
Riccardo Zamolo, Enrico Nobile
DIA - Dipartimento di Ingegneria e Architettura
Università degli Studi di Trieste

Esercitazioni di Termofluidodinamica Computazionale

2D differentially heated cavity with
ANSYS Fluent and MATLAB

April 2023

1 Introduction 1

1 Introduction

1.1 Problem definition
This tutorial document shows how to perform a CFD analysis of a 2D differentially heated
cavity using ANSYS Workbench 2022 (hereafter “WB”) for the simulations and MATLAB
for some postprocessing calculations.

The differentially heated cavity is a typical CFD benchmark problem which involves a
buoyancy-driven flow due to density variations, which are in turn due to temperature varia-
tions, i.e., natural convection:

“Buoyancy-driven flow in a square cavity with vertical sides which are differen-
tially heated is a suitable vehicle for testing and validating computer codes used
for a wide variety of practical problems.” [1]

With reference to Figure 1, a fluid is enclosed in a 2D square cavity with side length L
where the left and right walls are kept at fixed temperatures Th and Tc, respectively, while
the horizontal walls are adiabatic, i.e., no heat transfer. The fluid is subjected to the gravity g
along the vertical direction y; in other words the 2D cavity can be imagined in a vertical plane:
this is necessary for the appearance of a buoyancy-driven flow due to density variations.

Intuitively, for a given fluid, the intensity of the buoyancy forces increases as both the tem-
perature difference ∆T = Th− Tc and the dimension L increase. Therefore, weak convective
motions are expected for small cavities with small ∆T , while stronger convective flows are
expected for big cavities with large ∆T . Accordingly, it can also be expected that sufficiently
strong buoyancy forces will lead to unsteady flows, while steady flows are expected for weak
buoyancy forces. In this document we will focus on the latter case, i.e., a laminar, steady-state
natural convection problem.

1.2 Governing equations
The aformentioned steady-state problem is described by the following coupled conservation
equations of mass, momentum and energy with Boussinesq approximation, i.e., linear depen-

x

y

Tc

@ T

@ T
@ y

@ y
=0

=0

Th gg

L

Figure 1: 2D differentially heated cavity: schematic representation of the problem (left) and example
of temperature field for Ra = 105 and Pr = 0.71 (right).

R. Zamolo, E. Nobile - April 2023

2 1.2 Governing equations

dence of density on temperature in the buoyancy term alone:

∇ · u = 0 (1)

(u · ∇)u = − 1

ρ0
∇p+ ν∇2u + gβ(T − T0)ey (2)

u · ∇T = α∇2T (3)

where ey is the unit vector along y, ρ0 is the reference density, respectively, ν is the kinematic
viscosity, g is the gravitational acceleration, β is the thermal expansion coefficient and α is
the thermal diffusivity. T0 is the reference temperature, which can be assumed to be the mean
temperature (Th + Tc)/2. Other choices for the reference values of temperature and density
in equation (2) are equivalent from a mathematical point of view since they only affect the
pressure by a multiplicative constant ρ0 and by a static head gβT0ρ0.

The physical parameters of the problem are 6: L from the geometry, ∆T from the bound-
ary conditions, ρ0, ν, gβ and α from equations (1)-(3). The involved fundamental units are 4:
length, mass, time and temperature. The Buckingham theorem (BT) states that the problem
is then completely described by 6 − 4 = 2 adimensional groups (the dimensional matrix has
rank 4). For example, the following groups can be obtained (they are not unique):

π1 =
ν

α
=: Pr (Prandtl number) (4)

π2 =
gβ∆TL3

να
=: Ra (Rayleigh number) (5)

Pr is the ratio between the momentum and thermal diffusion coefficients, i.e., kinematic
viscosity ν and thermal diffusivity α, and therefore it is strictly related to the relative thickness
of the momentum and thermal boundary layers. It depends only on the fluid: Pr� 1 for liquid
metals, Pr ≈ 1 for gases, Pr� 1 for oils.

