled 

out (see Parolai et al., 2008)!



Horizontal-to-vertical (H/V) spectral ratio : Northwestern Turkey

Comparison of  fundamental 

resonance frequency 

estimates carried out by noise 

H/V, earthquake H/V and GIT

Very good agreement!

Comparison of  amplification 

estimates at the fundamental 

resonance frequency carried 

out by noise H/V, earthquake 

H/V and GIT

Poor consistency!



After Duval et al. (2001)

NHV provides a 
reliable estimate of 

the fund. freq.

The fund. freq. 
obtained by NHV is 
generally lower than 
the dominant one.

NHV provides a lower 
bound estimate of the 
amplification both at 
the fund. and at the 

dominant one.

Horizontal-to-vertical (H/V) spectral ratio or Nakamura method



After Parolai et al. (2004)

Industrial noise can dominate spectra. In 

certain cases ist effect is removed in H/V 

spectral ratio.

Horizontal-to-vertical (H/V) spectral ratio or Nakamura method



How to measure seismic noise (e.g. Picozzi et al., 2005):

For the frequency range of 0.1-10 Hz the lenght of each time series should be 20-60 

seconds

The recording duration should be enough to guarantee the statistical stabilization of the 

signal. As a general rule at least 20 minutes should be recorded and analysed.

Smoothing the spectra using a relative band width around the central frequency 

stabilizes the H/V curves and tends to minimize the dispersion

/q n 

S(=sampling 

standard 

deviation of n

realisations

M(sample 

average



How to measure seismic noise (e.g. Strollo et al., 2008):

Different instruments

have different self-

noise. Furthermore

different sensors act

as different filter! If

the seismic noise is

lower than the self

noise it cannot be

recovered!



Due to the

combination of gain,

self-noise an sensor

the fundamental

frequency peak might

even disappear!



Short period sensors (1Hz) represent a

good compromise for noise

measurements!

Broad band Short period

H/V



Ambient Seismic Noise

H/V spectral ratios
fundamental resonance

frequency

Parolai et al. (2001)



Seismological network: April-June  2001; November 2001



Fundamental resonance frequency map for Cologne

Parolai et al. (2001)

From T = number of storeys

the fundamental resonance fre-
quency of the soil in Cologne
matches the frequency only of
buildings with more than 10 storeys.

10



H/V spectral ratios versus sedimentary cover thickness

Parolai et al. (2001)



Horizontal-to-vertical (H/V) spectral ratio : Cologne

The resonance frequency is clearly shifted towards lower 
frequencies with increasing sediment thickness



H/V spectral ratios versus sedimentary cover thickness

Parolai et al. (2001)



H/V as geophysical investigation tool: 

H/V versus sedimentary cover thickness

Parolai et al. (2002)



Fundamental resonance frequency map



Sedimentary cover thickness

Parolai et al. (2002)



Arai and Tokimatsu, (2000) and Parolai et al. (2005) considered also the contribution of Love 

waves and  higher modes to the H/V spectral ratio shape.
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The Fourier transformed vertical and horizontal point 

forces LV(f) and LH(f) are randomly distributed on the 

free surface.

Each distance between the origin and the source is 

longer than a wavelength of Rayleigh or Love wave

r>=lR or lL
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A is the medium response

K is the wavenumber

u/w is the H/V ratio of Rayleigh mode at the free surface

J is the mode index

A is the H/V ratio of the loading forces LH/LV

H/V as geophysical investigation tool: H/V inversion



Horizontal-to-vertical (H/V) spectral ratio: Investigating the subsoil structure

However, the main limitation of the method consists 

in the strong trade-off between S-wave velocity and 

thickness of the sedimentary cover!

After Arai and Tokimatsu (2000)
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Different models…same H/V!!

H/V inversion



Horizontal-to-vertical (H/V) spectral ratio: Investigating the subsoil structure

After Arai and Tokimatsu (2000)



Horizontal-to-vertical (H/V) spectral ratio: Investigating the subsoil structure

After Arai and Tokimatsu (2000)

Importance of considering also the effect of higher modes



Horizontal-to-vertical (H/V) spectral ratio: Investigating the subsoil structure

After Arai and Tokimatsu (2000)

Importance of considering also the effect of Love waves



H/V as geophysical investigation tool: H/V inversion

The inversion is perfomed using a Genetic Algorithm: see lecture on 

arrays.The  algorithm minimizes the difference between observed and 

calculated H/V



H/V as geophysical investigation tool: H/V inversion

Parolai et al. (2006)

observed H/V

calculated H/V

S-wave velocity profile

2D S-wave velocity section



Cologne
Vs (m/s)

H/V as geophysical investigation tool: H/V inversion

2D-3D models can be sue for numerical simulations of ground motion!



