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Introduction

In this part of CFD course we’ll see in practical terms how to handle the entities (matrices,
vectors, etc.) that arise from the discretization of the fluid dynamics equations;

We’ll focus on the practical implementation of simple 1D and 2D steady-state cases;

The Finite Volume Method (FVM) will be used for the space discretization of the
problems, using Cartesian structured grids only;

MATLAB R© will be used as reference language, but a totally similar logic in the
manipulation of the matrices is used in other languages (Scilab or Python for example,
both free and Open source).
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Example

2D Poisson problem: {
∇2φ = s on Ω ⊂ R2

B(φ) = 0 on ∂Ω

When a grid and proper boundary conditions are chosen, the FV discretization leads to the
following linear system:

AΦ = S
How do we proceed? In practical terms:

I How do we build the coefficient matrix A?
I How do we build the source vector S?
I How do we find the solution vector Φ ?
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Source code files

MATLAB R© .m source code files used in these slides can be found at:

http://moodle2.units.it/

entering the TERMOFLUIDODINAMICA COMPUTAZIONALE course:

C1 AdvDiff_1D_Sparse.m
1D advection-diffusion problem with direct solution (sparse matrix);

C2 AdvDiff_2D_Sparse.m
2D advection-diffusion problem with direct and pcg solution (sparse matrix);

C3 Poisson_2D_Iter.m
2D Poisson problem with iterative Jacobi and SOR methods (matrix-free).
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1D advection-diffusion problem

1D steady-state advection-diffusion equation:

(ρwφ)x = (Γφx)x + s (1)

with constant properties ρ,Γ and constant velocity w;

Domain:
Ω = [0, L]

Boundary conditions (BC):

Type Dirichlet BC Neumann BC
Equation φ = φBC Γφx = J′′d,BC

Location x = 0 x = L
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Variables

Variables definition:

% Constant properties (rho, gamma) and advection velocity (w)
rho = 1 ;
Gamma = 1 ;
w = 1 ;

% Domain length
L = 2*pi ;

% BC values
phi_BC = 0 ;
Jd_BC = 0 ;
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Domain discretization

Discretization of the domain Ω in N finite volumes (FV) with constant side length

∆x = L/N:

x

Δx

0 L1 2 N-1 N (i)

% FV number
N = 100 ;

% FV side length
dx = L / N ;

% FV centroids abscissae (column vector)
X = dx * ( (1:N) - 0.5 )’ ;
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Equation discretization

FV discretization of eq. (1) with 2nd order Central Differencing Scheme (CDS)
approximation for both diffusive and advective fluxes:

AWφW + APφP + AEφE = SP (2)

% FV equation coefficients (constants for each FV)
A_W = -rho * w / 2 - Gamma / dx ;
A_E = rho * w / 2 - Gamma / dx ;
A_P = -( A_W + A_E ) ;

Eq. (2) holds for each of the N finite volumes except for the first and the last FV, where
this equation must be corrected because one of the neighbour cells doesn’t exist: BC will
be imposed using a ghost cell.
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Equation discretization

Writing eq. (2) for each of the N finite volumes, in a matrix notation we have:
AP1 AE1 0

AW2
. . .

. . .
. . .

. . . AE(N-1)

0 AWN APN



φ1

φ2

...
φN

 =


S1

S2

...
SN

 (3)

where the numerical subscript of each entry is referred to the number of the respective FV
(row number).
In compact form:

AΦ = S (4)

We note from eq. (3) that the coefficient matrix A is tridiagonal.
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Data organization

Considering the structure of eq. (3), it is appropriate to store the coefficients AWi,APi,AEi

and source terms Si (i = 1, . . . ,N) in column vectors D_W, D_P, D_E and S (N × 1
matrices):

% Preparation of the 3 diagonals of A, stored as (column) vectors
D_W = A_W * ones( N , 1 ) ;
D_P = A_P * ones( N , 1 ) ;
D_E = A_E * ones( N , 1 ) ;

% RHS vector preparation (midpoint second order integration)
S = s( X ) * dx ;

where the user defined function s(·) computes the source term s(·); therefore s( X ) is
the column vector of source term s evaluated at the FV centroids abscissæ X.
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Boundary conditions

