Towards scalable numerical weather and climate prediction with mixed finite element discretizations

Thomas Melvin, the GungHo team, Tommaso Benacchio

tommaso.benacchio@metoffice.gov_uk

Met Office Dynamics Research, Exeter, UK

Università di Trieste, 7 April 2016

The GungHo team...

Met Office

U Exeter

Imperial College London

U Bath

U Reading

U Leeds

U Manchester

U Warwick

Hartree Centre

Introduction - Atmospheric modelling

Introduction - Atmospheric modelling

Unified Model and dynamical core

Introduction - Atmospheric modelling

Unified Model and dynamical core

A new dynamical core - GungHo

Introduction - Atmospheric modelling

Unified Model and dynamical core

A new dynamical core - GungHo

Mixed finite elements - Dynamo

Introduction - Atmospheric modelling

Unified Model and dynamical core

A new dynamical core - GungHo

Mixed finite elements - Dynamo

Where we are and where we are headed

Atmospheric modelling

Atmospheric modelling

nasa.gov

Crown Copyright Met Office

Università di Trieste – p.5

Crown Copyright Met Office

Università di Trieste – p.6

ATMOSPHERIC DATA

NUMERICAL MODEL $\Delta t, \Delta x$

 $\Downarrow \quad \int_0^T dt$

FORECAST AT TIME T

Crown Copyright Met Office

Università di Trieste - p.7

Single atmospheric model for

Single atmospheric model for

► Global ($\Delta x \approx 17$ km) and mesoscale ($\Delta x \approx 4.4 - 1.5$ km) operational forecasts

Single atmospheric model for

► Global ($\Delta x \approx 17$ km) and mesoscale ($\Delta x \approx 4.4 - 1.5$ km) operational forecasts

Climate predictions ($\Delta x \approx 120$ km, T > 10 yrs)

Single atmospheric model for

► Global ($\Delta x \approx 17$ km) and mesoscale ($\Delta x \approx 4.4 - 1.5$ km) operational forecasts

Climate predictions ($\Delta x \approx 120$ km, T > 10 yrs)

Research mode ($\Delta x < 1$ km)

Single atmospheric model for

► Global ($\Delta x \approx 17$ km) and mesoscale ($\Delta x \approx 4.4 - 1.5$ km) operational forecasts

Climate predictions ($\Delta x \approx 120$ km, T > 10 yrs)

Research mode ($\Delta x < 1$ km)

26 years old

 $\Delta x = 300 \; \mathrm{km}$

 $\Delta x = 300 \ \mathrm{km}$

 $\Delta x = 30 \text{ km}$

 $\Delta x = 300 \ \mathrm{km}$

 $\Delta x = 30 \text{ km}$

$\Delta x = 300 \text{ m}$

0.5

Solution of 3D rotating **compressible** fluid flow equations on the **sphere** with gravity and source terms

Solution of 3D rotating compressible fluid flow equations on the sphere with gravity and source terms

Dynamics: fluid motions on resolved scales

Solution of 3D rotating **compressible** fluid flow equations on the **sphere** with gravity and source terms

Dynamics: fluid motions on resolved scales

Physics: motions on unresolved scales (turbulence) + clouds, radiation

Solution of 3D rotating **compressible** fluid flow equations on the **sphere** with gravity and source terms