Investigating the frequency of vibration of buildings with seismic noise

Hospital Holweide

Inside

outside

Z

Z NS

NS EW

EW



Investigating the frequency  of vibration of buildings with seismic noise

H/V NS H/V EW

1° Floor

8° Floor

5° Floor

Ref. Sta.

G. F.

Hi/Vi NS Hi/Vi EW Hi/Vi NS Hi /Vi EW



Investigating the frequency of vibration of buildings with seismic noise

NSi/NSo EWi/EWo

H/V NS H/V EW

NSi/NSo
EWi/EWo

1° Floor

8° Floor

5° Floor

Ref. Sta.

G. F.

The estimated 

frequencies of 

vibration were  

compared with 

those obtained 

by fe-modeling 

of the building 



Seismic noise measurements : 

investigating the resonance frequencies of buildings

Parolai et al. (2005)
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Using seismic noise to estimate the characteristics of a site: SASW

after Kim and Park (2002)

Spectral Analysis of 

Surface Waves (SASW) 

requires that:

Two vertical receivers 

are placed on the ground 

at equal distance from a 

fixed centerline 

Tests are performed 

progressively moving the 

receivers away from the 

fixed centerline
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Using seismic noise to estimate the characteristics of a site: SASW

Signal are transformed in the frequency domain via FFT

The cross-power spectrum between the two signal is calculated 

The phase of the cross-power spectrum, which  represents the phase 

difference between the two receiver signals as a function of frequency, is 

calculated

The time delay t(f) between the receiver fro each frequency is calculated by:
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f

f
ft

xy





2


xy is the phase shift of the cross-power spectrum in radian

f is the frequency

(1) 



∆∅ 𝜔 = ∅1 𝜔 − ∅2 𝜔

𝑎 = 𝑟𝑒𝑎𝑙 𝐹 𝜔
b=imag 𝐹 𝜔

c= 𝑟𝑒𝑎𝑙 𝐺 𝜔
d=imag G 𝜔

𝐹 𝜔 = 𝐹𝐹𝑇(𝑓 𝑡 )

G 𝜔 = 𝐹𝐹𝑇(𝑔 𝑡 )
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𝑑
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𝑏𝑐 − 𝑑𝑎

𝑎𝑐 + 𝑏𝑑

𝑪𝒓𝒐𝒔𝒔 − 𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎 = 𝐹(𝜔)*G(𝜔)

𝑎 + 𝑖𝑏 𝑐 − 𝑖𝑑 = 𝑎𝑐 − 𝑖𝑎𝑑 + 𝑖𝑏𝑐 − 𝑖2𝑏𝑑 = 𝑎𝑐 + 𝑏𝑑 + 𝑖(𝑏𝑐 − 𝑎𝑑)
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Using seismic noise to estimate the characteristics of a site: SASW

The phase velocity VR is then calculated by:

D is the distance between the two receivers

(2) VR=D/t(f)

The corresponding wavelength lR of the surface wave that determined the 

depth of investigation (of about lR/3, lR/2) is:

lR=VR/f (3) 

layer1

layer2

layer3

Amplitude of 

motion

Amplitude of 

motion

Depth 

short l

Depth 

large l
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Using seismic noise to estimate the characteristics of a site: SASW

The dispersion curve may be disturbed in the low frequency range because 

of the near field effect which occurs due to the presence of body waves.