To impose BC at the boundary locations, we must correct the coefficients and source term for
the first and last FV using a ghost cell:

x = 0 (FV #1), Dirichlet BC:

φ(0) = φBC ⇒ φW + φP

2
= φBC ⇒ φW = 2φBC − φP

Replacing φW in eq. (2) gives:

AW(2φBC − φP) + APφP + AEφE = SP (5)
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Boundary conditions

Rearranging eq. (5) gives:

(AP − AW)︸ ︷︷ ︸
AP1

φP + AEφE = SP − 2AWφBC︸ ︷︷ ︸
S1

(6)

% Diagonals correction in order to impose BC
% Left end ( x=0, i=1 ) (Dirichlet)
D_P( 1 ) = D_P( 1 ) - D_W( 1 ) ;

S( 1 ) = S( 1 ) - 2 * D_W( 1 ) * phi_BC ;
D_W( 1 ) = 0 ;

The last code line assigns a null value to the AW1 coefficient: this is not strictly needed, but
it’s formally correct because the BC has been imposed and AW1 value is no longer needed.
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Boundary conditions

x = L (FV #N), Neumann BC:

Γφx(L) = J′′d,BC ⇒ Γ
φE − φP

∆x
= J′′d,BC ⇒

⇒ φE = φP +
∆xJ′′d,BC

Γ

Replacing φE in eq. (2) gives:

AWφW + APφP + AE(φP +
∆xJ′′d,BC

Γ
) = SP (7)
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Boundary conditions

Rearranging eq. (7) gives:

AWφW + (AP + AE)︸ ︷︷ ︸
APN

φP = SP − AE
∆xJ′′d,BC

Γ︸ ︷︷ ︸
SN

(8)

% Right end ( x=L, i=N ) (Neumann)
D_P( N ) = D_P( N ) + D_E( N ) ;

S( N ) = S( N ) - D_E( N ) * dx * Jd_BC / Gamma ;
D_E( N ) = 0 ;

Again, in the last code line we assign a null value to AEN because the BC has been imposed
and AEN is no longer needed.
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Sparsity

At this point we have all the variables needed to build the final matrix system, eq. (3);

As noted before, the coefficient matrix A is tridiagonal, i.e., only the main diagonal and
the first lower and upper diagonals have non null entries;

This particular sparse structure implies that the number of non null entries is proportional
to N (in this case exactly 3N − 2), while the total number of formal entries of A is N2;

The solution of a linear system with N unknowns requires, in general, a number of
operations (and thus a time consumption) proportional to N3, while specific sparse solvers
can reach an O(N) computational cost.
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Sparse matrices

For example, if we choose N = 20000, the memory size required to naively store A would
be 8N2 bytes = 3.2 GB with double precision format, while the size of non null entries is
only 8 · 3N bytes = 480 kB;

A naive resolution of this system would take approximately 1 minute on a modern PC,
while a generic sparse solver requires less than 1 ms;

It is clear that we must take advantage of the sparsity pattern of A to get acceptable
computational resources consumption;

MATLAB R© can efficiently and easily handle sparse matrices, offering a wide set of
elementary sparse operations and, overall, sparse solvers;

Let’s see how to handle these particular matrices for our specific problem.
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Building sparse banded matrices with spdiags()

We recognized the tridiagonal and sparse nature of coefficient matrix A, eq. (3);

Since these properties are particularly important and frequent in numerical problems,
MATLAB R© offers the spdiags() function that allows to build sparse banded matrices
from the diagonals:

A = spdiags( D , d , m , n )

A: sparse m×n banded matrix;
D: matrix whose columns are the diagonals of A;
d: vector of the shifts of each diagonal from the main diagonal.

Matrices handling in PDEs resolution with MATLAB April 6, 2016 18 / 64



Building sparse banded matrices with spdiags()

Let’s see how spdiags() works in practice with the D_W, D_P and D_E coefficients
vectors (diagonals) of our 1D problem; since we want a square N×N matrix A, m=n=N:

% Concatenation of the (column) vectors of the diagonals of A
D = [ D_W D_P D_E ] ;

% Diagonals shifts from main diagonal
% D_W is shifted -1 because it’s the first lower diagonal
% D_P is shifted 0 because it’s the main diagonal
% D_E is shifted 1 because it’s the first upper diagonal
d = [ -1 0 1 ] ;

% spdiags() call
A_bad = spdiags( D , d , N , N ) ;
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Building sparse banded matrices with spdiags()

The previous call to spdiags() will produce the following (sparse) matrix A_bad:

A_bad =


AP1 AE2 0

AW1
. . .

