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Objective
The goal of an EEW system is the estimation in a fast and reliable way an
earthquake’s damage potential before the strong shaking hits the target

Principles

The idea of developing systems for launching early alert messages about
incoming ground shaking dates back to 1868 (Cooper JD, Letter to the Editor, San
Francisco Daily Evening Bulletin, November 3, 1868). It is based on the fact that
information spread through electromagnetic signals travels faster (about 300,000
km/s) than seismic waves (a few km/s). Moreover, most of the radiated seismic
energy is carried by S- and surface-waves, which travel slower than P-waves.

Early examples

The first early warning systems were developed and installed during the cold war to
detect incoming intercontinental ballistic missiles. These early warning systems
were designed to alert target areas as soon as a missile was detected by a radar or
a launch discovered by satellite systems.

from
Satriano et al., SDEE, 2011
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Confronto tra diversi metodi per la localizzazione
dei terremoti

Tutti i metodi illustrati non considerano la forma della terra, e si basano su distanze planari
cioé possono essere applicati solo su piccola scala, a livello locale.

Allo stesso modo, tutti i metodi si basano sul modello calcolo dei tempi di percorso
mostrato nella diapositiva precedente



Geigers Method

Given a set of M arrival times t; find the origin time t; and the hypocentre in cartesian coordinatios (zy, yg, 29) which minimize

the objective function

M

F(X)=) r

i=1

Here, r; is the difference between observed and calculated arrival times

and the unknown parameter vector is
X= {fﬂﬁﬂzﬂ'ry{l:zﬂ]'l—
In matrix form (1) becomes

F(X)=r'r



Geigers Method

The Gauss--Newton procedure requires an initial guess of the sought parameters, denoted here as

_ LT
X* = (t),z, up 2)

)

which are then used to calculate the adjustment vector

dX = (dtg, dzq, dyp, ﬁzﬂ}T

(1)ATASX = —ATr.
The Jacobian matrix A is defined as

Or /Oty Ory/Oxy  Or /Oy Or /02
A Ora/dty  OrafOxy  Ore/Oyy  Ora/0z
Oryg /Oty Oryg fOxg  Oryy /Oy Orpg [0z

The partial derivatives are evaluated at the initial guess, or trial vector, X*. Equation (45) can be rewritten as

(2)G6X = g.

Using an initial guess of X* an adjustment vector can be calculated. The initial guess can then be
updated X*+8X and used as the initial guess in the next run. In this way the sought parameters X can
be determined with some tolerance



Approaches

There are two main approaches: Regional (or network-based) EEW systems and
Onsite (or single-station) EEW systems.

Network Based (or Regional) Approach

p
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from
Satriano et al., SDEE, 2011 Single Station (or On Site) Approach



Methodology

Regional network EEW system

Event detection and location

Magnitude estimation

Peak ground motion prediction at target site

Alert notification

Onsite approaches predict the ground shaking associated with S-wave starting
from the ground shaking recorded for P-waves.

Some Onsite (or single station) EEW systems also estimate the location and
magnitude of the event (e.g., Nakamura approach; Odaka approach; etc).



Starting from the Regional and Onsite schemes, more complex and hybrid
systems can be established. For example, Onsite systems can be composed of
several nodes communicating witheach others and fed with information coming
from a Regional networks. The Regional scheme may in turn simplified into a
concept involving a front-detection scheme when the source region is known.

Time is a critical parameter in any EEW system. The system and procedures have
to be designed in such a way as to maximize the lead time for the target area.

Regional Onsite
Network deployment Source region Target area
Data analysis Network based Single station
Output parameters Location, magnitude Location, magnitude or expected intensity
Accuracy on source parameter estimation | Good to high Moderate
Lead-time Ts at the target-Tp at the source | Ts at the target-Tp at the target

from

Satriano et al., SDEE, 2011

Lead time maximization and improvements in the estimation of parameters (such
as magnitude, location) however involve a trade-off. The minimization of the false
alarms is also crucial.

Therefore, any EEW system has to be tailored to the specific
situation at hand.



