Università degli Studi di Trieste

Matematica per l'Economia e la Statistica corso Progredito

Anno accademico - 2020/2021

Docente: Renato Pelessoni

SUCCESSIONI IN R

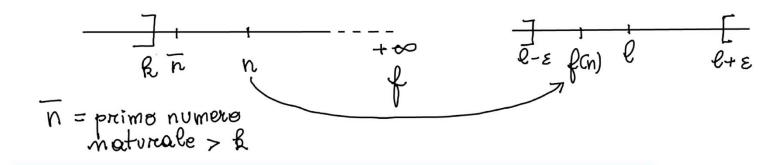
Parte 1

SUCCESSIONI IN TR

Def. f: N -> R = detto SUCCESSIONE in TR

Si éndica $e_n = f(n)$ detto TERMINE della SUCCESSIONE $(a_n)_{n \in \mathbb{N}}$

Una funcione $f: N \rightarrow \mathbb{R}$ ha limite $l \in \mathbb{R}$ per $m \rightarrow +\infty$ $< \neq 0$ $\forall U_e$ intormo $di \ l \exists \ \forall_{+\infty}$ intormo $di' + \infty$: $f(n) \in U_e \quad \forall \ n \in |N \cap V_{+\infty}|$ $< \neq 0$ $\forall I_e = \exists \ l - \epsilon, \ l + \epsilon I \ \exists \ I_{\infty}^k = \exists \ l + \epsilon I \ (l > 0):$ $f(n) \in \exists \ l - \epsilon, \ l + \epsilon I \ \forall \ n \in |N \cap I_{+\infty}|$



HE>O JTEIN: YN=T, neN, IXn-PKE

13: useremo m, m o anche la, per indicare numeri naturali, venta specificarlo direttamente (sovia eliaseo dal contesto)

Mo:

(an) ne CONVERGENTE DE Flim an=Ceftog-or, cof

INDETERMINATA (O TRREGOLARE) altrimenti

Riassu menolo

e analogamente

OPZIONALE (ac valet ko valet ko vicovoma)

lim Qn=+00 LADTR (20) Jn: tn=n Qn=R

lim Qn=-00 LADTR (20) Jn: tn=n Qn<R

M->+00 Qn = -00 LADTR (20) Jn: tn=n Qn<R

OPZIONALE (see valethro valethe vicevolva)

lim an = 60 LED + BER In: than | an |> &

M: nella definizione di liman si può sociuere n>n invece di n≥n indifferentemente.

Ad esempis

lim Qn= l LED +8>0 = Tn: +n=n | Qn-ll< E n-)+0

LED +8>0 = Tn: +n>n | Qn-ll< E Per le successioni valgono gli "resuali" teoremi per funzioni a valori in R

Unicità del limite

Il limite di ema successione, se esiste, è unico.

Teoriema della permanenza del segno

lim
$$a_n = \begin{pmatrix} 1 > 0 \\ + \infty \end{pmatrix} = \exists n : \forall n > n \quad a_n > 0$$

lim $a_n = \begin{pmatrix} 1 < 0 \\ + \infty \end{pmatrix} = \exists n : \forall n > n \quad a_n < 0$
 $n > + \infty$

Per il calcolo dei limiti oli successioni valgono teoremi analoghi a quelli per il calcolo dei limiti di funzioni

Ad esempio 1) $\lim_{m \to +\infty} \frac{m}{m+1} = \lim_{m \to +\infty} \frac{m+1-1}{m+1} = \lim_{m \to +\infty} 1 - \frac{1}{m+1} = 1$ TEORERA

SUL LIMITE

DELLA SONMA

M-7+10

SUCCESSIONE COSTANTE

O

TEORERA

SUL LIMITE

DELLA SONMA

DI SUCCESSIONI poiche lim n=+0 Live _ = O TEOR. LIKITE RECIPROCO DI UNA SOCCESSIONE lim 1 - 1 = 1 TEOR. LIMITE SONNA DI SOCCESSIONI
M-7+10 X (-1): TEOR. LIMITE PRODOTTO DI SUCCESSIONI

6ssorviamo che

$$f(n) = \frac{m}{m+1}$$
 e la restruizione a N di
 $f(x) = \frac{x}{x+1}$ e line $\frac{x}{x-n+1} = 1$