Many criteria for data acquisition have been proposed (however the price to 

pay is to loose information at low frequency and therefore to limit the depth 

of investigation) 

Heisey et al. criteria  d1=d2     0.33l<d2<2l

Tokimatsu et al. Criteria 0.25l<d1+0.5d2  0.0625l<d2<l

d1 is the near receiver distance from the source

d2 is the receiver spacing

d1 d2

after Kim and Park (2002)
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Using seismic noise to estimate the characteristics of a site: SASW

The procedure described before is based on Fourier Transform

At each frequency the phase difference between the two sinusoidal 

component with constant frequency and amplitude over the whole record 

length must be in the range +/- 180°

Therefore in the conventional SASW the unwrapping process of relative 

phase angle is required (adding or subtracting the correct number of 360°
cicles) before evaluating the phase velocity

unwrap(f)=2n+ unwrap(f)

At each frequency the phase difference between the two sinusoidal 

component with constant frequency and amplitude over the whole record 

length must be in the range +/- 180°

(4) 



S

t

e

f

a

n

o 

P

a

r

o

l

a

i

Using seismic noise to estimate the characteristics of a site: MASW

Multichannel Analysis of Surface Wave was found to be more efficient for 

unraveling the dispersive properties (Park et al., 1996).
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Using seismic noise to estimate the characteristics of a site: MASW

The dispersion spectrum S(,v)from multichannel surface wave data is 

determined by the equation

         dxxAedxxAevS xvVixvki   ,,, ///


  (5) 

A() is the normalized energy spectrum fro each receiver, k the

wavenumber,  the circular frequency, v the assumed phase velocity and V 

the phase velocity for a given frequency

When v is equal to V , S(,v) is maximized



Timet [s]

0 1  2  ……………     N

N intervals with spacing dt

Duration T of the whole signal

T=N*dt0 dt  2dt  ……………   Ndt=T

sampling

Frequency [Hz]

0 1  2  ……………     N N intervals of width df

Nyquist frequency: fN=1/(2*dt)

N*df=2fN 

df=2f N/N=1/Ndt=1/T

-fN - fN +df……              fN

Sampling

df=1/T df depends on the window length

df dt=1/N 



dt=1s; 

fN=0.5Hz

f>0.5Hz cannot be retrieved en

(Periods T< 2 s)

The red curve has a period of T=1.1s 

red: freq>Nyquist 

Look at the blue curve!!!

Due to Aliasing the data must be low-pass filtered before the

analog to digital conversion (anti-alias filter). The corner

frequency of the filter 0.8fN.



t
T

Sinus form Period TFourierspectrum Y() signal y(tn)

fs=1/dt     fNyquist=fs/2 =2f=2/T (angular frequency [rad/s]) 

Input: Time signal

Input: spatial Signal

(time) Aliasing 

Sinus form wavelength lFourierspectrum Y() Signal y(xn)

fs=1/dx     fNyquist=fs/2 =2f=2/l

(Wavenumberl [rad/m])

(spatial) Aliasing 

x



Aki in 1957 proposed the analysis of ambient 

seismic noise as a tool for investigating the S-wave 

velocity structure below a site. This S-wave velocity 

structure can be used to calculate the site response 

by numerical simulations. He derived dispersion 

curves by analyzing the correlation between noise 

recordings made at sites close to each other.

Using seismic noise to estimate the characteristics of a site



Using seismic noise to estimate the characteristics of a site : SPAC

Aki assumed that noise represents the sum of 

waves propagating in a horizontal plane in 

different directions with different powers, but 

with the same phase velocity for a given 

frequency. He also assumed that waves with 

different propagation directions and different 

frequencies are statistically independent. A 

spatial correlation function can therefore be 

defined as:

 )),sin(),cos()(,,(),( tryrxtyxur lll

u(x, y ,t) is the velocity observed at point (x,y) at 

time t; r is the inter-station distance; l is the azimuth 

and < > denotes the ensemble average

(1) 

after Morikawa et al. (2004)
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An azimutal average of this function is given by: 

(2) 

The autocorrelation function is related to the power 

spectrum () by

(3) 

Where J0 (r/c) is the zeroth order Bessel 

function and  c()is the frequency dependent phase 

velocity.



The space-correlation function for one angular 

frequency 0, normalized to the power spectrum,

will be of the form





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


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c
Jr o
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),(

0

0
0




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J0 is the zero order Bessel function.

c() is the frequency-dependent phase velocity

(4) 
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For every couple of stations (fixed the distance r) 

the function () can be calculated in the frequency 

domain by means of (Malagnini et al., 1993; Ohori 

et al., 2002; Okada, 2003):

 
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where mSjn is the cross-spectrum for the mth segment of data, 

between the jth and the nth station, and M is the total number of 

used segments. The power spectra of the mth segment at station 

j and station n are mSjj and mSnn, respectively. 