Estimating the focus, magnitude
and seismic intensities using data

fram one seismograph
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Examples of estimated lead time

- A e
image of Fig. 7

LeSdiTimen(sec)

1149417 20

2008 Mw 6.9 Iwate earthquake (Japan).
= ?kf’“ lead_time=t_S-t_magnitude_estimated

yellow:
blind zone

orange:

blind zone
when robust
magnitude
estimates are
requested

from
Satriano et al.,
SDEE, 2011



Examples of estimated lead time
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" Examples of estimated lead time

Istanbul

Scenario earthquake in the Marmara sea

from
Bose et al, BSSA, 2008
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Earthquake location

Procedures for estimating early warning parameters are generally based on
evolutionary (time-dependent) schemes: the “quick & dirty” estimates obtained
by analyzing information gathered by a single station are constantly updated
as soon as new data are acquired by the system.

Example:
ElarmS (California, Wurman et al 2007):

A) Detection based on STA(0.5sec)/LTA(5sec) ratio at each individual station.

B) Initial hypocenter placed with respect to the triggered station (depth fixed
according to the regional tectonic regime).

C) When a second station is triggered, the epicenter is moved between the
two stations.

D) With three or more triggers, event location and origin time are estimated
using a grid search algorithm.



Earthquake location

Recently, new earthquake location procedures have been introduced.
These make use of the concept of not-yet-triggered stations.

Ryedelek & Pujol (2004) constrained the epicentral location using only two triggered
stations and a set of not-yet-triggered ones.

Stations 1 and 2 triggered:

‘ triggered 1
0 . tr—t) = S (da(X)—d (X)) = [ (X)— (X
20 . not't”ggered 2 1 Ur( 2( } ]( }} 2( } ]( } (1)
\

30 o Equation (1) defines a hyperbola (open curve).

20 ' \ scenario event Station 3 has not yet triggered, therefore
£ 10 ° 4 J 1 -
g ] s, | . : F(dg(x}—d,-(x}} =tt3(X)—tx) =0, i=12 (2)
_*E ® 1 :
T 0 ’ and similar inequalities can be set up for the other

20 . not-triggered stations. This set of inequalities

-30 o 5 identifies a segment (shown in red in Figure) over

40 1 10 the hyperbola.
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Earthquake location

Recently, new earthquake location procedures have been introduced. They
make use of the concept of not-yet-triggered stations.
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Horiuchi et al. (2005) extended this approach
considering that, as time passes since the first two
triggers: a) the constraint on the earthquake
location given by (2) increases and b) other stations
will trigger. Equation (2) can be generalized to

(i (X)—LE(X) = Lrow—L; (3)

where i is a triggered-station and j not-trig-station.
This inequalities identifies a volume containing the
hypocenter which shrinks when t_now is running



Earthquake location

Cua & Heaton (2007)

extended the previous

approach by introducing Voronoi
cells, in order to start the location
determination with only one
triggered station.

The approach has been
further developed by Satriano
et al. (2008) and Rosenberg
(2009).
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Earthquake location

Regarding the Onsite approaches, there are some examples of location (and
magnitude) estimation using a single station.

Nakamura (1984). The UrEDAS system first estimates the magnitude on the
basis of the predominant period of the P-waves.

Then, the hypocentral distance is inferred from the peak P-wave amplitude
using an empirical magnitude-amplitude relation that includes the hypocentral
distance as a parameter. The azimuth of the epicenter is determined by
polarization analysis over the three components.

Odaka et al (2003). The function 100000 —
B t exp(-At) is fitted to the envelope of the

vertical component of acceleration o g

(considering the first 3 sec). It has been . .

observed that log(B) is proportional to — o

log(distance). The distance is first found 100 | @2000.1006 M73 (1 ko

using the measured B value, then the 81999651 o4 (1o

magnitude is determined using empirical | Saarsse st s im ro etal
equations for P-wave amplitude as in the L0t s o O (S < Maniude  BSSA, 2003

Nakamura methOd . ! 1 epicentral distance A 10 (km) 1o



(a) PreSEIS On-site

Earthquake location

. i i INPUT Artificial Neural OUTPUT
Bose et al (2012). The PreSeis On-site Networks (ANNs)
approach provides a rapid R | N s
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Earthquake magnitude estimation

Rapid magnitude estimation for EEW is based on the observation that quantities like
peak displacement, characteristic period, etc., estimated in the first few seconds of
the recorded P- or S-signal, can be correlated to the final earthquake size. The EEW
magnitude estimation is therefore based on empirical relationships between early-
measured parameters and the earthquake’s size.

from
Satriano et al., SDEE, 2011

Examples:

The use of the initial portion of recorded P-wave for magnitude determination was
introduced by Nakamura (1988). The predominant period is computed from the
initial 2-4 sec of P-wave. It is called 7, after Allen and Kanamori(2003). It is
computed in real time from the vertical component of velocity (V) and
acceleration (A):

where  Vi=uaV, ;+v? andais asmoothing

Tpi =27 parameter from 0 and 1.

pi =

A = oA +a}



Earthquake magnitude estimation

Nakamura (1988) and Allen and Kanamori(2003) observed that the predominant
period linearly scales with the earthquake size.
Kanamori (2005) introduced the parameter 1. which is similar to t,but defined as

TOu(t)de 1 _2n

Jwod Ty T

With t, generally equal to 3 sec, and with displacement obtained by numerical
integration and high-pass filtered at 0.075 Hz.