Se la successione f(n=an moiN provenere vista eouve restruizione a N di ema funzione definita su ESIR con tos come punto di accumulazione per E, si provenere il sequente resultato:

Sia f: $E \leq \mathbb{R} \rightarrow \mathbb{R}$, $F \leq E$, \times di accomulazione per F.

lim $f(x) = l \in \mathbb{R}$ of $+\infty$, $-\infty$, ∞ $f \Rightarrow line f(x) = l$ $\times \rightarrow \times o$ \uparrow RESTRIZIONE

DI $f \approx F \leq E$

18: non vale in generale il viceversa

Nell'esempio di prima

$$f(x) = \frac{x}{x+1} \qquad E = \mathbb{R} - 1 - 1$$

$$f: E \to \mathbb{R}$$

live
$$f(x) = 1$$
 => lim $f(n) = live $a_n = 1$$

2)
$$\lim_{m \to +\infty} \frac{m!}{(m+1)! - (n-1)!}$$

 $(m+1)! - (n-1)! = (m+1)m (m-1)! - (n-1)! =$

$$= [(m+1)m-1](m-1)!$$

$$= \frac{m!}{(m+1)! - (n-1)!} = \frac{m!}{(m+1)m-1](n-1)!} = \frac{m}{(m+1)m-1} =$$

$$= \frac{m}{m^2 + n - 1} \longrightarrow 0 \text{ per } m \longrightarrow +\infty$$

SUCCESSION! LIMITATE

Se 3 REIR: TheIN

allora (an)ne

.Qn ≤ k

SUPERIORMENTE LIMITATA

 $a_n \ge k$

INFERIORNENTE LIMITATA

lan/s &

LIMITATA

No: equivalentemente (anin (-/pup./inf) limitation LFD frankmeins e un insieme (-/pup./inf.) limitato

Proposizione

lim an=leR => (an)n e limitata

Dim: Fissiamo E>O. Allora Jn: tn=n lan-el<E

Si ha quindi |an|= |an-C+C| < |an-C|+ |C| < E + |C| +n=n

Sia (= max d | ail: i= 1, -, n-13

Allora lant max 2 C, E+1813 => (an), limitata

poiché BRER: lan(<& +nen

Teorrema del confronto

2) ans bn definitivamente

$$\lim_{n\to+\infty} a_n = +\infty$$
 $= \lim_{n\to+\infty} b_n = +\infty$

$$\lim_{m\to+\infty}b_n=-\infty \implies \lim_{m\to+\infty}a_n=-\infty$$

Università degli Studi di Trieste

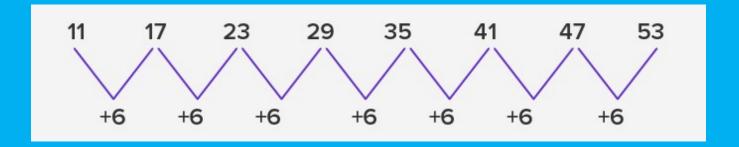
Matematica per l'Economia e la Statistica corso Progredito

Anno accademico - 2020/2021

Docente: Renato Pelessoni

SUCCESSIONI IN R

Parte 2



SUCCESSION! MONOTONE

Se, Ynein

An S Qn+1

Qn < Qn+1

an > ant1

Qn > Qn+1

allora (an), e

CRESCENTE

STRETTAMENTE CRESCENTE

DECRESCENTE

STRETTAMENTE DECRESCENTE

MONOTÓNA

Teorrema sul limite di successioni monotone

(an), puccessione ente

=> lim an = sup hand = len se can infinitata superioremente

norto actrimenti

(an), puccessione decrescente

=> lim an = inf hand = { - & altrimenti

Corrollanio

Sia (an), monotona.

(an) n converge <FD (an) n e limitata

Proposizione

liman=0, (bn), limitata => line anbn=0

Esempi

1) lim 1 = 0

northon la defin

Con la definizione: \[\frac{1}{n} = \frac{

Priendendo $\overline{n} > \frac{1}{\varepsilon}$, $\overline{n} \in \mathbb{N}$, la condizione è vera

 $\left(\varepsilon = \frac{4}{3}, \text{ priendo } \overline{m} \geqslant i, \varepsilon = \frac{4}{10}, \text{ priendo } \overline{m} \geqslant 41; \ldots \right)$

Con i teoremi algebraici!