Dynamics: fluid motions on resolved scales

Physics: motions on unresolved scales (turbulence) + clouds, radiation

First(2002-) global, deep atmosphere non-hydrostatic model

$$\begin{split} \frac{Du}{Dt} &- \frac{uv\tan\phi}{r} - 2\Omega\sin\phi v + \frac{c_{pd}\Theta}{r\cos\phi}\frac{\partial\Pi}{\partial\lambda} = -\frac{uw}{r} + 2\Omega\cos\phi w + S^u \\ \frac{Dv}{Dt} &- \frac{u^2\tan\phi}{r} + 2\Omega\sin\phi u + \frac{c_{pd}\Theta}{r}\frac{\partial\Pi}{\partial\phi} = -\frac{vw}{r} + S^v \\ \frac{Dw}{Dt} &+ c_{pd}\Theta\frac{\partial\Pi}{\partial r} + \frac{\partial\Phi}{\partial r} = -\frac{u^2 + v^2}{r} + 2\Omega\cos\phi u + S^w \\ \frac{D}{Dt}(\rho r^2\cos\phi) + \rho r^2\cos\phi \left[\frac{\partial}{\partial\lambda}\left(\frac{u}{r\cos\phi}\right) + \frac{\partial}{\partial\phi}\left(\frac{v}{r}\right) + \frac{\partial w}{\partial r}\right] = 0 \\ \frac{D\Theta}{Dt} &= S^\Theta, \qquad \rho\Theta = \frac{p_{\text{ref}}}{R_d}\Pi^{(1-\kappa)/\kappa}, \qquad \boxed{\frac{D}{Dt} := \frac{\partial}{\partial t} + \mathbf{u}\cdot\nabla}, \quad \kappa = \frac{R_d}{c_{pd}} \end{split}$$

Davies et al. 2005, Wood et al. 2014

Semi-implicit semi-Lagrangian time integration, no $\Delta t \leq \frac{\Delta x}{U}$

Semi-implicit semi-Lagrangian time integration, no $\Delta t \leq \frac{\Delta x}{U}$

Finite differences in space

Semi-implicit semi-Lagrangian time integration, no $\Delta t \leq \frac{\Delta x}{U}$

C-grid horizontal, Charney-Phillips vertical staggering

Crown Copyright Met Office

B. and Wood niversita 6 Trieste - p.13
Global model at 17 km resolution

Global model at 17 \text{ km} resolution

▶ $1536 \times 1152 \times 70 \approx 124M$ points

Global model at 17 km resolution

▶
$$1536 \times 1152 \times 70 \approx 124M$$
 points

▶ T = 7 days 3 hrs, $\Delta t = 7$ min 30 sec $\implies N_t = 1368$

Global model at 17 km resolution

▶
$$1536 \times 1152 \times 70 \approx 124M$$
 points

$$\blacktriangleright$$
 $T=7$ days 3 hrs, $\Delta t=7$ min 30 sec $\Longrightarrow N_t=1368$

► To be completed in one hour

Global model at 17 km resolution

▶
$$1536 \times 1152 \times 70 \approx 124M$$
 points

▶
$$T = 7$$
 days 3 hrs, $\Delta t = 7$ min 30 sec $\implies N_t = 1368$

► To be completed in one hour

Efficient implementation needed!

Dynamical core - Issues

The bottleneck - Scalability

More computing power \implies shorter solution time

The bottleneck - Scalability

More computing power \implies shorter solution time Lat-long grid: $\Delta x = 25 \text{ km} \Longrightarrow \Delta x_{min} = 70 \text{ m}$

$$\Delta x = 1 \text{ km} \Longrightarrow \Delta x_{min} = 0.1 \text{ m}$$

E-W spacing vanishes at Poles \implies grid locality lost

A new dynamical core - GungHo

GungHo

Globally

Uniform

Parallel development at Met Office and Imperial College Lon-

don

Achieve sustainable scalability

- Achieve sustainable scalability
- Keep the good properties and maintain the same accuracy ($\approx 2^{nd}$ order) of the current dynamical core

- Achieve sustainable scalability
- Keep the good properties and maintain the same accuracy ($\approx 2^{nd}$ order) of the current dynamical core
- More homogeneous grid: cubed sphere

- Achieve sustainable scalability
- Keep the good properties and maintain the same accuracy ($\approx 2^{nd}$ order) of the current dynamical core
- More homogeneous grid: cubed sphere

Crown Copyright Met Office

GungHo - infrastructure

Joint scientific - software engineering work

GungHo - infrastructure

- Joint scientific software engineering work
- Separation of concerns

Fortran 2003 kernels + algorithm, Python parallelization engine + auto code generation