. . .
. . .

. . . AEN

0 AW(N-1) APN

 (9)

A_bad looks like the coefficient matrix A of eq. (3), except for the ordering of the lower
and upper diagonals: the upper diagonal starts with the 2nd entry (AE2) while it should
start with the 1st (AE1); conversely, the lower diagonal starts with the 1st entry (AW1) while
it should start with the 2nd (AW2).
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Building sparse banded matrices with spdiags()

To fix this incorrect ordering of the diagonals, we can shift the elements in D_W and D_E
vectors before the spdiags() call, using for example the circshift() command
which circularly shifts the elements of a matrix:

S_M = circshift( M , s , dim )

S_M: shifted matrix;
M: matrix to be shifted;
s: integer shift;

dim: dimension along which the shift is done.

If the matrix M to be shifted is a column vector (that’s our case) we can omit the third
argument dim (= 1).
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Building sparse banded matrices with spdiags()

We use circshift() with shift s=-1 for D_W because a negative shift is needed for
the lower diagonal, while a positive shift s=1 is needed for the upper diagonal D_E:

% Lower diagonal (West) and upper diagonal (East) shift.
D_W = circshift( D_W , -1 ) ;
D_E = circshift( D_E , 1 ) ;

Final (correct) spdiags() call:

% Concatenation of the (column) vectors of the diagonals of A
D = [ D_W D_P D_E ] ;

% Diagonals shifts from main diagonal
d = [ -1 0 1 ] ;

% spdiags() call to build sparse tridiagonal A
A = spdiags( D , d , N , N ) ;
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Remarks

In our specific case where the AW , AP and AE coefficients are constants for each FV, the
shift correction with circshift() could be avoided (D_W and D_E have constant
entries), but it’s formally correct;

The circular property of circshift() is not strictly needed because the element being
circularly shifted is anyway unused by spdiags();

The shift correction with circshift() could be anyway avoided inverting the
diagonals order and taking the transpose (’):

% Concatenation of the (column vectors) diagonals of A, inverse order
D = [ D_E D_P D_W ] ;

% Diagonals shifts from main diagonal
d = [ -1 0 1 ] ;

% spdiags() call with transpose (’)
A = spdiags( D , d , N , N )’ ;
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Solution phase

At this point we have the (sparse) coefficient matrix A and the source vector S, therefore
we can calculate the solution vector Φ with the backslash \ operator:

% Direct solution (backslash \): A * phi = S => phi = A\S
phi = A\S ;

The \ operator is a powerful MATLAB R© function that allows the direct solution of linear
systems. It automatically checks for the input matrix nature (square/not square,
dense/sparse, diagonal/tridiagonal/banded, Hermitian/non-Hermitian, real/complex, etc.)
to choose the appropriate direct solver;

We’ll focus on the use of iterative solvers in the last section.
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Solution plot

To graphically display the solution vector phi versus the X abscissæ vector we can use
the plot() function:

% Solution plot
plot( X , phi ) ;

We can add labels to the axes:

% Naming axes
xlabel( ’x’ ) ;
ylabel( ’phi’ ) ;

There’s a large set of tunable properties for the graphics objects (Figures, Axes, Lines,
etc.) to get aesthetically pleasant graphic plots.
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Solution plot

For example, our solution with source term s = sin(x) looks like this:
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2D advection-diffusion problem

2D steady-state advection-diffusion equation:

∇ · (ρwφ) = ∇ · (Γ∇φ) + s (10)

with constant properties ρ,Γ and constant velocity w;

Domain:
Ω = [0, L]× [0, L]

Boundary conditions (BC):

Type Dirichlet BC Neumann BC
Equation φ = φBC Γdφ/dn = J′′d,BC

Location y = 0 (south) y = L (north)
(side) x = 0 (west)

x = L (east)
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Variables

Variables definition:

% Constant properties (rho, gamma) and advection velocity (w)
rho = 1 ;
Gamma = 1 ;
w_x = 0 ;
w_y = 1 ;

% Domain square side length
L = 2*pi ;

% BC values
phi_BC = 0 ;
Jd_BC = 0 ;
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Domain discretization

Discretization of the domain Ω in N = N2
i finite volumes (Ni for each dimension) with

constant side length ∆x = ∆y = L/Ni:

x

y

Δ
y

Δx

0

L

L

1

Ni+1

1

1

2

2

2

Ni+2 2Ni-1

Ni-1

Ni
2-1

Ni-1

Ni-1

Ni Ni
2

2Ni

Ni

Ni

(k)

(i)

(j)
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Indexing

In 2D cases it’s useful to employ two different indexing types for the discrete variables:

Spatial indexing (i, j = 1, . . . ,Ni)
Two indexes are employed, one for each dimension: index i along the x dimension and
index j along the y dimension.
This indexing type is useful for the calculation of equation coefficients taking account of
boundary conditions;

Linear indexing (k = 1, . . . ,N)
One single index k spans the whole set of FV.
This indexing type is needed in the building phase of the final equation system.
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Indexing

There’s a one-to-one correspondence for these indexing types:

k = i + Ni(j− 1) ;

{
i = 1 + (k − 1) mod Ni

j = 1 + (k − i )/Ni

However, we can ignore the previous formulas because we can implicitly pass from one
indexing to the other using reshape() command:

M_k = reshape( M_ij , N , 1 )
M_ij = reshape( M_k , Ni , Ni )

M_k: N×1 column vector (linear indexing);
M_ij: Ni×Ni matrix (spatial indexing);

N, Ni: N, Ni (total FV # and FV # for each dimension).
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Domain discretization

Domain discretization variables:

% FV number for each dimension and FV total number
Ni = 100 ;
N = Ni * Ni ;

% FV side length
dx = L / Ni ;

% FV ’volume’ (surface)
dA = dx * dx ;

% FV centroids coordinates
X = dx * ( (1:Ni) - 0.5 )’ ;
Y = X ;
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Equation discretization

FV discretization of eq. (10) with 2nd order CDS and midpoint integration approximation
for both diffusive and advective fluxes:

APφP + AEφE + AWφW + ANφN + ASφS = SP (11)

% FV equation coefficients (constants for each FV)
A_E = rho * dx * w_x / 2 - Gamma ;
A_W = -rho * dx * w_x / 2 - Gamma ;
A_N = rho * dx * w_y / 2 - Gamma ;
A_S = -rho * dx * w_y / 2 - Gamma ;
A_P = -( A_E + A_W + A_N + A_S ) ;

Eq. (11) holds for each of the N finite volumes except for the boundary FV (FV with at
least one side lying on the boubdary), where this equation must be corrected because some
of the neighbour cells don’t exist: BC will be imposed using a ghost cell.
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Equation discretization

Writing eq. (11) for each of the N finite volumes, in a matrix notation we have:
AWPE

1 AN
1 0

AS
2

. . .
. . .

. . .
. . . AN

Ni−1

0 AS
Ni AWPE

Ni



φ1

φ2

...
φN

 =


S1

S2

...
SN

 (12)

where the numerical subscript j of each Aj entry in the coefficient matrix is referred to the
j-th row of FV elements .

We note from eq. (12) that the coefficient matrix is block tridiagonal.
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Equation discretization

Explicitly, the matrix entries Aj of the coefficient matrix have the following form (using
spatial indexing for the coefficients):

AWPE
j =


AP(1,j) AE(1,j) 0

AW(2,j)
. . .

. . .
. . .

. . . AE(Ni−1,j)

0 AW(Ni,j) AP(Ni,j)

 (13)

AS
j =

 AS(1,j) 0
. . .

0 AS(Ni,j)

 AN
j =

 AN(1,j) 0
. . .