lûm m = +v = 3 lûm $\frac{1}{m} = 0$ (teore, lûm, funzione succiproca)

2) \$\frac{1}{\pi} \lim_{n \text{s} + \infty} (-1)^n

an= { 1 se m pari
-1 se m dispari

Con la définizione:

Sia le R. Preso $\varepsilon = \frac{1}{2}$, an mon puo appartenere definitivamente a $\Im e^{-\varepsilon}$, $e^{+\varepsilon}$

-1 l-E l'et 1

Gli altri casi sono

an, ndispari

ana loghi

Analogamente, per k > -1, an non pro expere lim $a_n = +\infty$

Analogamente, mon può essere lin an= - vo

Con le restruzioni

P= d zn/mein] insieme dei numeri pari D= d zn+1/mein] insieme dei numeri dispari flp determina la successione bn= azn= 1 trein flo determina la successione cn = azntz=-1 trein $\lim_{N\to+\infty} f_{[p}(n) = 1 \neq -1 = \lim_{N\to+\infty} f_{[D}(n)$ \Rightarrow \exists $\lim_{n\to+\infty} f(n) = \lim_{n\to+\infty} a_n$

Teorisma (Cavattorizzazione del lunite di funzioni tramite successioni)

Sia fi $E = \mathbb{R} \to \mathbb{R}$, \times_0 di accomulazione per E. Allora,

lim $f(X) = l \in \mathbb{R} \cup l + \omega, -\omega, \infty$ $\forall (\times_n)_n \subseteq E - l \times_0 l$ tale che line $\times_n = \times_0$ si ha

lim $f(X_n) = l$ $n \to +\infty$

Teorema (Covathorizzazione della continuità di funzioni tramite nuccessioni) $f: E \subseteq \mathbb{R} \to \mathbb{R}$, $x_0 \in E$ $f continua in x_0$ $(x_n)_n \subseteq E \ tale \ ehe \ lieu x_n = x_0 \ si \ ha$ $(x_n)_n \subseteq f(x_0)$ $(x_n)_n \subseteq f(x_0)$

Esempio

Siano
$$a_n = \frac{1}{2n\pi} e b_n = \frac{1}{(2n+1)\pi} neiN, n=1$$

due puccepioni

$$\lim_{m \to +\infty} Q_n = \lim_{m \to +\infty} b_n = 0 , \quad \Delta_n > 0, \quad b_n > 0 \quad \forall n \in \mathbb{N}, \quad n \ge 1$$

$$\lim_{m \to +\infty} f(a_n) = \lim_{m \to +\infty} 1 = 1 \quad \lim_{m \to +\infty} f(b_n) = \lim_{m \to +\infty} -1 = -1$$

Successione (progressione) geometraica

Din: 1) Se q>1, que crescente e illimitata

2) Se 9=1, 9^m è costomte => lim 19^m=1

3) Se 0 < q < 1, $\frac{1}{q} > 1$ e $\lim_{m \to +\infty} \frac{1}{q^m} = \lim_{m \to +\infty} \left(\frac{4}{q}\right)^m = +\infty$ per il caso 1). Segue $\lim_{m \to +\infty} q^m = 0$.

4) Se q=0, q=0 tr => lim q=0

5) Se
$$-1, $-1q^m \le q^m \le 1q^m = con o < lq < 1 e$

lim $|q|^m = \lim_{m \to +\infty} -|q|^m = 0$ per il $-con o < lq < 1 e$
 -2 lim $-1q^m = 0$ per il $-con o < lq < 1 e$$$

7) Se
$$q < -1$$
, $q^{2n} = (-q)^{2n} con - q > 1$
 $e q^{2n+1} = -(|q|)^{2n+1} con |q| > 1$

Si dimostra allora facilmente ehe live 19th 200

Università degli Studi di Trieste

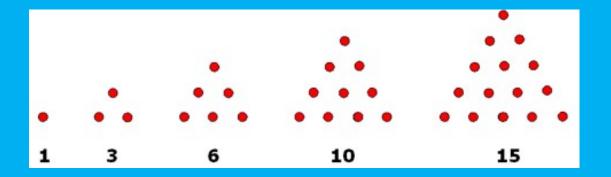
Matematica per l'Economia e la Statistica corso Progredito

Anno accademico - 2020/2021

Docente: Renato Pelessoni

SUCCESSIONI IN R

Parte 3



Teoriema (Cristerio del rapporito)