The effectiveness of this approach is still under debate.



Earthquake magnitude estimation
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from
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Earthquake magnitude estimation
Different parameters from the predominant period have been introduced.
Wu & Zhao(2006) and Zollo et al. (2006) investigated the peak displacement

amplitude measured on the early P (and S) phases.
Wu and Zhao called this parameters Pd, measured on the vertical component,
using the first 3 sec after the P arrival. They studied the attenuation of Pd with

magnitude and distance in southern California:

logP; =A+BM+ClogR

where the constants A, B, and C are determined trough regression analysis for
the studied area. Once the distance is determined by the EEW algorithm, this
empirical model is used to estimate M from the measured Pd.

of o {'%H | >_, The saturation effect is removed by
1 %}E H H > considering larger windows (4sec of P-
S 20 L wave) or using the peaks read from the S-
5 ol R waves (Zollo et al, 2996; Lancieri and
B o Zollo, 2008).
4l

K=NET

from
Satriano et al., SDEE, 2011
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Earthquake magnitude estimation

Another class of EEW parameters used for estimating the earthquake size
iInvolves integral measurements (e.g. Festa et al., 2008)

/ 3 from
Pd 1 Displacement Peak Satriano et al., SDEE, 2011
_J\ ; Predominant
3 = . 1 Velocity
3 < . \/ E period
/\/\: Vior A
- Integral
b [max
1 Intv2or CAV CAV = / ‘ﬂ([)‘ dt
0
F +Va 3 r[‘ + ﬂtf 9 d
F va 1 Acceleration Average peak I VZC — Uc (t) t
- ] ge p t
i c

Time _ with c= P or S phases
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How does it work?

1sT EXAMPLE:
Napa, M6

24 Aug 2014

Berkeley
2ND EXAMPLE:

So. Cal. M7.8 Scenario San Francisco

 Shaking intensity: Weak Light Moderate Strong V. Strong Severe Violent Extreme
I 0 M v V VI Views




Decentralised Onsite Early warning

Real-time acceleration Alert protocols based on PGV
_ thresholds & expected damage
Event detection levels
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Online application to Kyrgyzstan: Lead time for Bishkek

ACROSS Network
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on Site) softwares
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from
Parolai et al.,2017, Frontiers
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Are magnitude and location necessary?
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Hoshiba and Aoki (2015):

Some Emerging questions

How to deal with nearly simultaneous
aftershocks?

How to include site effects in real time shaking
“-y|  forecasting?
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Aftershocks early warning
monitoring:
dependent vulnerability

and

Emerging questions
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Applications

ACROSS Network




“‘

42°

‘o.

38.

36°

Macroseismic
Intensities in

Almaty

~300
death

42°

‘o.

36°

1887 Verny Earthquake M=7.3

: W 3
Nurmagambetov (1999)

Almaty

o

NurmagambetoV (1999)



“.

42°

’, The h|stor|cal Information suggests that
| the earthquake also created devastation
Hin Plshpek (the actual Blshkek) :

40.

380

I:' -~ '.' ¥

36°

Almaty

Macroseismic

Intensities  in EofisEe=

A S, S .S 1911 Kemin Earthquake M=7.8-8.0

Nurmagambetov (1999) Nurmagambetov (1999)



ol LSy
A SM network
@ New stations

& Together

1-CSO
2-MDO
3-KRS
4 -SLH
5 - NKM

6 - Gorelnik

7 - kosmostantsiya
8 - Alma-Arasan

9 - Rakhat

10 - Dacha

11 - Kok-Tobe

12 - ADK

13 - ZHEO-2

14 - Kolkhozshy
15 - Alatau

16 - East new

High risk considering the urban

\
AL 'L\
\.\i b \\
e
.Z( (SN
B N

Parolai et al (2018) in preparation

dy

namic

Cit Population Estimated deaths Estimated Injuries
y (millions) (thousands) (thousands)
Almaty 15 75 300
Bishkek 0.8 (now ~1) 40 160

GeoHazards Int. B.Tucker, pers. comm.