Ra is the ratio between the characteristic time scales of diffusive and convective thermal
transport due to conduction and buoyancy, respectively. Therefore, the larger the Ra, the faster
the convective dynamics compared to the conductive one. For a given Pr, the transition from
steady to unsteady flows is controlled by Ra only. In this document the chosen fluid is air with
Pr = 0.71, for which the onset of unsteadiness occurs for Ra ≈ 1.82× 108 [3].

Since the ratio between two adimensional groups is adimensional as well, another choice
for the adimensionalization could be obtained by considering Ra/Pr instead of Ra:

Ra
Pr

=
gβ∆TL3

ν2
=: Gr (Grashof number) (6)

which is the ratio between buoyancy and viscous forces: the larger the Gr, the stronger the
convection due to buoyancy.

Without manipulating equations (1)-(3), the dimensional analysis tells also us how to scale
the dependent variables of the problem, i.e., nondimensionalization: trivially, the position
x and the temperature difference T − T0 can be scaled by L and ∆T , respectively. The
dimensional analysis then states that the velocity u and the pressure p can be scaled by u0 =
α/L and ρ0u20, respectively (again, these choices are not unique).

R. Zamolo, E. Nobile - April 2023

1.2 Governing equations 3

The same values can be obtained by a direct nondimensionalization of equations (1)-(3).
By considering the following scalings:

x̂ :=
x

L
, û :=

u

u0
, T̂ :=

T − T0
∆T

, (7)

equation (3) takes the following form:

û · ∇̂T̂ =
α

u0L
∇̂2T̂ (8)

where the coefficient α/(u0L) must be nondimensional, since every other term is nondimen-
sional as well. We can therefore choose α/(u0L) = 1 for the sake of convenience, i.e.,
u0 = α/L, as previously obtained.

Equation (2), on the other hand, becomes:

(û · ∇̂)û = − 1

ρ0u20
∇̂p+

ν

α
∇̂2û +

gβ∆TL3

α2
T̂eŷ (9)

and again, since every term must be nondimensional, the following nondimensional terms
arise, as previously obtained:

p

ρ0u20
=: p̂,

ν

α
= Pr,

gβ∆TL3

α2
=
gβ∆TL3

να

ν

α
= Ra Pr (10)

In the end, the nondimensional form of equations (1)-(3) is therefore:

∇̂ · û = 0 (11)

(û · ∇̂)u = −∇̂p̂+ Pr∇̂2û + Ra PrT̂eŷ (12)

û · ∇̂T̂ = ∇̂2T̂ (13)

which depends only on the two adimensional numbers Ra and Pr as previously obtained from
the BT, i.e., û, p̂, T̂ = f(Ra,Pr).

By considering the heat transfer coefficient h as another physical (dependent) variable
defined by the wall heat flux q = h∆T = −k∂T/∂x, where k is the thermal conductivity of
the fluid, we can also obtain the following adimensional group:

π3 =
hL

k
=: Nu BT

= f(Ra,Pr) (Nusselt number) (14)

Nu is therefore the ratio between the heat flux at the boundary and the reference one due
to ∆T , i.e., k∆T/L. Equation (14) can be interpreted both locally, i.e., at a given height y on
the isothermal walls, and globally, i.e., by considering the integral mean over each isothermal
wall:

Nuy =
−∂T
∂x

∣∣∣
x=0,L

∆T
L

= −∂T̂
∂x̂

∣∣∣
x̂=0,1

(15)

Nu =
1

L

∫ L

0

Nuy dy = −
∫ 1

0

∂T̂

∂x̂

∣∣∣
x̂=0,1

dŷ (16)

which are thus, by their own definition, functions of Ra and Pr only, as stated by the BT.