Sia Can'n con anso 4n (& pufficiente anso definitivamente)

a) $\lim_{n\to+\infty} \frac{Q_{n+d}}{Q_n} = \ell < 1 \implies \lim_{n\to+\infty} Q_n = 0$

b) $\lim_{n\to+\infty} \frac{\alpha_{n+1}}{\alpha_n} = \lim_{n\to+\infty} \frac{\alpha_n}{\alpha_n} = \lim_{n\to+\infty} \frac{\alpha_$

=> poiche $0 < \alpha_n < (\ell + \epsilon)^m \xrightarrow{\alpha_n} \rightarrow 0$

si ha liman=0 (per confronto)

b) Sia lim and =+60

Allora +R>0 3 v: 4n>n an+3 > &

=> lan = kan-1 = k2an-2> --- = kn-n an th=n

Prieso k>1 hor quindi $a_n \geq k^m \cdot \frac{D_n}{k_n}$ con $\lim_{M \to +\infty} k^m = +\infty$ CEONETRICA k>1S numero reale che mon diponde da n => lim Qn=+ 0 (por confronto) Se invece lim ante = CER, C>1, preso E>0 tale che C-E>1, $\exists n: \forall n \geqslant n$ $a_n > (\ell - \varepsilon) a_{n-1} > \dots > (\ell - \varepsilon) a_n = (\ell - \varepsilon) \frac{a_n}{(\ell - \varepsilon)^n}$ $\forall n \geqslant n$ $\forall n \geqslant n$ => lim Qn = +0

Teoriema (Criterio della radice)

Sia (an), con $a_n>0$ $\forall n$ (anche solo definitivamente)

a) $\lim_{N\to +\infty} \sqrt[m]{a_n} = \ell \in \mathbb{R}$ con $\ell < 1 \Rightarrow \lim_{N\to +\infty} a_n = 0$

b) lim Jan = le Ruftog eon l>1 => lim an= tos

Din: a) Sia lim Jan = CEIR, C<1

Prieso e>0 tale che l+E<1, In: Yn>n Van<l+E,

wive 0<10, <(l+E)^n ->0 (succ. GEOM. CON PEEJO, 1T)

=> lim 19, =0

b) Sia lim Jan=+00

=> Press R>1, Jn: Yn>n an> Rm -> +00 succ. GEOM R>1
+00 PER CONFRONTO

Se invece lim Jan= 2>1

- => Prieso E>0 tale whe l-E>1, Jn: Yn=n

 Qn > (l-E)^m -> +60 Succ. GEOH. CON Q= l-E>1

 +* PER CONFRONTO
- => lim an= to in entrambi à easi.

$$rac{m \rightarrow + \infty}{m!}$$

$$a_n = \frac{b^n}{n!}$$
 con $b > e$

Esempi
1)
$$\lim_{m \to +\infty} \frac{b^m}{m!}$$
 $\lim_{m \to +\infty} \frac{b^m}{m!}$ con $b > 0$

$$\frac{a_{n+4}}{a_n} = \frac{b^{m+4}}{(m+1)!} \frac{m!}{b^m} = \frac{b}{m+1} \longrightarrow 0 < 1$$

=)
$$\lim_{m\to +\infty} \frac{b^m}{m!} = 0$$
 CRITERIO DEL RAPPORTO

2)
$$\lim_{m \to +\infty} \frac{(m!)^2}{(2n)!}$$
 $a_n = \frac{(m!)^2}{(2n)!}$

$$\frac{Q_{n+1}}{Q_{n}} = \frac{((m+1)!)^{2}}{(2(m+1))!} \frac{(2n)!}{(m!)^{2}} = \frac{(m+1)^{2}}{(2n+2)(2n+1)} = \frac{m+1}{4n+2} \rightarrow \frac{4}{4}$$

$$\frac{1}{4} < 1 \implies \lim_{m \to +\infty} \frac{(m!)^2}{(2n)!} = 0 \quad \text{CRITERIO DEL RAPPORTO}$$

Def.: Sia (an)n uma puccessione
Si dice sottosuccessione di (an)n uma puccessione
bn=ap, trein, dove bn e uma puccessione
strettamente exescente di numeri maturali

Esempi 1) Egni successione e pottosuccessione di pestessa ($R_n = n$)