0 AN(Ni,j)


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Data organization

In the 2D case it’s natural to store the coefficients AP(i,j), AE(i,j), AW(i,j), AN(i,j), AS(i,j) and
source terms S(i,j) in Ni × Ni matrices D_P, D_E, D_W , D_N, D_S, and S (spatial
indexing):

% Preparation of the 5 diagonals of A, stored as Ni x Ni matrices
% (spatial indexing)
D_W = A_W * ones( Ni , Ni ) ;
D_E = A_E * ones( Ni , Ni ) ;
D_N = A_N * ones( Ni , Ni ) ;
D_S = A_S * ones( Ni , Ni ) ;
D_P = A_P * ones( Ni , Ni ) ;

% RHS preparation (midpoint second order integration)
% stored as Ni x Ni matrix (spatial indexing)
S = s( X , Y ) * dA ;

Again, s( X , Y ) is the Ni × Ni matrix of source term s evaluated at FV centers.

Matrices handling in PDEs resolution with MATLAB April 6, 2016 36 / 64



Boundary conditions

To impose BC at the boundary sides, we must correct the coefficients and source term for the
boundary FV using ghost cells, in the same way we did for the 1D case, eqs. (5)-(8).

y = 0, FV on south side (j = 1), Dirichlet BC:

% Diagonals correction in order to impose BC
% South side ( y=0, j=1 ) (Dirichlet)
D_P( : , 1 ) = D_P( : , 1 ) - D_S( : , 1 ) ;

S( : , 1 ) = S( : , 1 ) - 2 * D_S( : , 1 ) * phi_BC ;
D_S( : , 1 ) = 0 ;

As we can see, the implementation of BC with spatial indexing is straightforward because we
can access the variables with two separate space indexes.
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Boundary conditions

y = L, FV on north side (j = Ni), Neumann BC:

% North side ( y=L, j=Ni ) (Neumann)
D_P( : , Ni ) = D_P( : , Ni ) + D_N( : , Ni ) ;

S( : , Ni ) = S( : , Ni ) - D_N( : , Ni ) * dx * Jd_BC / Gamma ;
D_N( : , Ni ) = 0 ;

x = 0, FV on west side (i = 1), Neumann BC:

% West side ( x=0, i=1 ) (Neumann)
D_P( 1 , : ) = D_P( 1 , : ) + D_W( 1 , : ) ;

S( 1 , : ) = S( 1 , : ) - D_W( 1 , : ) * dx * Jd_BC / Gamma ;
D_W( 1 , : ) = 0 ; % <= this is very important!!

x = L, FV on east side (i = Ni), Neumann BC:

% East side ( x=L, i=Ni ) (Neumann)
D_P( Ni , : ) = D_P( Ni , : ) + D_E( Ni , : ) ;

S( Ni , : ) = S( Ni , : ) - D_E( Ni , : ) * dx * Jd_BC / Gamma ;
D_E( Ni , : ) = 0 ; % <= this is very important!!
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Reshaping

From eqs. (12)-(13) we note the pentadiagonal structure of coefficient matrix A, thus we
can still use spdiags() to build A from its diagonals D_S, D_W, D_P , D_E and D_N
that we just calculated.
Since spdiags() needs linear indexed diagonals, we use the reshape() command:

% Diagonals (and RHS) reshape to get vectors (linear indexing)
D_P = reshape( D_P , N , 1 ) ;
D_W = reshape( D_W , N , 1 ) ;
D_E = reshape( D_E , N , 1 ) ;
D_N = reshape( D_N , N , 1 ) ;
D_S = reshape( D_S , N , 1 ) ;
S = reshape( S , N , 1 ) ;

In the last code line we also reshaped the source vector S because the final system needs
also a linear indexed RHS.
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Shifting

As in the 1D case, diagonal shifting is needed to get the correct ordering of upper and
lower diagonals before the spdiags() call:

% Lower diagonals (South/West) and upper diagonals (East/North)
% shifting
D_S = circshift( D_S , -Ni ) ;
D_W = circshift( D_W , -1 ) ;
D_E = circshift( D_E , 1 ) ;
D_N = circshift( D_N , Ni ) ;

The shift value used in circshift() equals the diagonal shift from the main diagonal:
for D_W and D_E we have −1 and 1 (just as in the 1D case), while for D_S and D_N we
have −Ni and Ni.
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spdiags() call

At this point we have the 5 diagonals with correct indexing and correct ordering, so we can
call spdiags():

% Concatenation of the (column) vectors of the diagonals of A
D = [ D_S D_W D_P D_E D_N ] ;

% Diagonals shifts from main diagonal
d = [ -Ni -1 0 1 Ni ] ;

% spdiags() call to build sparse pentadiagonal A
A = spdiags( D , d , N , N ) ;

As we can see, the diagonals shifts from the main diagonal (d) are the same used in
circshift() in the previous shifting phase.