R. Zamolo, E. Nobile - April 2023

4 2 Workbench project

2 Workbench project
The geometry of the square cavity will be defined using SpaceClaim, the uniform cartesian
mesh will be generated using ANSYS Meshing and the problem will be solved using ANSYS
Fluent. Each of these components is directly available from WB as shown in Figure 2.
− Start WB, Toolbox tab on the left → drag&drop a Fluid Flow (Fluent) component to the
main white window (Project Schematic), rename it as Heated cavity
− Right click on Geometry→ Properties (menu on the right)→ Advanced Geometry Options
→ Analysis Type→ 2D
− File→ Save as... → project name: HC
− Right click on Geometry→ New SpaceClaim Geometry... to start SpaceClaim:

Figure 2: WB project (Fluid Flow with Fluent, 2D), starting SpaceClaim.

Regarding the physical parameters to consider in our numerical simulations, we have seen
in Section 1.2 that any combination of L, ∆T , ρ0, ν, gβ and α is equivalent as long as the Ra
and Pr numbers are the same. Therefore, for the sake of simplicity, it is easier to refer to the
nondimensional equations (11)-(13) which depends only on Ra and Pr, and which are based
on a cavity with unit side length L and unit temperature difference ∆T (see equations (7)).
By comparing the coefficients of the nondimensional equations (11)-(13) with the ones of the
dimensional equations (1)-(3) we can easily see that they match when, for example:

- ρ0 = 1 kg/m3

- α = k/(ρ0 ·cp) = 1 m2/s, i.e., k = 1 W/(m·K) and cp = 1 J/(kg ·K)
- ν is numerically equal to Pr in kg/(m·s) units
- g is numerically equal to Ra in m/s2 units
- β is numerically equal to Pr in K−1 units

which are the values employed in the following (with L = 1 m and ∆T = Th − Tc = 1 K).

R. Zamolo, E. Nobile - April 2023

2.1 Geometry definition with SpaceClaim 5

2.1 Geometry definition with SpaceClaim
− Click on Sketch mode icon at the bottom of the main graphical window and move the
mouse position the sketch on the x− y plane (or click on the z axis)
− Click on Plan view icon to have an orthogonal plan view:

Figure 3: Sketch on the x-y plane.

− Using Rectangle (or Line), define a square with side length L = 1 m = 1000 mm with the
bottom left corner at the origin of the x− y axes:

Figure 4: Sketch of the 2D square cavity.

R. Zamolo, E. Nobile - April 2023

6 2.1 Geometry definition with SpaceClaim

− Click on End Sketch Editing:

Figure 5: 2D square cavity.

− Structure tab on the left→ right click on Surface→ rename it to Cavity:

Figure 6: 2D square cavity.

− File→ Save Project and close SpaceClaim.

R. Zamolo, E. Nobile - April 2023

2.2 Meshing the cavity with ANSYS Meshing 7

2.2 Meshing the cavity with ANSYS Meshing
Now that the cavity has been defined, we can start meshing it using ANSYS Meshing. Since
the geometry is a square, we will create a simple structured cartesian mesh.
− In WB, right click on Mesh→ Edit to start ANSYS Meshing:

Figure 7: Starting ANSYS Meshing from WB.

− Click on the Edge icon → click on the left wall → right click on it → Create Named
Selection and specify the name Hot:

Figure 8: Named selection.

− Repeat this operation for each wall of the cavity (Cold for the right wall, Top, Bottom).

R. Zamolo, E. Nobile - April 2023

8 2.2 Meshing the cavity with ANSYS Meshing

− Right click on Mesh→ Insert→ Face Meshing:

Figure 9: Face meshing.

− Geometry→ click on No Selection and select the cavity→ click on Apply:

Figure 10: Face meshing.

− Check the following settings (Mapped Mesh: Yes, Method: Quadrilaterals):

R. Zamolo, E. Nobile - April 2023

2.2 Meshing the cavity with ANSYS Meshing 9

− Right click on Mesh→ Insert→ Sizing:

Figure 11: Sizing at the walls.

− Click on the Edge icon → select all walls (hold CTRL to select multiple edges)→ click
on Apply:

Figure 12: Sizing at the walls.