2) Se i fissato $n_0 \in \mathbb{N}$, $R_n = n + n_0$, $R_n = n + n_0$, $R_n = n + n_0$ sottosuccessione ottenuta togliendo alla successione i peimi n_0 termini R_n : 2^0 2^d 2^2 2^3 2^4 2^5 2^5 2^5 2^5 2^6 2^5 2^6

3)
$$k_n = 2n$$

3) kn = zn bn = Qzn pottosuccessione dei termini en posizione pari

bn = Party pottosucessione dei termini in

$$6n = (-1) = -1$$

Lemma	<u></u>
Sià	R: IN→IN strettamente exescente (e dunque iniettiva)
=)	R(n) =n +neiN
Dim?	Sia per assurdo R(n) <n ein<="" en="" n="" per="" qualche="" th=""></n>
	Allora V m <n, &="" &(m)<&(n)<n="" erescente<="" strettomente="" th=""></n,>
	=> $\{k(q_0,1,,m-1\}) \leq \{0,1,,k(n)-1\}$
	HA TO ELEMENTI DISTINTI HA ROT ELEMENTI PERCHE & INIETTIVA
	=> m < &(n) < n Assurdo.

Teorema

Sia Can'n successione tale che live an=l E Rudtog-os, so 3 e sia bon ema sua sottosuccessione.

Allora lim bn=l
M-2+00

Dim: Sia Dn = a_{Rn} con R: IN-DIN, R(n)=R_n othett. crosscente Supponiamo liman=lel. Preso E>0, Jn: 4n>n [a_n-lle R str. cross. => pexil Lemma precedente R(n)=R_n>n+nelN => 4n>n | b_n-ll=la_{Rn}-lle poiche R_n>n>n

la dimostrazione nel caso le 1+00,-00, 00 Feanaloga.

M3: non vale il viceversa! Se bn sottssuccessione di an lim bn=l >>> lim an=l

Si ha tuttavia

Teorema

Sia County successione

lim an=le Ru 1+10,-00, or 4+10 sogni sottosuccossione

estratta da Canin ha una sottosuccessione con limite l.

Inoltre, se da ema successione (an In estraggo due o più sottosuccessioni (in numero FINITO) con lo stesso limite l'e complessi vamente "succestruis cono" (an), sullora (an), ha limite l.

Esemple
$$Q_n = \begin{cases} \frac{1}{m} & \text{ se } m \text{ positi} \\ \frac{1}{l_n(n)} & \text{ se } m \text{ dispositi} \end{cases} \quad \text{me in}, m = 2$$

$$\lim_{m \to +\infty} \frac{1}{m} = 0 \quad \lim_{m \to +\infty} \frac{1}{l_n(n)} = 0 \quad \Rightarrow \quad \lim_{m \to +\infty} Q_n = 0$$

$$m \to +\infty \quad \text{me in} \quad Q_n = 0$$

Leonema

Ogni successione in R ha ema sottosuccessione monotona

Dim? Sia (an), la successione. Definiamo

G=dneN/ am<an +m>n3

6 è l'insième degli indici n tali che an è maggione di tutti i termini succepivi

Distinguiamo due casi:

a) G = {new/am<an \text{\text{m>n}} \text{\text{\text{e}} finits (eventualmente vuoto)} Gfirito (e non vuoto) => 7 max G Definiamo no= 1+max G (se Ge vuoto, poniamo no=1) Guviamente no & G (spoiché no > max G) e dunque 日紀フno:19kg > 19no ← DALCA DEFINIZIONE OIG Analogamente, poiche ky >no > max6, si ha che 1 /2 > k1? lak2 = 19k1 - kn+1 > kn theiN Continuando cost oi costraisce una pottouccepione bn=ar, nein, di (an), crescente.