(5) 
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0

0
0




 J0 Bessel function of 0th order

c() frequency-dependent phase velocity

For each pair of stations (with distance r) can () be calculated using the spectra 
(Malagnini et al., 1993; Ohori et al., 2002; Okada, 2003):

After azimuthal integration and Fourier transformation, the spatial correlation function 
can be calculated for a given angular frequency 0 (normalized to the power spectrum)

 

 



 








M

m

M

m

nnmjjm

M

m

jnm

SS
M

S
M

1 1

1

)()(
1

)(Re
1

)(

mSjn Cross-spectrum of the m-ten segment of data
(between the j-th and the n-th station)
M is the number of segment of data
For mSjj andmSnn the same is valid.

Station 

1

Station 

2
1 2 ……m 2 ……m1

3S1 3S2

3S12= 3S1 
. 

3
*S2

signal

Fourier

spectrum



Spatial correlation values () are plotted as function of 

distance. A grid search procedure is applied to find the 

c() that gives the best fit to the data
High frequencies 

lose coherency at 

shorter distances

Using seismic noise to estimate the characteristics of a site : SPAC
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Observed and calculated spatial correlation values

() for all the considered frequencies

Using seismic noise to estimate the characteristics of a site : SPAC



The c() values plotted versus the frequency 

provide the dispersion curve. Since the phase 

velocity is related to the S-wave velocity structure of 

the site, the dispersion curve can be inverted to  

obtain the model that allows to better justify the 

observed data.

Using seismic noise to estimate the characteristics of a site : SPAC



The estimate of the frequency-wavenumber (F-K) 

spectra Pb(f,k) by the Beam Forming Method is 

given by:

 



n

ml

mllmb XXikkfP
1,

(exp),(  (4) 

Where f is the frequency, k the two-dimensional 

horizontal wavenumber vector, n the number of 

sensors. lm is the estimate of the cross-power 

spectra between the l-th and the m-th data, Xi and 

Xm, are the coordinated of the l-th and the m-th 

sensors, respectively.

Using seismic noise to estimate the characteristics of a site : BFM



The Maximum Likelihood Method gives the estimate 

of the F-K spectra Pm(f,k) as:

(5)  
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Using seismic noise to estimate the characteristics of a site : MLM

Where f is the frequency, k the two-dimensional 

horizontal wavenumber vector, n the number of 

sensors. Flm
-1 is the element of the  corresponding 

inverse of the matrix Flm , Xi and Xm, are the 

coordinated of the l-th and the m-th sensors, 

respectively.
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The main difference between the two methods is 

the window function:

(6) 

Capon (1969) showed that the resolving power of 

the MLM is higher than the BFM, however the MLM 

is more sensitive to measurements errors. 

Using seismic noise to estimate the characteristics of a site : MLM and BFM
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BFM: determined only 

by sensor location

(7) 

(8) 

MLM: depends also 

on the quality of the 

data



From the peak in the F-K 

spectrum occurring a 

coordinates kxo and kyo for a 

certain frequency f0 the 

phase velocity c0 can be 

calculated by:

(9) 
2
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2
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2

yxo kk

f
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

Maximum
Maximum

BFM MLM

SPAC

Using seismic noise to estimate the characteristics of a site : BFM and MLM
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Using seismic noise to estimate the characteristics of a site : MLM and BFM

The array transfer function depends  on the array geometry and 

varies depending on the frequency of the observed signal.

The array transfer function always exibits a central peak 

the value of which is 1 and lateral aliasing peaks with 

amplitude smaller than 1.

The position of the aliasing peaks define the maximum k

that can be used  for the chosen array geometry.

The thinner the central peak is, the more capable is the 

array to distinguish between waves travelling at close 

wave-numbers.

(10)
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Deconvolution of the array transfer function

Picozzi et al . (2010)



The F-K spectra Pm(f,k) methods allow to check the 

azimuthal distribution of the noise sources at each 

frequency.

The ESAC method (under the condition that noise is 

stationary in space and time) appears to be more 

suitable than F-K analysis for providing reliable 

dispersion curves over a larger –extended toward 

lower frequency- frequency range (i.e. larger depth 

of investigation up to more than 2 times the array 

dimension)

Using seismic noise to estimate the characteristics of a site : BFM and MLM



Using seismic noise to estimate the characteristics of a site : Summary

after Picozzi. (2005)



Forward modeling

Inversion

?