R. Zamolo, E. Nobile - April 2023

10 2.2 Meshing the cavity with ANSYS Meshing

− Set the following settings:
- Type: Number of Divisions
- Number of Divisions: 10
- Behavior: Hard

− Click on the white box next to Number of Divisions to set it as a new input parameter :

Figure 13: Sizing at the walls.

− Click on Generate to generate the mesh:

Figure 14: Cartesian mesh for the cavity.

− File→ Save Project and close Meshing.

R. Zamolo, E. Nobile - April 2023

2.3 Setup the problem in Fluent 11

2.3 Setup the problem in Fluent
− In WB, right click on Mesh→ Update
− Right click on Setup→ Edit to run Fluent
− In the Fluent Laucher window, tick Double Precision→ Start:

Figure 15: Starting Fluent from WB and Fluent settings.

− Tick Gravity→ Gravitational Acceleration Y (−g)→ New Input Parameter→ rename the
new input parameter as Ra, the Rayleigh number (note the m/s2 unit)

Figure 16: Fluent settings, gravity.

− Change the sign of Gravitational Acceleration Y from Ra to -Ra:
− Models→ Energy: on, Viscous: Laminar

R. Zamolo, E. Nobile - April 2023

12 2.3 Setup the problem in Fluent

− Materials→ Fluid→ right click on air→ Edit
− Set the following settings:

- Name: cavity-fluid
- Density (ρ0): boussinesq, 1 kg/m3

- Cp (Specific Heat, cp): constant, 1 J/(kg ·K)
- Thermal Conductivity (k): constant, 1 W/(m·K)
- Thermal Expansion Coefficient (β): New Input Parameter→ rename the new input pa-

rameter as Pr, the Prandtl number (note the K−1 unit)
- Viscosity (ν): Expression, Pr * 1 [K kg mˆ-1 sˆ-1] (to match units)

− Click on Change/Create→ Change/Create mixture and Overwrite Air? → Yes

Figure 17: Fluid properties.

− Boundary Conditions→ Wall→ right click on cold→ Edit
− Thermal→ Temperature (Tc): 0 K (negative temperatures are not allowed)

Figure 18: Isothermal boundary condition for the cold wall.

− Repeat the same for the hot wall: Temperature (Th): 1 K

R. Zamolo, E. Nobile - April 2023

2.3 Setup the problem in Fluent 13

− Physics→ Operating Conditions→ Operating Temperature (T0 = (Th + Tc)/2): 0.5 K

Figure 19: Setting the operating temperature.

− Setup→ Reference Values→ set Length to 1 m and Temperature to 0 K.

− Console→ type solve set expert
− Allow selection of all applicable discretization schemes? →
type yes
− Methods→ Spatial Discretization→ select Central Differencing for both Momentum and
Energy:

Figure 20: Setting the discretization schemes.

R. Zamolo, E. Nobile - April 2023

14 2.3 Setup the problem in Fluent

− Controls→ set all relaxation factors to 1
− Limits... → set all minimum values to 0

Figure 21: Setting the relaxation factors and lower limits for pressure and temeprature.

− Right click on Report Definitions→ New→ Surface Report → Area-Weighted Average...
for the computation of the mean Nusselt number Nu:

- Name→ nu
- Field Variable→ Wall Fluxes... → Surface Nusselt Number
- Surfaces→ hot
- tick Create Output Parameter

Figure 22: Computation of Nu.

R. Zamolo, E. Nobile - April 2023

2.3 Setup the problem in Fluent 15

− Residual→ Show Advanced Options→ Convergence Criterion→ none since we’ll use a
fixed number of iterations:

Figure 23: Convergence conditions.

− Initialization→ Initialize
− Double click on Calculation Activities→ Create/Edit... to save the results to file:

- Defined Commands: 1
- tick on Active
- Every: 250 Iterations
- Command: file/export/ascii cell_center_values.txt () yes
temperature pressure y-velocity x-velocity () yes

Figure 24: Save results to file.

− Run Calculation→ Length Scale Method: Aggressive, Number of Iterations: 250
− File→ Save Project and close Fluent.