Probability density

Picozzi et al (2013)

Earthquake risk early warning
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Velocity [cm/s]

Decentralised On Site Early Warning

Low pass filtering

Integration in velocity
and displacement

Event detection

(possibility of combining info from
the low and high pass filtered
record or pred period)

PGV estimation (mean
+/- S)

MDN
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time [s]

M 5.9 20" My 2012 Emilia earthaquzke
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mean + G > 8.1 cm/sec Intensity 2VI

mean— G >8.1 cm/sec

Mean >8.1 cm/sec

8.1 cm/sec>mean>3.4
cm/sec

Mean <3.4 cm/sec

8.1 cm/sec>mean —
G > 3.4 cm/sec

mean — G <3.4 cm/sec

8.1 cm/sec > mean + o > 3.4 cm/sec Intensity =V

mean - G >8.1 cm/sec

8.1 cm/sec>mean —
T > 3.4 cm/sec

mean -G <3.4 cm/sec
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8.1 cm/sec>mean>3.4
cm/sec

Mean <3.4 cm/sec

mean + G < 3.4 cm/sec Intensity IV

mean - G >8.1 cm/sec

8.1 cm/sec>mean —
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mean — G <3.4 cm/sec

Mean >8.1 cm/sec

8.1 cm/sec>mean>3.4
cm/sec

Mean <3.4 cm/sec

from

Parolai et al.,2015




GFZ

Decentralised Onsite-Early Warning

Porsbpam

with GEMPA GmbH.

GFZ-Sentry Software, based on Parolai et al. (2015) and developed in cooperation

L :

eew_onsiteview@localhost

File Help

@l El ), Mo, 2.Jan, 00:47 1]

scrttv@localh BB
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File Plugins

Help

. Enable console log Auto open incoming message Clear messages

2

@ [across@across: ~/201... ]@ across@across: ~/2016... ]@ [across@across: ~] || scmm@localhost || = scrttv@localhost

Type ' Sender | Destination  Size | Time
Name Type[-1] Destination[-* Time[-1]
database_r... #r0-15#loc... 2017-01-02T00:39:55
#eew#loca... notifier_m... CONFIG 2017-01-02T00:32:30
#scinv#tloc... notifier_m... INVENTORY 2017-01-02T00:36:26
#_sccfgupd... notifier_m... CONFIG 2017-01-02T00:39:39
#scautopic... notifier_m... AMPLITUDE 2017-01-02T00:42:43

=



PGV [cm/s]

Decentralised OSEW in testing
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from Parolai et al.,2017, Frontiers



Ttreshold 8.1 cm/s_TaIarm
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Application to KiK-Net and K-NET recordings
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TS_waves_TaIarm
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from
Parolai et al.,2017



Offline application to Kyrgyzstan: Lead time for
Repetition of the M 7.8 1911 Kemin Earthquake
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! I 1 Parolai et al.,2017, Frontiers
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Central Asia Risk and Vulnerability
Analysis Tool
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1976 Seismic Sequence

*1=~ Origin time: 20:00:13 UTC
------ SRS I epicenter 46° 17°’N-13° 17°E

CIIIIISII'IIfCO Ienemoln III Hlllll Depth: 5 - 12 km

ALLE 21 UNA SCOSSA SISMICA DELL'OTTAVO GRADO DELLA SCALA MERCALLI HA DEVASTATO MAIAND, BULA, CEMONA,
O0SOPPO, MACNANO, ARTECNA, COLLOREDO, TARCENTO, FORGARIA, VITO DASI0 € MOLYI ALTRI PAESI DELLA
PEDEMONTANA - GENEROSA OPERA DI SOCCORSO PER ESTRARRE LE VITTIME DALLE MACERIE - A UDINE E I TUTTI |

mwnuum-mnnmmmu.mm-ruuumumuluumtom Magnitude' 6.0 mb 6.5 MS 6.4 ML
' Epicentral intensity: X MKS

Max PGA recorded: 0,36 g

Felt at distance of : 579 km
Impact Area : 5.700 km?
Death toll: 989

People needing shelters: 110.000
Damage: 4.500.000 milions (lire in 1976)
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Earthquakes recorded since 1977
(>33.000 events)
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