?

Parametrised model
Model response

Geophysical data
Estimated model parameters

s1

s2

s1 s2



after Menke (2012)

Acoustic Tomography

Reihe 1

Reihe 2

.

.

Reihe 8

s=1/v

v=velocity

s= slowness

Characterisation 

of the structure 

from travel times



after Menke (2012)

Acoustic Tomography

X

But the paths depend on the velocity!

Non linear

X X



In a linear problem the misfit

function S(m) has only one global

minima

In a non-linear problem there are
more local minima of the misfit
function S(m)

linear Problem Non Linear Problem

S(m) S(m)

m m

S(m) is the misfit function and can be calculated as the root mean square of the residuals between 

observed (Tr) and theoretical (z.B. To) data..

Differences between linear and non linear problems



Exploration= minimizing the misfit by looking randomly in different region of parameter space 

without considering what was learned from previous samples

Exploitation: one decide where to sample by using the previous sample or the current best fit 

one only.

O
p

ti
m
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ru

n
g

genetische 

Algorithmen



Analysis of Surface waves

Inversion of surface waves

An example of non linear Problem

Vs (m/s)

T
ie

fe
(m

)

InversionCalculation of phase 

velocities

Seismic stations



The dispersion curves of the fundamental and higher mode Rayleigh 

waves mainly depend non-linearly on the S-wave velocity structure, but 

also the density and P-wave velocity structure.

The inversion can be carry out linearizing the problem, that is 

calculating the Jacobian matrix that links the model parameters to the 

phase velocity.

C=JDV

Where  C= vector whose i elements are the cobsi()-ccalci()

J=matrix with i rows and j (number of unknown, e.g. S-wave velocity in each layer) 

whose elements are dccalci()/ dVsj

DV is an array whose j elements are the correction values of the starting j layer 

velocities

The inverse problem can be solved using Singular Value Decomposition 

(SDV, Press et al., 1986) and the RMS of differences between observed 

and theoretical phase velocities is generally minimized.

However the final results strongly depends on the starting model!

QUI Using seismic noise to estimate the characteristics of a site : Inversion

(11)



C=JDV

In the vector C, each i Element represents, C = cobs ()-ccal ()

cbeob ()

cber ()

C(i)

Vs (m/s)

T
ie

fe
 (

m
)

Startmodell



d cber i()/ dVsj

The Jacobian Matrix J=matrix with i rows and j (number of unknown, e.g. S-wave 

velocity in each layer) whose elements are dccalci()/ dVsj

DV is an array whose j elements are the correction values of the starting j layer 

velocities

Vs (m/s)
T

ie
fe

 (
m

)
Startmodell

dVs1
dV

s2

cbeob ()

cber ()

C(i)



The elements of the Jacobian matrix shows that high frequency only sample the shallowest 

model layers. Lower frequencies allow to investigate deeper.

d ccalc i()/ dVsj

The inverse problem can be solved using Singular Value Decomposition (SDV, Press 

et al., 1986) and the RMS of differences between observed and theoretical phase 

velocities is generally minimized.

However the final results strongly depends on the starting model!

Anfangsmodelle Endnmodelle



Other methods can be used to solve the non-linear

problem.

Parolai et al. (2005), following Yamanaka and Ishida

(1996) adopted the non-linear optimization method

that uses a genetic algorithm (e.g. Goldberg, 1989).

In contrast to linearized inversion schemes, this

method requires only an evaluation of the functions,

not their derivatives.