R. Zamolo, E. Nobile - April 2023

16 2.3 Setup the problem in Fluent

− In WB, double click on Parameter Set and specify the values of the parameters:
- Edge Sizing Number of divisions: 10,20,40,80,...,640
- Ra: 105 (1e5)
- Pr: 0.71 (0,71)

Figure 25: Parameters.

− Click on Update all Design Points to run the simulations for the whole set of parameters
− The values of the mean Nusselt number Nu are displayed as output parameters
− Using file manager (File explorer/Finder/etc.) go to the project directory, i.e., where your
WB project file HC.wbpj has been saved
− HC_files\dp0\FFF\Fluent is the location of the files for Design Point 0 (DP0)
− cell_center_values.txt is the formatted text file containing the results of the sim-
ulation, i.e., the variables at the centroid of each cell:
cellnumber, x-coordinate, y-coordinate, x-velocity, y-velocity, pressure, temperature

1, 9.500000000E-01, 5.000000000E-02, -1.046026133E+01, -5.431995278E+01, 3.941059612E+03, 3.813460988E-02
2, 9.500000000E-01, 1.500000000E-01, -1.333146451E+01, -2.096147773E+01, 5.525523339E+02, 9.241430683E-02
3, 8.500000000E-01, 5.000000000E-02, -2.880271365E+01, -4.176336734E+01, 3.287822903E+03, 9.738570710E-02
4, 9.500000000E-01, 2.500000000E-01, -5.669191625E+00, -6.513594303E+01, -1.885156534E+03, 1.616692471E-01
5, 8.500000000E-01, 1.500000000E-01, -3.219779372E+01, -4.399573009E+00, -5.219206826E+02, 2.040169185E-01
6, 7.500000000E-01, 5.000000000E-02, -4.225412273E+01, -3.020070824E+01, 2.391560976E+03, 1.303767968E-01
7, 9.500000000E-01, 3.500000000E-01, -5.073024206E+00, -6.853919810E+01, -3.819253019E+03, 2.138247619E-01
8, 8.500000000E-01, 2.500000000E-01, -1.917700808E+01, -4.329798046E+01, -2.604515360E+03, 3.207748617E-01
9, 7.500000000E-01, 1.500000000E-01, -4.421236949E+01, 1.471949386E+01, -1.109332743E+03, 2.322885827E-01
10, 6.500000000E-01, 5.000000000E-02, -3.695429154E+01, -2.769231322E+01, 1.852409333E+03, 1.491388631E-01
11, 9.500000000E-01, 4.500000000E-01, 5.003548954E-01, -7.630208568E+01, -4.496550953E+03, 2.659435075E-01
...

R. Zamolo, E. Nobile - April 2023

3 MATLAB post-processing 17

3 MATLAB post-processing

3.1 Structure of the main script
In MATLAB we’ll read the results of the simulations in order to compute:

- the Nusselt number along the hot wall, Nuy, equation (15)
- the mean Nusselt number, Nu, equation (16)
- the streamfunction, ψ, as the solution of∇2ψ = −ω
- the maximum value of |ψ|, i.e., ψM , and the corresponding location (xM , yM)

The structure of the main MATLAB script (that should be put in the same directory of the WB
project file HC.wbpj) is the following:

PostProcessing.m
1 addpath(’MATLAB_functions’) ;
2

3 design_points = 0:6 ;
4 results_variables = {’Nu’,’psi_M’,’x_M’,’y_M’} ;
5 results = initialize_table(design_points, results_variables) ;
6

7 for dp = design_points
8

9 % Reading the ascii formatted file of 2D results
10 CCV_file = sprintf(’HC_files\\dp%d\\FFF\\Fluent\\cell_center_values.txt’, dp) ;
11 CCV = readmatrix(CCV_file) ;
12 [~, x, y, u, v, p, T] = extract_columns(CCV) ;
13 K = matrix_of_linear_indices(x,y) ;
14 [x, y, u, v, p, T] = vector_to_matrix(K, x, y, u, v, p, T) ;
15