Now we have sparse N × N pentadiagonal coefficient matrix A and N × 1 source term
vector S, thus we can proceed to the solution phase.
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Remarks

The shifting operation on D_W and D_E diagonals with circshift(), together with the
null assignation to the same diagonals in the BC imposition on west and east sides, is
crucial in 2D case even if the coefficients A are the same for every FV;

Again, the circular property of circshift() is not strictly needed;

The shift correction with circshift() could also be avoided inverting the diagonals
order and taking the transpose (’):

% Concatenation of the (column vectors) diagonals of A, inverse order
D = [ D_N D_E D_P D_W D_S ] ;

% Diagonals shifts from main diagonal
d = [ -Ni -1 0 1 Ni ] ;

% spdiags() call with transpose (’)
A = spdiags( D , d , N , N )’ ;
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Solution phase

We can now calculate the solution vector Φ in the same way as in the 1D case, using the
backslash \ operator:

% Direct solution (backslash \): A * phi = S => phi = A\S
phi = A\S ;

Alternatively, we can compute an approximate solution using one of the MATLAB R©

built-in iterative solvers (pcg, minres, symmlq, etc.);

For example, we can use the Preconditioned Conjugate Gradient method (pcg) with an
Incomplete Cholesky factorization (ichol) as preconditioner:

% PCG solution with Incomplete Cholesky factorization preconditioner
tol = relative tolerance on residual ;
n_iter = maximum number of iterations ;
L = ichol( A ) ;
phi = pcg( A , S , tol , n_iter , L , L’ ) ;
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Solution visualization: contour lines

For the graphical visualization of the solution, we need a spatial indexed solution phi
(Ni × Ni matrix), thus we use reshape():

% Solution reshape to get again the spatial indexing
phi = reshape( phi , [ Ni , Ni ] ) ;

We can display solution contour lines using contourf() command, which also fills the
spaces with solution related colours (note the transpose (’) on phi to get the right axes
order):

% Contour line plot (orthogonal to the diffusive flux)
contourf( X , Y , phi’ ) ;

% Naming axes
xlabel( ’x’ ) ;
ylabel( ’y’ ) ;
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Solution visualization: 3D surface plot

We can also display a 3D solution surface using surf() command, which also colours
the surface with solution related colours (again, note the transpose (’) on phi to get the
right axes order):

% Surface plot on figure 2
surf( X , Y , phi’ ) ;

% Naming axes
xlabel( ’x’ ) ;
ylabel( ’y’ ) ;
zlabel( ’phi’ ) ;

With 3D surfaces it’s useful to tune some graphic properties (Edge Colors, Face Lighting,
Lights, etc.) to get pretty and more understandable plots.
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Solution visualization

For example, with source term s = sin(x) sin(y) and some graphical tuning, our solution
looks like this:
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Iterative methods

In 2D and, overall, 3D cases where a large number of unknowns N is employed, generic
direct solvers may be too expensive in terms of both time and memory consumption;

Furthermore, in many practical applications we can accept a “good” solution, i.e., an
approximation of the exact (discretized) solution with a “moderate” error (convergence
error);

Under these circumstances, we can use iterative solvers to get an approximate solution in
reasonable time;

Most iterative solvers are matrix-free: they don’t require the explicit storage of coefficient
matrix A;

We’ll focus on Jacobi and SOR (Successive Over-Relaxation) methods.
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2D Poisson problem

In the implementation of iterative solvers we’ll focus on a 2D Poisson equation:

∇2φ = s (14)

on a square domain Ω:
Ω = [0, L]× [0, L]

with Neumann boundary conditions1 on the whole boundary (4 sides):

∇φ · n =
∂φ

∂n
= 0 (15)

Problem (14)-(15) is very important in CFD: for example using Projection methods, φ is
the correction pressure for Navier-Stokes equations.