GungHo - infrastructure

- Joint scientific software engineering work
- Separation of concerns

- Fortran 2003 kernels + algorithm, Python parallelization engine + auto code generation
- Resilient to future technology

GungHo - scientific requirements

- Mass conservation
- Accurate representation of balance and adjustment
- Absence of, or well controlled, computational modes
- Geopotential or pressure gradient should not produce unphysical vorticity
- Energy conserving pressure term and Coriolis term
- No spurious fast propagation of Rossby modes
- Conservation of axial angular momentum
- Accuracy at least approaching second order
- Minimal grid imprinting

Mixed finite elements - Dynamo

Compatibility

Compatible numerical schemes preserve continuous properties at the discrete level, e.g.

$$\nabla \cdot (\nabla \times \mathbf{f}) = 0$$
$$\nabla \times \nabla g = 0$$
$$\nabla \cdot (\mathbf{f}g) = \mathbf{f} \cdot \nabla g + g \nabla \cdot \mathbf{f}$$

Vector-invariant form

On a domain Ω , solve:

$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} + \frac{\mathbf{\xi}}{\rho} \times \mathbf{F} + 2\mathbf{\Omega} \times \mathbf{u} + \nabla \left(K + \Phi\right) + c_{pd}\theta \nabla \Pi &= 0, \\ \frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{F} &= 0, \\ \frac{\partial \theta}{\partial t} + \mathbf{u} \cdot \nabla \theta &= 0, \\ \Pi \left(\frac{1 - \kappa_d}{\kappa_d}\right) &= \frac{R_d}{p_0} \rho \theta \\ \mathbf{F} &= \rho \mathbf{u}, \quad \mathbf{\xi} = \nabla \times \mathbf{u}, \quad K = \frac{1}{2} \mathbf{u} \cdot \mathbf{u} \end{aligned}$$

Mixed finite elements

Mixed finite elements

At lowest order:

Università di Trieste - p.25

Cotter and Shipton, 2012

Crown Copyright Met Office

Weak formulation

Find $(\theta, \mathbf{u}, \rho) \in \mathbb{W}_0 \times \mathbb{W}_2 \times \mathbb{W}_3$ such that

$$\left\langle \mathbf{v}, \frac{\partial \mathbf{u}}{\partial t} \right\rangle = - \left\langle \mathbf{v}, \frac{\boldsymbol{\xi}}{\rho} \times \mathbf{F} + \nabla \Phi \right\rangle + \left\langle \nabla . \mathbf{v}, K \right\rangle + c_{pd} \left\langle \nabla . \left(\theta \mathbf{v}\right), \Pi \right\rangle$$
$$- \left\langle \mathbf{v}, 2\mathbf{\Omega} \times \mathbf{u} \right\rangle,$$
$$\left\langle \sigma, \frac{\partial \rho}{\partial t} \right\rangle = - \left\langle \sigma, \nabla . \mathbf{F} \right\rangle,$$
$$\left\langle \gamma, \frac{\partial \theta}{\partial t} \right\rangle = - \left\langle \gamma, \mathbf{u} \cdot \nabla \theta \right\rangle$$

for all test functions $(\gamma, \mathbf{v}, \sigma) \in \mathbb{W}_0 \times \mathbb{W}_2 \times \mathbb{W}_3$

Equations on reference domain

Equations on reference domain

Pulling back the equations through the map

$$\widehat{\Omega} \stackrel{\phi}{\longrightarrow} \Omega$$

with Jacobian $J = d\phi$ (div and curl-conforming mapping):