16 % Nuy = -dT/dx at the hot (left) wall
17 Nuy = -(T(1,:) - 1) / (x(1,1) - 0) ;
18

19 % Mean Nu
20 results.Nu(dp+1) = mean(Nuy) ;
21

22 % Streamfunction
23 w = vorticity(x, y, u, v) ;
24 psi = Poisson_2D_solver(x, y, -w) ;
25

26 % Maximum of |psi|
27 [psi_M, k] = max(abs(psi(:))) ;
28 results.psi_M(dp+1) = psi_M ;
29 results.x_M(dp+1) = x(k) ;
30 results.y_M(dp+1) = y(k) ;
31 end

− Line 1: definition of the directory where the required user-defined functions are
stored, i.e., MATLAB_functions\.
− Lines 3-5: we define the design points to read, the names of the quantities that we want to
compute for each design, and then we initialize the table used to store these quantities.
− Lines 7-31: the main for loop over each design point.
− Lines 10-14: we read the formatted text file containing the results, i.e., the coordinates x
and y of the centroids of the cells, the velocities u and v, pressure p and temperature T at the
centroids. Some manipulation is required to rearrange the unstructured order of the cells in
Fluent into structured data, i.e., 2D matrices. After line 14, x, y, u, v, p and T are Nx × Ny

matrices, where Nx and Ny are the number of cells along x and y, respectively.
− Line 17: computation of the vector Nuy of the values Nuy at the hot wall through a finite
difference, equation (15).

R. Zamolo, E. Nobile - April 2023

18 3.2 Some user-defined functions

− Line 20: computation of Nu through a simple average of vector Nuy, equation (16), and
storage in the results table.
− Lines 23-24: computation of vorticity ω and streamfunction ψ at cell centers.
− Lines 27-30: computation of the maximum value of |ψ| and its corresponding location, and
their storage in the results.

3.2 Some user-defined functions
The most important user-defined functions employed in the main script are listed as follows.

matrix_of_linear_indices: this function takes the vectors x and y of the coor-
dinates of the cell centroids and returns the matrix K such that, given a vector v of any flow
variable computed by Fluent, v(K) is the corresponding structured matrix. K is therefore the
Nx × Ny matrix containing the indices of the cells in structured order. The vectors x and y
must be obtained from a cartesian structured grid (not necessarily uniform nor square):

matrix_of_linear_indices.m
1 function K = matrix_of_linear_indices(x,y)
2 [y, K] = sort(y) ;
3 Nx = find(y-y(1) > 1e-6, 1) - 1 ;
4 Ncells = length(y) ;
5 Ny = Ncells / Nx ;
6 K = reshape(K, Nx, Ny) ;
7 for j = 1 : Ny
8 x_j = x(K(:,j)) ;
9 [~, i] = sort(x_j) ;

10 K(:,j) = K(i,j) ;
11 end
12 end

− Line 2: the vector y is sorted with increasing order, i.e., the cells are sorted along y. K is the
vector of indices for this sort. Since the grid is structured, we are now left with Ny horizontal
rows of cells, each of which requires a sort along x.
− Line 3-5: the number of cells Nx and Ny along x and y is computed together with the total
number of cells N_cells= Nx ·Ny.
− Line 6: K is reshaped into a Nx × Ny matrix in order to x-sort each row of cells, corre-
sponding to matrix columns, separately from one another.
− Line 7-11: the for loop over each row of cells.
− Line 8-10: each row of cells is sorted with increasing order along x, modifying matrix K
accordingly.

vorticity: this function takes the matrices of coordinates x,y and the matrices of ve-
locities u,v and computes the matrix w of the vorticity ω at the cell centers by using central
finite differences with constant step 2∆x along x and 2∆y along y:

vorticity.m
1 function w = vorticity(x, y, u, v)
2 dx = x(2,1) - x(1,1) ; % only for uniform grids, ie, dx = constant
3 dy = y(1,2) - y(1,1) ; % only for uniform grids, ie, dy = constant
4