1An additional condition is required: for example φ = 0 in some point;
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Domain discretization

We discretize the domain Ω in the same way as in the previous 2D case, with Ni finite
volumes for each dimension:

% Domain square side length
L = 2*pi ;

% FV number for each dimension
Ni = 100 ;

% FV side length
dx = L / Ni ;

% FV ’volume’ (surface)
dA = dx * dx ;

% FV centroids coordinates
X = dx * ( (1:Ni) - 0.5 )’ ;
Y = X ;
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Equation discretization

FV discretization of eq. (14) with 2nd order CDS and midpoint integration approximation
for diffusive flux:

APφP + AEφE + AWφW + ANφN + ASφS = SP (16)

% FV equation coefficients (constants for each FV)
A_E = 1 ;
A_W = 1 ;
A_N = 1 ;
A_S = 1 ;
A_P = -4 ;

Eq. (16) holds for every FV, even for the boundary FV where coefficient corrections are
not needed anymore: BC will be enforced using ghost cells in a direct way.
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Data organization

We store the solution phi as a (Ni + 2)× (Ni + 2) matrix (initialized with null values)
because we need to store the ghost cells values explicitly, with spatial indexing:

% Solution matrix (spatial indexing + ghost cells)
phi = zeros( Ni+2 , Ni+2 ) ;

We also need the vector k for the indexing in phi:

% Indexes of FV inside the domain (not ghost cells)
k = 2 : (Ni+1) ;

For example, phi(k,k) is the Ni × Ni matrix of all φ values for the FV inside the
domain.
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Data organization

Graphical representation of solution matrix phi:
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Matrices handling in PDEs resolution with MATLAB April 6, 2016 52 / 64



Data organization

The ghost cells values have the following access indexes:

Side Ghost cells
South phi(k,1)
West phi(1,k)

North phi(k,Ni+2) or phi(k,end)
East phi(Ni+2,k) or phi(end,k)

The source term is also spatial indexed and calculated with the classic midpoint second
order integration approximation:

% Source term (midpoint second order integration)
% Ni x Ni matrix (spatial indexing)
S = s( X , Y ) * dA ;
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Iterative cycle

The structure of the iterative cycle is the following:

% Number of iterations
n_iter = 1000 ;

% Iterative cycle
for iter = 1 : n_iter

UPDATE_SOLUTION() ;
UPDATE_GHOST_CELLS_VALUES() ;

end

The function UPDATE_SOLUTION() updates the solution values in phi using a specific
iterative method (Jacobi or SOR);

The function UPDATE_GHOST_CELLS_VALUES() only updates the ghost cells values
in phi in order to enforce BC in a direct way.
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Jacobi method

Jacobi method updates each unknown from the previous iteration values:

φn+1
P =

SP − AEφ
n
E − AWφ

n
W − ANφ

n
N − ASφ

n
S

AP
(17)

Since this method only requires φn values at previous iteration n, we can implement this
iteration in a matrix way:

UPDATE_SOLUTION():
% Jacobi iteration
ngbrs = A_E*phi( k+1 , k ) + A_W*phi( k-1 , k ) + ...

A_N*phi( k , k+1 ) + A_S*phi( k , k-1 ) ;
phi( k , k ) = ( S - ngbrs ) / A_P ;
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Jacobi method

The previous matrix assignations used the vector k as index to access the neighbor cells in
phi;

For example, phi(k+1,k) is the Ni × Ni matrix of all φE values, because the first
vectorial index is k+1;

We first calculate the Ni × Ni matrix ngbrs which contains the sum of the 4 neighbor
matrices multiplied by their respective coefficient A; then we update the solution p(k,k)
(Ni × Ni matrix);

The use of matrix assignations is efficient (no explicit for loops).
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SOR method

Successive Over-Relaxation (SOR) method updates each unknown using the updated
values as soon as they’re available, with an over-relaxation step to accelerate the
convergence rate:

φn+1
P = (1− ω)φn

P + (18)

+ ω
SP − AEφ

n
E − AWφ

n+1
W − ANφ

n
N − ASφ

n+1
S

AP

Since this method requires φn+1 values at new iteration n + 1 as soon as they’re available,
we can’t implement this iteration in a matrix way;

We have to explicitly write some for loops spanning over the solution matrix phi.
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SOR method

The SOR code is therefore the following:

UPDATE_SOLUTION():
% SOR over-relaxation parameter
w = 1.6 ;

% SOR iteration
for i = k

for j = k
ngbrs = A_E*phi( i+1 , j ) + A_W*phi( i-1 , j ) + ...