Using seismic noise to estimate the characteristics of a site : Inversion



Modified Genetic Algorithm (GA; Yamanaka and Ishida, 1996)
With this algorithm, a search area is defined both for the S-wave velocity and thickness of the layers. An

initial population of 30 individuals is generated. Yamanaka and Ishida [1996] adopted the binary

representation (bin) for each model. For the bin, each parameter (e.g. Vs or thickness) in the search area

is digitized with a n-bit binary string of 2n. In other words, parameters at the lower and upper limits became

(00…0) and (11…1), respectively. genetic operations (cross-over and mutation) are applied in order to

generate a new population with the same size. This new population is reproduced based on a fitness
function fj for each individual
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N is the number of data and (do)i is the standard deviation 

as regard the observed data i. If no uncertainty is provided, 
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Q is the number of generated 

models

A probability of being reproduced for each model is calculated. In fact, it is

realistic that models with higher values of fi (or equivalently lower i) should

have higher probability of proceeding to the next model generation

[Gallagher and Sambridge, 1994]. The probability, pr, for the jth individual

of being reproduced is expressed in the form


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
Q

k

k
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r

f

f
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Genetic operations (Crossover and Mutation) are applied and a new population

is generated. The new population will be than reproduced on the basis of a new

misfit function.
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The crossover operator is used to combine randomly

desirable features contained within two (or more)

“parent” selected models.

Mutation is a particular operator that considers

each gene separately and has been introduced in

GA with the aim of maintain a degree of diversity in

the population (while on the contrary, crossover

acts to remove diversity). Random variation of a bit

D
e
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th
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m

)

Starting Models

D
e

p
t 
(m

)

Next generation Models

The misfit function is again 
calculated considering the 
differences between 
obserd and theoretical 
phase velocities



The fitness function can be defined considering the average of the differences between the

observed and the theoretical phase velocities.

Two more genetic operations can be used to increase convergence, namely elite selection and

dynamic mutation. Elite selection assures that the best model appears in the next generation,

replacing the worst model in the current one. The dynamic mutation operation is used to

increase the variety in the population, avoiding a premature convergence of the solution into a

local minimum.

GA is a non-linear optimization method that simultaneously searches locally and globally

for optimal solutions by using several models.

http://joinv.crs.ogs.it/test/



Joint inversion of Rayleigh, Love and H/V 

curves



Joint inversion of Rayleigh, Love and H/V 

curves

Boxberger et al. 2011 JAG 



Vs =200 m/s

Vs =800 m/s

1
0

 m Vs =400 m/s

Vs =1600 m/s

2
0

 m

Joint inversion of reyleigh and H/V curve

Different models, same H/V but different dispersion curve



Estimation of the Quality factor

Parolai et al. 2014 JoSE 



Estimation of the Quality factor



Estimation of the Quality factor



Estimation of the Quality factor



Seismic Interferometry 

Claerbout’s conjecture

“By cross correlating noise traces recorded

at two locations on the surface, we can

construct the wavefield that would be

recorded at one of the locations if there

was a source at the other.”



Cij is the cross correlation of the observed 

fields vi(r1,t) and vj(r2,t)

The time derivative of the noise cross correlation

Cij(1,2,t) between two seismic stations (located at

r1recording component i ) and 2 (recording component

j) is related to the Time Domain Green‘s Function Gij

(r1; r2,t) by :
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after Bensen et al. (2007)

Data analysis
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The methods found many applications in

the last years

-Surface-wave tomography at global and

regional scale

-Estimation of building response

-Ground roll estimation and removal

-Retrieval of reflections

-Controlled Source Electromagnetic

methods
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after Roux et al. (2005) after Shapiro  et al. (2005)

Green’s functions from noise cross-

correlation
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Is an application for shallow

geology investigations possible?

- Wavelengths are much larger than

sensor distance

- Very strong attenuation



S

t

e

f

a

n

o 

P

a

r

o

l

a

i

Broad-band sensor needed
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Europe

6 Hz
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Generally array methods assume that the structure below the

array is 1D

Luo et al. 2008 showed that the

velocity estimated between two

stations is affected by lateral

inhomogeneities between them

Using the

whole spread
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Figure 1: a) Nauen test site, showing the location of the EDL + 4.5Hz sensors (white dots), EDL + 1Hz Mark sensor (white square),

EDL + broadband sensors (black dots), and Reftek + 4.5Hz sensors (grey dots), as well as the DC geoelectric and GP radar profiles

(dotted line). –b) DC geoelectric profile. c) GP radar profile (courtesy of the Department of Applied Geophysics, Technische

Universität (TU) Berlin).

The experiment
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Figure 2: Stability (RMS - root mean square) of the estimated Green’s functions with respect to the number of stacked 

windows for 14 Hz and 6 Hz.

480 non-consecutive noise windows 30 s wide were extracted 

The linear trend was removed from each window and a 5% cosine-taper was 

applied at both ends. 