5 [u, i, j] = add_ghost_cells(u) ;
6 [v, i, j] = add_ghost_cells(v) ;
7

R. Zamolo, E. Nobile - April 2023

3.2 Some user-defined functions 19

8 % w = dv/dx - du/dy
9 w = (v(i+1,j) - v(i-1,j)) / (2*dx) - (u(i,j+1) - u(i,j-1)) / (2*dy) ;

10 end
11

12 function [Z, i, j] = add_ghost_cells(M)
13 [Nx, Ny] = size(M) ;
14 Z = zeros(Nx+2, Ny+2) ; % the new matrix with ghost cells
15 i = 2 : (Nx+1) ;
16 j = 2 : (Ny+1) ;
17 Z(i,j) = M ; % original cells
18 Z(i,1) = -Z(i,2) ; % ghost cells, south side, 0 Dirichlet
19 Z(i,end) = -Z(i,end-1) ; % ghost cells, north side, 0 Dirichlet
20 Z(1 ,j) = -Z(2 ,j) ; % ghost cells, west side, 0 Dirichlet
21 Z(end,j) = -Z(end-1,j) ; % ghost cells, east side, 0 Dirichlet
22 end

− Line 2-3: the (constant) cell size [∆x,∆y] is obtained from the coordinates x and y.
− Line 5-6: ghost cells are added to matrix of velocities u and v according to zero Dirichlet
boundary condition u = 0 at the walls. This operations is done by add_ghost_cells
defined at lines 12-22. Ghost cells are added in order to simplify the computation of ω at the
boundary cells.
− Line 9: the matrix w of vorticity is computed through central finite differences in a sin-
gle line by using vector indexing through vectors i and j, allowing therefore block matrix
operations.
− Lines 12-22: function [Z,i,j]=add_ghost_cells(M) adds ghost cells to matrix M,
returning Z. This function returns also vectors i and j containing the indices for the internal
cells in matrix Z.
− Lines 13-14: the new matrix with 2 additional rows and columns is initialized.
− Lines 15-16: vectors i and j contain the row and columns indices of the internal cells in
matrix Z: Z(i,j) is therefore the original matrix M, which is copied in the same positions of
Z at line 17.
− Lines 18-21: the values of ghost cells are set according to zero Dirichlet boundary condi-
tions. This is done by using vectors i and j for each side of the square boundary.

Poisson_2D_solver(x,y,b): a FV solver for a Poisson equation on a cartesian
Nx ×Ny uniform rectangular grid, i.e., ∆x and ∆y are constant but not necessarily equal. x,
y and b are the Nx × Ny matrices of x and y coordinates of the centroids of the cells, and
right hand side term b at the centroids, respectively. This solver has already been illustrated
during a previous MATLAB lesson on solving PDEs.

R. Zamolo, E. Nobile - April 2023

https://moodle2.units.it/pluginfile.php/548725/mod_resource/content/3/MatlabPDEHandout.pdf

20 3.3 Results

3.3 Results
By running the main script PostProcessing.m, the results can be displayed by typing
results in the MATLAB Command Window:
>> results
results =
7x4 table

Nu psi_M x_M y_M
______ ______ _______ _______

5.3842 8.1345 0.35 0.65
4.8907 9.1764 0.725 0.375
4.619 9.5061 0.7125 0.3875
4.5466 9.5884 0.71875 0.39375
4.528 9.6101 0.28437 0.60313
4.5232 9.6151 0.28594 0.60156
4.522 9.6164 0.28516 0.60078

These results can be compared with the benchmark values obtained in [2]: Nu = 4.519,
ψM = 9.612 at (xM , yM) = (0.285, 0.601). We can also see that the Nu values, Nu, are
identical to those directly computed by Fluent, Figure 25.