$$\begin{split} \left\langle J\hat{\mathbf{v}}, \frac{J}{\det\left(J\right)} \frac{\partial \hat{\mathbf{u}}}{\partial t} \right\rangle &= -\left\langle J\hat{\mathbf{v}}, \frac{J^{-T}\hat{\boldsymbol{\xi}}}{\hat{\rho}\det\left(J\right)} \times J\hat{\mathbf{F}} \right\rangle + \left\langle \nabla.\hat{\mathbf{v}}, \frac{1}{2} \left(\frac{J\hat{\mathbf{u}}}{\det\left(J\right)}\right) \cdot \left(\frac{J\hat{\mathbf{u}}}{\det\left(J\right)}\right) \right\rangle \\ &- \left\langle \hat{\mathbf{v}}, \nabla\Phi \right\rangle - \left\langle \frac{J\hat{\mathbf{v}}}{\det\left(J\right)}, 2\mathbf{\Omega} \times (J\hat{\mathbf{u}}) \right\rangle + c_{pd} \left\langle \hat{\theta} \nabla.\hat{\mathbf{v}} + \hat{\mathbf{v}}.\nabla\hat{\theta}, \Pi \right\rangle, \\ \left\langle \hat{\sigma}, \frac{\partial\hat{\rho}}{\partial t} \det\left(J\right) \right\rangle &= - \left\langle \hat{\sigma}, \nabla.\hat{\mathbf{F}} \right\rangle, \\ \left\langle \hat{\gamma}, \frac{\partial\hat{\theta}}{\partial t} \det\left(J\right) \right\rangle &= - \left\langle \hat{\gamma}, \hat{\mathbf{u}}.\nabla\hat{\theta} \right\rangle. \end{split}$$

Crown Copyright Met Office

Discrete formulation

Expansion as a weighted sum of basis functions

$$\hat{\psi} = \sum_i \tilde{\psi}_i b_i$$

Discrete formulation

Expansion as a weighted sum of basis functions

$$\hat{\psi} = \sum_i \tilde{\psi}_i b_i$$

$$M_{2}\frac{d\tilde{u}}{dt} = RHS_{u}$$

$$M_{3}\frac{d\tilde{\rho}}{dt} = RHS_{\rho}$$

$$M_{0}\frac{d\tilde{\theta}}{dt} = RHS_{\theta}$$

$$M_{0} = \langle \hat{\gamma}, \hat{\gamma} \det(J) \rangle, \ M_{2} = \left\langle \frac{J\hat{\mathbf{v}}}{\det(J)}, J\hat{\mathbf{v}} \right\rangle, \ M_{3} = \langle \hat{\sigma}, \hat{\sigma} \det(J) \rangle$$

Results - 3D Gravity Wave with rotation

Thermal perturbation on a stably stratified, 10 - km deep atmosphere at rest on a by X = 125 factor reduced planet

Serial runs with auto-generated code, T = 3600 s

Lowest-order elements

Crown Copyright Met Office

Università di Trieste - p.30

Ullrich et al. 2012

Results - 3D Gravity Wave with rotation

T. Melvin

Results - Straka

Density current on neutrally stratified atmosphere (constant background θ).

$$T' = \begin{cases} -15 \operatorname{K} \left[\frac{1}{2} (1 + \cos(\frac{\pi}{2}r)) \right] & (r \le 1) \\ 0 & \text{otherwise} \end{cases}$$

Results - Straka

Density current on neutrally stratified atmosphere (constant background θ).

$$T' = \begin{cases} -15 \operatorname{K} \left[\frac{1}{2} (1 + \cos(\frac{\pi}{2}r)) \right] & (r \le 1) \\ 0 & \text{otherwise} \end{cases}$$

Results - Straka

Density current on neutrally stratified atmosphere (constant background θ).

$$T' = \begin{cases} -15 \operatorname{K} \left[\frac{1}{2} (1 + \cos(\frac{\pi}{2}r)) \right] & (r \le 1) \\ 0 & \text{otherwise} \end{cases}$$

Results - Straka

.