The cross-correlations were computed considering one-bit normalized data 

that yielded the highest signal-to-noise ratio for the data set at hand.

To estimate the group velocity at twelve different frequencies the cross-

correlation functions were filtered by applying a Gaussian filter with a narrow 

band-width
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Figure 3: Vertical (a) and Radial (b) components of the Green’s functions for a frequency of 6 Hz. The time window 

selected for estimating the group velocity is indicated by the white background. c) Particle motion in the selected time 

window of a) and b). 

Tilting might be due to

high level of attenuation

(Borcherdt, 2007)
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Figure 4: –a) Normalized cross-correlations computed for 14 Hz. b)– 2D-wavenumber plot showing the

distribution of the noise sources as determined by F-K analysis results for 14 Hz. c) Time delays as a

function of distance between each pair of stations and orientation of the pair with respect to north. The

delay time is indicated by the colour of the symbol.

No-scattering

as a function

of azimuth
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Figure 5: Same as Figure (4) but for 6 Hz.

Scattering as

a function of

azimuth
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Figure 6: Observed (black dots) and theoretical (grey dots) travel times for

frequencies 14 Hz and 6 Hz.

Estimation of the initial average velocity for the inversion
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t s dl 

 1t L s

The linear tomography problem of computing the integral travel time (t) for a 

given slowness (s) along a raypath is given by

where the dl is the line element along the raypath. Equation (1) can also be 

expressed in a simple discrete matrix form,

.

In equation (7), t is the vector of observed travel times, s is the slowness 

of the cells, and L1 is an MxN matrix of ray-path segments, namely, M

rays crossing the medium, divided into N cells. 

(7)

(6)
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This average slowness was the initial guess s(k=1) for the iterative 

scheme. Then, a new solution s(k+1) was determined by solving the 

following equation

(k) (k)

2WΔt = L Δs

in which Dt is the vector of the normalized misfit between the observed

and theoretical travel times, [to- tt]/ to.

Ds is the vector of the normalized slowness modification [s(k) - s(k-1)]/s(k).

The diagonal matrix W(MxM) is made up of weighting factor elements

defined by the adaptive bi-weight estimation method, and was

introduced to stabilize the iteration process.

(8)
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The design matrix L2 in equation (8) is derived from L1 in equation (7), after 

that some proper modification was included to account for a priori

constraints on the solution. In particular, it is expressed as

2d

 
 
 

1

2

WL
L =

K( )M

where the upper block is the ray-path segment matrix L1 properly 

weighted by the matrix W, while, the damping coefficient d2 and the 

matrices K and M describe the a priori constraints imposed on the 

solution. 

(9)
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The matrix K(NxN) weights the data depending on the number, 

length, and  orientation of each ray-path segment crossing each 

Ni cell. 

Each cell Ni is first divided into four quadrants. Then, the length 

of the rays passing through each sector is summed, resulting in a 

2x2 ray density matrix. The ray density matrix was factorized by 

performing the singular value decomposition (SVD).

The singular values (l1, l2) were used to compute the ellipticity 

(lmin/lMAX) of the ray density matrix. 

Ellipticity close to 1,  means that a good resolution for a given cell 

is achieved 

The  elements of the matrix K in equation (9) were computed by 

multiplying the ellipticity for the number of rays crossing each cell. 

I II

III IV
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Figure 7: Examples of M matrix normalized weights for cells (bold number) located at the corner (a), 

the inner part (b), and along the model edges (c) and the surrounding cells (italic numbers).

Matrix M constrains the solution to vary smoothly over the 2D domain.  It  

increases the stability of the inverse problem by reducing of the influence of 

travel time errors.

The implementation of that smoothness constraint consists in adding a 

system of equations to the original travel time inversion problem,

, ,

1

0
i i

R

x y i x dx y dy

i

s a s  



 

where R is the number of cells surrounding the selected one, sx,y, and ai

are the normalized weights.