Since the simulations have been performed on a sequence of grids obtained by dou-
bling the number of cells along each dimension, i.e., with grid sizes h, h/2, h/4, h/8, . . . ,
the Richardson extrapolation can be easily applied to any computed quantity A:

Ã(h) = A+ Chp +O(hp+1) (17)

where Ã(h) is the approximation of A computed on a grid with size h, p is the convergence
rate of the employed method (p = 2 for the standard second order FV discretization, as the
one employed by Fluent) and C is an unknown constant. By writing equation (18) for a grid
size h/2 and solving for A, we obtain the Richardson extrapolation:

A =
2pÃ(h/2)− Ã(h)

2p − 1
+O(hp+1) (18)

which has convergence rate p + 1. The process can then eventually be iterated to obtain con-
vergence rates p + 2, p + 3, . . . The MATLAB implementation of the iterative Richardson
extrapolation in this case is quite easy, here applied to A = Nu:

RichardsonExtrapolation.m
Richardson = @(v,p) (2^p * v(2:end) - v(1:end-1)) / (2^p - 1) ;
A = results.Nu ;
for p = 2:4
A = Richardson(A,p)

end

which gives the following extrapolations:
p = 2

A =
4.726242
4.528405
4.522511
4.521764
4.521653
4.521638

p = 3

A =
4.500142
4.521670
4.521657
4.521637
4.521636

p = 4

A =
4.523105
4.521657
4.521636
4.521636

R. Zamolo, E. Nobile - April 2023

3.3 Results 21

It is possible to verify the convergence rate p = 2 of the results obtained with Fluent by
computing the error between the Nu values and their best approximation available, i.e., the
last value obtained by the Richardson extrapolation:
A_best = A(end) ;
FV_error = abs(results.Nu - A_best) ;

Since we want to plot the convergence curve, the grid size h = 1/Nx is needed:
Nx = 10 * 2 .^ design_points ;
h = 1 ./ Nx ;

A reference 2nd order curve is useful for graphical comparison:
II_order = FV_error(end) * (h/h(end)).^2 ;

Plot of both curves with log-log scales, with some graphical embellishment:
hold on ;
plot(h, FV_error, ’o-b’, ’LineWidth’, 1) ;
plot(h, II_order, ’--k’, ’LineWidth’, 1) ;
ax = gca ;
ax.XScale = ’log’ ; ax.YScale = ’log’ ;
ax.XGrid = ’on’ ; ax.YGrid = ’on’ ;
ax.XLabel.String = ’h’ ;
ax.YLabel.String = ’Error(Nu)’ ;
ax.TickLabelInterpreter = ’latex’ ;
ax.XLabel.Interpreter = ’latex’ ;
ax.YLabel.Interpreter = ’latex’ ;
ax.Box = ’on’ ;
ax.FontSize = 18 ;
leg = legend(’Fluent’, ’2^{nd} order’, ’Location’, ’northwest’) ;
leg.Interpreter = ’latex’ ;
exportgraphics(gcf, ’Error_Nu.pdf’) ;

which produces the following figure, confirming the 2nd order accuracy of Fluent:

10!3 10!2 10!1

h

10!4

10!3

10!2

10!1

100

101

E
rr

or
(N

u
)

Fluent
2nd order

Figure 26: Convergence curve for Nu.

R. Zamolo, E. Nobile - April 2023

22 REFERENCES

References
[1] G. De Vahl Davis. Natural convection of air in a square cavity: A bench mark numerical

solution. International Journal for Numerical Methods in Fluids, 3(3):249–264, 1983.

[2] G. De Vahl Davis and I. P. Jones. Natural convection in a square cavity: A comparison
exercise. International Journal for Numerical Methods in Fluids, 3(3):227–248, 1983.

[3] P. Le Quéré and M. Behnia. From onset of unsteadiness to chaos in a differentially heated
square cavity. Journal of Fluid Mechanics, 359:81–107, 1998.

R. Zamolo, E. Nobile - April 2023

	Introduction
	Problem definition
	Governing equations

	Workbench project
	Geometry definition with SpaceClaim
	Meshing the cavity with ANSYS Meshing
	Setup the problem in Fluent

	MATLAB post-processing
	Structure of the main script
	Some user-defined functions
	Results