Density current on neutrally stratified atmosphere (constant background θ).

$$T' = \begin{cases} -15 \operatorname{K} \left[\frac{1}{2} (1 + \cos(\frac{\pi}{2}r)) \right] & (r \le 1) \\ 0 & \text{otherwise} \end{cases}$$

Crown Copyright Met Office

Results - Straka

In progress - \mathbb{W}_{θ}

• Moving $\theta \in \mathbb{W}_0 \longrightarrow \mathbb{W}_{\theta}$

Quadrature formulae on faces for boundary terms:

$$-\langle \mathbf{v}, c_p \theta \nabla \Pi \rangle = -c_p \langle\!\langle \theta \mathbf{v} \cdot \mathbf{n}, \Pi \rangle\!\rangle + c_p \langle\!\langle \theta \Pi, \nabla \cdot \mathbf{v} \rangle\!\rangle + c_p \langle\!\Pi \mathbf{v}, \nabla \theta \rangle$$

In progress

Improve semi-implicit performance

- **Semi-Lagrangian scheme for** θ advection
- Finite-volume like scheme for density
- Helmholtz problem formulation, preconditioner, multigrid solver

With great computing power comes great responsibility

With great computing power comes great responsibility

With great computing power comes great responsibility

Cray XC40, complete in 2017

 \approx 500K cores, 16 PFlops,
 1.2 EB (10¹⁸) storage

- Auto-generated parallel layer.
- No computational opt.
- Weak scaling: same amount of work per processor, perfect: straight line.
- Strong scaling (dashed): same global size, perfect: 4x speed-up.

Dynamo 1.0 code release, 31.3.16

- Auto-generated parallel layer.
- No computational opt.
- Weak scaling: same amount of work per processor, perfect: straight line.
- Strong scaling (dashed): same global size, perfect: 4x speed-up.

C. Maynard

Wrap-up

- Pole problem affects parallel performance of current operational dynamical core
- Mixed finite element discretization gives
 - Flexibility on order, grid
 - Mimetic properties

Separation of concerns => Code adaptable to future architectures

References

- Benacchio, T & Wood, N 2016. CAIM, in press.
- **Cotter, C & Shipton, J 2012. JCP 231, 7076-7091.**
- Davies T, Cullen M, Malcolm A, Mawson M, Staniforth A, White A, Wood N. 2005. QJRMS. 131, 1759–1782.
- Ullrich PA, Jablonowski C, Kent J, Lauritzen PH, Nair RD, and Taylor MA. 2012: Dynamical Core Model Intercom- parison Project (DCMIP) test case document. DCMIP Summer School, 83 pp. [Available online at http://earthsystemcog.org/ projects/dcmip-2012/.]
- Wood N, Staniforth A, White A, Allen T, Diamantakis M, Gross M, Melvin T, Smith C, Vosper S, Zerroukat M, Thuburn J. 2014. QJRMS 140, 1505–1520.

Bonus slides

- \mathbb{W}_0 , The space of scalar functions built from the tensor product of $P^{k+1}(\chi_1)P^{k+1}(\chi_2)P^{k+1}(\chi_3)$ polynomials with full continuity;
- \mathbb{W}_1 , The space of vector functions built from the tensor product of two P^{k+1} polynomials and one P^k polynomial with continuity in the tangential direction only;
- \mathbb{W}_2 , The space of vector functions built from the tensor product of one P^{k+1} polynomial and two P^k polynomials with continuity in the normal direction only;
- \mathbb{W}_3 , The space of scalar functions built from the tensor product of $P^k(\chi_1)P^k(\chi_2)P^k(\chi_3)$ polynomials with no continuity.
- \mathbb{W}_{θ} , The space of scalar functions based on the vertical part of \mathbb{W}_2 to obtain the desired properties of a Charney-Philips grid.

