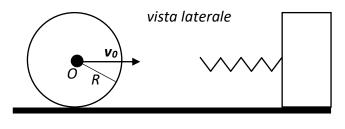
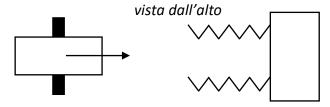
Corso di Studi in Fisica – UniTS Prova scritta di Fisica Newtoniana - 19 febbraio 2024

Esercizio I

Un veicolo di massa M=1000 Kg si trova inizialmente fermo su una strada rettilinea e orizzontale. A un certo istante, grazie alla spinta del motore, inizia a muoversi di moto uniformemente accelerato, raggiungendo in $t_0=8.00$ s la velocità $v_0=100$ km/h. Assumendo che durante il moto l'unica forza resistente sia quella dovuta alla resistenza dell'aria, esprimibile tramite la relazione R=k v², con k=1.70 N s² m², calcolare:


- a) il modulo a dell'accelerazione del veicolo;
- b) il lavoro compiuto dal motore durante la fase di accelerazione;
- c) la potenza necessaria per continuare a muoversi con velocità v_0 costante.


Esercizio II

Una piastra di massa M=100 kg scivola senza attrito con velocità $v_0=5.00$ m/s su un piano orizzontale. A un certo istante, sul bordo anteriore della piastra viene posto, con velocità nulla rispetto al piano, un punto materiale di massa m=10.0 kg. Assumendo che il coefficiente di attrito dinamico tra punto materiale e piastra sia pari a $\mu_k=0.5$, si determini la lunghezza minima l_{min} che deve avere la piastra affinché il punto materiale non ne cada giù.

Esercizio III

Un cilindro di raggio R = 20 cm e massa M = 10 kg, rotola senza strisciare su un piano

orizzontale con velocità $v_0 = 5.00$ m/s del suo centro di massa. Ad un certo istante l'asse del cilindro, di massa trascurabile, va a impattare due molle identiche, di costante elastica $k = 1.87 \cdot 10^4$ N/m, poste all'altezza dell'asse stesso. Determinare la massima compressione delle due molle nelle seguenti ipotesi:

- a) il cilindro sia pieno e omogeneo;
- b) il cilindro sia vuoto (mantenendo la stessa massa).

Tempo: 2 ore

Risultati: https://moodle2.units.it/