(10)
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2d

 
 
 

1

2

WL
L =

K( )M
(9)

The term d2 in equation (9) is a damping

coefficient introduced to balance resolution and

instability in the inversion analysis

After some trial and error tests, d2 was fixed to

0.5
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Equation (8) was solved using the SVD method

(k) T (k)
Δs = VΛ U WΔt

Λ 2 2/( )jj jjl l 
where the factorization of L2 is ULVT and the non-

zero elements of the diagonal matrix are equal to (

where ljj are the singular values of L, and e2 is a damping factor

After some trial-and-error tests, it was found that a value of 2=0.5 

provides a satisfactory compromise between smoothness of solution 

and data misfit

(11)

)
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Inversion results (10 mX10 m cells)

14 Hz 6 Hz

Inversion results a)

Frequency 14 Hz. b)

Frequency 6 Hz..

Locations of the DC

geoelectric and GP

radar profiles (green

dotted line), and the

field track (grey

dotted line) are also

shown.

lR=VR/f



S

t

e

f

a

n

o 

P

a

r

o

l

a

i

Figure 9: a) Input models for the validation tests. b) Inversion results for the checker-board model. c)

Inversion results for the Nauen test site structure.

Validation with synthetic data (6 Hz)

Input models Output  models

Checkerboard Real data model
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Figure 10: Standard deviation of velocity computed after 1000 repeated bootstrap inversions. a) Frequency 14 Hz. b)

Frequency 6 Hz.

14 Hz 6 Hz

Bootstrap analysis results
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Picozzi et al.  (2008)

For each cell along the profile a dispersion curve is obtained

The inversion of the dispersion curves lead to 1D S-waves velocity 

profiles that allow a generation of a pseudo 2D velocity cross-section
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From Pseudo 2D to full 3D with seismic noise:

Including also topography!
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Validation with Synthetics
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Validation with Synthetics
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Application to the Issik Ata fault in Kyrgyzstan



S

t

e

f

a

n

o 

P

a

r

o

l

a

i

Application to the Issik Ata 

fault in Kyrgyzstan
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Papan landslide

Installations of wireless seismic networks on the landslide for  

recording of seismic noise to be used for

structural model and real-time monitoring

~ 300m

Potential for landslide monitoring!!!!
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Papan landslide



Picozzi et al.  (2008)

For each cell along the profile a dispersion curve is obtained

The inversion of the dispersion curves lead to 1D S-waves velocity 

profiles that allow a generation of a pseudo 2D velocity cross-section
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Site response

Modified after Safak (2001)
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Cross-coupling effects

At least 3 simultaneously recorded earthquakes are required
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Proposed method

Using seismic noise

Picozzi et al (2009).
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k1

d=Ax

Data d and A elements

Proposed method

Z= Vertical
T= Transverse
L= Longitudinal

Solution via Gauss-

Jordan algorithm with

elimination

Parolai et al (2022), 
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Example: the Sarca Valley 

Installation of a temporary seismic

network (blue circles)

110 single station noise

measurements

Station TN06 selected as

reference for the analyzed profile

(yellow line)

Parolai et al (2022), submitted
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Noise sources distribution

- Low-pass filtering (zero phase) with with corner frequency of 1 Hz

- Stacking of one hundred 60-second windows of the horizontal component 

after rotation for different azimuths

Parolai et al (2022)

Example: the Sarca Valley 
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Frequency-responses in the time domain

Parolai et al (2022)

Example: the Sarca Valley 
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Frequency-responses in the time domain: TN04

Parolai et al (2022)

Example: the Sarca Valley 
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Earthquake M=4.7 02/11/2019 14:11:33 Bosnia

Comparison

Parolai et al (2022)

Example: the Sarca Valley 
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EarthquakeNoise NoiseEarthquake

Comparison

Parolai et al (2022), submitted

Example: the Sarca Valley 
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gti= trace

N= number of traces

Semblance

Reference station TN03

Parolai et al (2022)

Example: the Sarca Valley 
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Example: the 

Sarca Valley 

Parolai et al (2022)
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The total input energy for a vertical ground

motion input will be distributed for 38.4%,

27.3%, and 34.3% in the ZZ, ZL, and ZT

The total input energy for a radial ground

motion input will be distributed for 44.5%,

13.2%, and 42.3% in the LL, LZ, and LT

The total input energy for a transverse

ground motion input will be distributed for

44%, 23.8%, and 32.2% in the TT, TZ, and

TL

Example: the Sarca Valley 

Parolai et al (2022)
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Seismic and

strong motion

networks

Shakemaps
Impact assessment

Numerical

simulations