- b) Sia G= IneIN: 10 m< an +m>n] infinito

 - =) Si ottiene uma pottosuccessione $b_n = Q_{R_n}, n \in iN$, di $G_n)_n$ tale the $b_{n+1} = Q_{R_{n+1}} < b_n = Q_{R_n} < DALLA DEFINIZIONE$ cioè decrescente

$$G = \{0, 1, 2, 3, 4\}$$
 e finito, $\max G = 4$, $m_0 = 5$
 $b_n = 2$ the N = softosuccessione crescente

n												
a_n	3	1	2	0	1	-1	0	-2	-1	-3	-2	•••

$$G = \{0, 2, 4, 6, ...\} = \{2n \mid m \in \mathbb{N}\}\$$
 e infinitor $b_n = Q_{2n}$ e softosuccessione decrescente

Conollaria

Ogni successione di numeri reali limitatia ha una sottosuccessione convergente

Dim? Sia Can'n nuccepione limitata

- => 3 (bn) n sottosuccenione monotona di Can) n (an) n limitata => (bn) n limitata
- =) I limbre R (perché (bn), monotour e limitata)

Successioni definite per suicorouenza - un esempio

Mostrare che la successione definita per suicovienza

2 ant = Vz+an e ben definita e studionne il limite

Voujechiamo che 2+an 20 4 n e IN, n 21

Per induzione: n=1 => 2+an=2>0

Sia 2+an=0. Allora an+1= Vztan=0

e dunque 2+9n+1 = 2+ V2+9n >0

=> 2+an >0 thein, n>1.

Dimostriamo che la successione è criescente 1911 Jan 4 N31 LED V2+an 2 191 4 N31 Per induzione: Se n=1 pi ha Q= Vz+Q= V2>0=1Q1 Sia ant = an e proviamo che ant = ant = ant = 2012 = 2011 270 V2+an+1 = V2+an CAD 2+an+1 = 2+an UD Qn+1 3 Qn => (ran), e rarescente.

Quindi 3 liman=/leir se (an) në limitata n-2+00 +00 altrimenti

Se lim 19n=les allors anche la pottoouccepione lon=19n+1

ha la stenor limite e quindi $a_{n+1} = \sqrt{2+a_n}$ $e = \sqrt{2+e}$

vioe l'-l-2=0, cheha poluzioni 2 e-1.

anzotnen, mil => pocouto l=-1

=> Il limite di (an), e +002.

Tale limitersuplan mein, n > 1], poiche Can) n'e creceute. Verifichiamo de an < 2 Y n EIN, n > 1.

Per induzione?

Q1=052

Sia ansze proviamo che an+152

Qn+1 52 <=D V 2+an 52 <=D 2+an 54 <=D 20052

 $= \lim_{n \to +\infty} \alpha_n = \sup_{n \to +\infty} |n \in \mathbb{N}, n > 1 = 2$

Università degli Studi di Trieste

Matematica per l'Economia e la Statistica corso Progredito

Anno accademico - 2020/2021

Docente: Renato Pelessoni

SUCCESSIONI IN R

Parte 4

3, 9, 27, 81, 243, ...

Teoriema

Ggni successione ha una sottosuccessione monotona

Corrollario

Ggni successione limitata ha una sottosuccessione convergente.

Dim.: Sia (Qn), uma successione limitata. Per il teorrema precedente questa la uma sottosuccessione monotora e necessariamente limitata. Per il teorema sulla convergenza delle successioni monotone, questa sottosuccessione converge.

SUCCESSION! DI CAUCHY

Def.: (an), è di Couchy (o fondamentale) LED HE>O Jn: Yn, m>n | an-am! < E

Proposizione

(an) n e di Cauchy => (an) n e limitata.

Dim: Sia (an) n di Cauchy. Fissata e>o, In: Vn, m>n

lan-amle. Poniamo m=n. Dunque

lanl=lan-antan [< |an-an|+|an|< e+ |an| Vn>n

=> |an|< max { max { lai!: i<n}, e+ (an) } Vn∈iN.

Teorema (CRITERIODI CONVERGENZA DI CAUCHY)

(Qn)n converge (H) (Qn)n e di Cauchy

Dim: = Sia lim $_{n\rightarrow+\infty}^{\infty}$ = $\ell\in\mathbb{R}$. Allora $\forall \varepsilon>0$ = π : $\forall n\geq \pi$ $|q_n-\ell|<\frac{\varepsilon}{2}$

=> si ha, tero e tu, m= n

 $|a_{n}-a_{m}|=|a_{n}-e+e-a_{m}| \leq |a_{n}-e|+|a_{m}-e| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

=> (an)n e di Cauchy.

Sia CanIn di Coucley.

=> (an), é limitata

=> = I uma nottosuccessione (QR), tale che lim QR, = CER m=>+00

Sia E70.