Results - 2d gravity wave

Skamarock and Klemp 1994,

Università di Trieste – p.42

$$\begin{aligned} R_{\mathbf{u}}^{n+1} + R_{\mathbf{u}}^{n} + R_{\mathbf{u}}^{adv} &= 0\\ R_{\theta}^{n+1} + R_{\theta}^{n} + R_{\theta}^{adv} &= 0\\ R_{\rho}^{n+1} + R_{\rho}^{n} + R_{\rho}^{adv} &= 0 \end{aligned}$$

$$R_{\mathbf{u}}^{n+1} + R_{\mathbf{u}}^{n} + R_{\mathbf{u}}^{adv} = 0$$
$$R_{\theta}^{n+1} + R_{\theta}^{n} + R_{\theta}^{adv} = 0$$
$$R_{\rho}^{n+1} + R_{\rho}^{n} + R_{\rho}^{adv} = 0$$

$$\begin{split} R_{\mathbf{u}}^{n+1} &= \left\langle \mathbf{v}, \mathbf{u}^{n+1} \right\rangle - \alpha \Delta t \left[-\left\langle \mathbf{v}, \nabla \Phi \right\rangle + \left\langle \nabla . \mathbf{v}, K^{n+1} \right\rangle \right. \\ &+ c_{pd} \left\langle \nabla . \left(\theta^{n+1} \mathbf{v} \right), \Pi^{n+1} \right\rangle - \left\langle \mathbf{v}, 2\mathbf{\Omega} \times \mathbf{u}^{n+1} \right\rangle \right] \\ R_{\mathbf{u}}^{n} &= -\left\langle \mathbf{v}, \mathbf{u}^{n} \right\rangle - (1 - \alpha) \Delta t \left[-\left\langle \mathbf{v}, \nabla \Phi \right\rangle + \left\langle \nabla . \mathbf{v}, K^{n} \right\rangle \right. \\ &+ c_{pd} \left\langle \nabla . \left(\theta^{n} \mathbf{v} \right), \Pi^{n} \right\rangle - \left\langle \mathbf{v}, 2\mathbf{\Omega} \times \mathbf{u}^{n} \right\rangle \right] \\ R_{\mathbf{u}}^{adv} &= \Delta t \left\langle \mathbf{v}, \left(\frac{\boldsymbol{\xi}}{\rho} \right)^{n} \times \widetilde{\mathbf{F}} \right\rangle \end{split}$$

Newton's method:

$$J\left(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\right) = -\mathbf{R}(\mathbf{x}^{(k)})$$

Newton's method:

$$J\left(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\right) = -\mathbf{R}(\mathbf{x}^{(k)})$$

Linearization around a reference state \mathbf{x}^{*} :

$$J\left(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\right) \equiv J\mathbf{x}' \approx L\mathbf{x}'$$
$$L\mathbf{x}' = \begin{cases} \mathbf{u}' + \tau \Delta t c_{pd} \left(\theta^* \nabla \Pi' + \theta' \nabla \Pi^*\right) \\ \theta' + \tau \Delta t \mathbf{u}' \cdot \nabla \theta^* \\ \rho' + \tau \Delta t \nabla \cdot \left(\rho^* \mathbf{u}'\right) \end{cases}$$

```
Do n = 1, n time
     Compute time-level n terms \mathbf{R}(\mathbf{x}^n)
     Do o = 1, n outer
           Compute advective wind \overline{u}
           Compute advective terms \mathbf{R}^{adv}(\mathbf{x}^n, \overline{\mathbf{u}})
           Do i = 1, n\_inner
                Compute time-level n + 1 terms \mathbf{R}(\mathbf{x}^{n+1})
                Solve for increment x'
           End inner loop
     End outer loop
End timestep loop
```

Semi-implicit timestepping

- Advective terms costly inside Newton loop, assumed fixed
- **Recomputed in outer loop using latest** u estimate
- ► Inside the Krylov solver the residual **R** is evaluated as $\mathbf{R} = \left[R_{\mathbf{u}}^{n+1}, R_{\theta}^*, R_{\rho}^* \right]^T$ where:

$$R_{\theta}^{*} = \theta^{n+1} + \tau \Delta t \mathbf{u}^{n+1} \cdot \nabla \theta^{n+1}$$
$$R_{\rho}^{*} = \rho^{n+1} + \tau \Delta t \nabla \cdot \left(\rho^{n+1} \mathbf{u}^{n+1}\right)$$