A_N*phi( i , j+1 ) + A_S*phi( i , j-1 ) ;
phi(i,j) = w*( S(i-1,j-1) - ngbrs )/A_P + (1-w)*phi(i,j) ;

end
end

We used two for loops to span over the FV in the domain (i and j assume all the values
in k);

In this case we update phi values one by one, not in a matrix way;

The source term S has to be accessed with i-1 and j-1 because it doesn’t have ghost
cells.
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Red-Black Ordering SOR

SOR can be somehow vectorized considering the following cell ordering (Red-Black
ordering):

x

y

Δ
y

Δx

0

L

L

2

2

3

3 Ni+1

Ni+1

Ni

Ni (i)

(j)

I From the side figure we note that every
‘red’ cell has only ‘black’ neighbors (W,
E, N, S) and vice-versa;

I Thus ‘red’ cells update process needs only
‘black’ cells and vice-versa, allowing a
vectorization of the process.
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Red-Black Ordering SOR

Since neighbor cells have all been updated at the previous ‘semi’ iteration, we can
over-relax the solution as we did with SOR method, eq. (18), to gain better convergence
rate:

UPDATE_SOLUTION():
% Indexes for Red-Black Ordering
si = [ 0 1 0 1 ] ;
sj = [ 0 1 1 0 ] ;

% Red-Black SOR iteration (Red cells: RB=1,2; Black cells: RB=3,4)
for RB = 1 : 4

i = (2+si(RB)) : 2 : (Ni+1) ;
j = (2+sj(RB)) : 2 : (Ni+1) ;
ngbrs = A_E*phi( i+1 , j ) + A_W*phi( i-1 , j ) + ...

A_N*phi( i , j+1 ) + A_S*phi( i , j-1 ) ;
phi( i , j ) = w*( S(i-1,j-1) - ngbrs ) / A_P + (1-w)*phi(i,j) ;

end

As we can see, we used only matrix assignations (as in Jacobi implementation) with
over-relaxation (as in SOR).
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Updating ghost cells

When the solution update phase is complete, we must update ghost cells values to directly
enforce BC; we proceed side by side:

UPDATE_GHOST_CELLS_VALUES():
% Updating ’ghost cells’ values to enforce BC
% South side ( y=0, j=1 ) (Neumann)
phi( k , 1 ) = phi( k , 2 ) ;

% North side ( y=L, j=end ) (Neumann)
phi( k , end ) = phi( k , end-1 ) ;

% West side ( x=0, i=1 ) (Neumann)
phi( 1 , k ) = phi( 2 , k ) ;

% East side ( x=L, i=end ) (Neumann)
phi( end , k ) = phi( end-1 , k ) ;
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Solution shift

Since the Neumann BC (15) doesn’t specify any φ value, and Poisson equation (14) is
invariant under solution shiftings (φ+ c), we must enforce a fixed φ value on a point in the
domain to get an unique solution, for example φ(0, 0) = 0:

UPDATE_GHOST_CELLS_VALUES() continuation:

% Null solution on first FV [phi(2,2) = phi(x=0,y=0) to II order
% because of BC]
phi = phi - phi(2,2) ;
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Solution extraction and visualization

At this point we accomplished the computation phase of the (approximate) solution of the
discrete FV equations;

If we’re not interested in the ghost cells values, we can now extract the solution values for
the FV inside the domain:

% Extraction of solution values for FV inside the domain
phi = phi( k , k ) ;

Finally, we can display the solution as we did in the 2D advection-diffusion case using
contourf() and surf() commands, for example.
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Solution visualization

For example, with source term s = cos(x) cos(y), 5000 SOR (ω = 1.6) iterations and
some graphical tuning, our solution looks like this:
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