(anly di cauchy =) $\exists n_1: |a_n-a_m| < \frac{\varepsilon}{2} \quad \forall n, m > \overline{n_1}$ (and of converge al =) $\exists n_2: |a_n-C| < \frac{\varepsilon}{2} \quad \forall n > \overline{n_2}$

Siano $\overline{n} = max \{ \overline{n}_1, \overline{n}_2 \}$ $n \ge \overline{n}$ $m = k_m \ge n$ M3: R (n1= Rn R: N-) IN Strettamente crescente => R(n)>n +m

m = $k_n \ge n \ge \overline{n} = \max_{n \ge 1} \sqrt{m_n \cdot m_n}$ $m = k_n \ge n \ge \overline{n} = \max_{n \ge 1} \sqrt{m_n \cdot m_n}$ $m = k_n \ge n \ge \overline{n} = \max_{n \ge 1} \sqrt{m_n \cdot m_n}$ Risulta allora da sui

 $n = \overline{n} \Rightarrow n = \overline{n} \Rightarrow |\alpha_{R} - C| < \frac{\varepsilon}{2}$

1an-el= [an-am+am-e] < [an-am]+[am-el=

aundi la successione (an), converge a l.

VANTAGGIO DEL CRITERIO DI CAUCHY E CHE NON FA INTERVENIRE DIRETTAMENTE IL LIMITE

Esercizi

al Si provi che lin an=leR => lin lan=lel. Vale il viceversa?

Dobbiamo dimostrare che: 42>0 Jn: 4n>n | lan1-lel/< E

Ricordianno che por le norme vole la dioequaglianza

Applicando tale diseguaglianza alla norma valore assoluto in R si ha $||a_n| - |e|| \le |a_n - e|$

Poiche liman=l si ha che 4270 Jn: 4n>n lan-elce Quindi si ha liani-lell< lan-elce 4n>n

=> lim |an |= (e1

In alternativa si può impiegare la continuita del valore assoluto

f(x) = (x) é continua

lim an = l m-7+60

 $= \lim_{m \to +\infty} f(q_n) = \lim_{m \to +\infty} |q_n| = f(\ell) = |\ell|$

per la caratterizzazione della continuità di funzioni tramite successioni

Vale il viceversa? In generale, no.

Controesempio:

CONTROESEMPIO: un exempio che mostrua che una proprietà non vale

 $\Rightarrow |Q_n| = |C-1|^n = 1 \implies 1 \text{ per } n \rightarrow + \infty$ $\text{ma} \quad \text{Iim } Q_n$

- b) Sia liman=lell, bn=(-1)^man
 Studiare l'esistenza del limite di bn al variore di lell.

 Consideriamo le 2 nottosuccessioni di (an) n con indici

 pari e dispari: (Qzn)n, (Qzn+1)m
 - => lim Q2n = lim Q2n+1 = C

Ma allorg $\lim_{m\to +\infty} b_{2n} = \lim_{m\to +\infty} (-1)^{2n} Q_{2n} = \lim_{m\to +\infty} Q_{2n} = \ell$ $\lim_{m\to +\infty} b_{2n+1} = \lim_{m\to +\infty} (-1)^{2n+4} Q_{2n+1} = \lim_{m\to +\infty} -Q_{2n+1} = -\ell$ $\lim_{m\to +\infty} b_{2n+1} = \lim_{m\to +\infty} -Q_{2n+1} = -\ell$ $\lim_{m\to +\infty} b_{2n+1} = \lim_{m\to +\infty} -Q_{2n+1} = -\ell$ $\lim_{m\to +\infty} b_{2n+1} = \lim_{m\to +\infty} -Q_{2n+1} = -\ell$ $\lim_{m\to +\infty} b_{2n} = \lim_{m\to +\infty} -Q_{2n} = \ell$ $\lim_{m\to +\infty} b_{2n} = \ell$

Ms: si è usatoril fatto che pe una successione ha limite agni sua sottosuccessione ha lo stesso limite

c) Sia XER. Allora IneIN: M>X Ragioniamo per assurdo. Sia mextmein Allora an=n (n EIN) è una successione crescente e superioremente limitata (da x) PER ASSURDO : $\Rightarrow \exists \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} n = l \in \mathbb{R}$ nego la tesi e serco una contraddizione Si ha ouviamente ant = ant 1 per m ->+ 60 => l= l+1. Assuredo. Si tratta della

PROPRIETA DI ARCHI MEDE