
2 
BASIC THEORY OF 
RADIATION FIELDS 

2.1 REVIEW OF MAXWELL’S EQUATIONS 

We open our study of electromagnetic phenomena by a review of the 
theory applied to nonrelativistic particles. Gaussian units are used 
throughout. 

The operational definitions of the electric field E(r,t) and the magnetic 
field B(r,t) are made through observations on a particle of charge q at 
point r with velocity v, and by means of the formula for the Lorentz force: 

F = q  ( c  E t I x B ) .  (2.1) 

The rate of work done by the fields on a particle is 

v . F = p . E ,  (2.2a) 

because v*(v x B) = 0. Since F = mdv/dt for nonrelativistic particles, we 
have 

d 
qv*E= -(:mv’). dt (2.2b) 
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These results may be generalized to total force on a volume element 
containing many charges. The force per unit volume is 

(2.3) 
1 

f = p E +  - jxB,  
C 

where 

1 
Iim - 2 qi, 

’= AV+O A V  

j =  lim - 2 qjvj, 
1 

Av-0 A V  , i  

(2.4a) 

(2.4b) 

and A V  is the volume element. p and j are charge and current densities, 
respectively. In Eqs. (2.3) and (2.4) A V must be chosen much smaller than 
characteristic scales but much larger than the volume containing a single 
particle. 

The rate of work done by the field per unit volume is then 

1 - 2 qjvi*E = j *E. 
A V  

From Eq. (2.2b) this is also the rate of change of mechanical energy per 
unit volume due to the fields: 

Maxwell’s equations relate E, B, p, and j. In Gaussian units, they are 

V *D = 4np V * B = O  

Here the fields D and H can often be related to E and B by the linear 
relations 

D=&, (2.7a) 

B = pH, (2.7b) 

where c and p are the dielectric constant and magnetic permeability of the 
medium, respectively. In the absence of dielectric or permeable media, 
€ = p = l .  
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An immediate consequence of Maxwell’s equation is comeroation of 
charge: Taking V *  of the V x H equation gives 

aP 
at 

V * j +  - =O.  

This expresses conservation of charge for a volume element. 
We now give definitions of energy density and energy flux of the 

electromagnetic field. Consider the work done per unit volume on a 
particle distribution, [cf. Eq. (2.6)]: 

c(VxH)*E-E*- , 
aD at 1 

where we have used Maxwell’s equations. Now, use the vector identity: 

Em( V x H) = H*( V x E) - V *(E x H), 

and again use Maxwell’s equations to write Eq. (2.9) in the form 

(2. IOa) 
4n 

Now, if c and p are independent of time, then the above relation may be 
written as [cf. Eq. (2.7)] 

(2.1 Ob) 
i a  

Equation (2.10b) is Poynting’s theorem in differential form and can be 
interpreted as saying that the rate of change of mechanical energy per unit 
volume plus the rate of change of field energy per unit volume equals 
minus the divergence of the field energy flux. Accordingly, we set the 
electromagnetic field energy per unit volume equal to 

and the electromagnetic flux vector, or Poynting vector, equal to 

(2.1 1) 

(2.12) 
C 

S= -EX H. 

The above can also be understood by integrating over a volume element 
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and using the divergence theorem: 

or 

(2.13) 

That is, the rate of change of total (mechanical plus field) energy within 
the volume V is equal to the net inward flow of energy through the 
bounding surface Z. 

Although Uficld is called a field energy, it has contributions from the 
matter, because c and p are both macroscopic properties of matter. We are, 
in effect, putting the energy of the bound charges into the field. If we had 
treated all charges (free and bound) as part of the mechanical system, then 
we would use only the microscopic fields E and B. Then j would be 
replaced by the sum of the conduction current and induced molecular 
currents and S - + ( c / 4 n ) E x B .  When both matter and fields are present, 
the allocation of energy into matter and field energies is somewhat arbi- 
trary. What is not arbitrary is that the total energy is conserved. 

If we now consider either the microscopic energy flux in the field or the 
field in vacuum, and use Eq. (1.6) and the fact that p =  E / c  for photons, 
then we can write the momentum per unit volume in the field, g as 

1 
4mc 

g = - E x  B. (2.14) 

The angular momentum camed by the field is given by e, the angular 
momentum density: 

E = r x g ,  (2.15) 

where r is the radius vector from the point about which the angular 
momentum is computed. We do not derive these results in general; 
however, this identification of momentum and angular momentum for 
electromagnetic radiation is verified in Problem 2.3. 

Returning to the conservation of energy now, we can let the surface 2 
approach infinity, and the question arises as to the limit of 
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In electrostatics and magnetostatics we recall that both E and B decrease 
like r-' as r-m. This implies that S decreases like r - 4  in static problems. 
Thus the above integral goes to zero, since the surface area increases only 
as r z .  However, for time-varying fields we find that E and B may decrease 
only as r - ' .  Therefore, the integral can contribute a finite amount to the 
rate of change of energy of the system. This finite energy flowing outward 
(or inward) at large distances is called radiation. Those parts of E and B 
that decrease as r - '  at large distances are said to constitute the radiation 
field. 

2.2 PLANE ELECTROMAGNETIC WAVES 

Maxwell's equations in vacuum become [cf. Eqs. (2.6)] 

V.E=O V*B=O 
(2.16) 

A basic feature of these equations is the existence of traveling wave 
solutions that carry energy. Talung the curl of the third equation and 
combining it with the fourth, we obtain 

1 a2E 

c2 at2 
V x ( V x E ) = -  - ---. 

If we now use the vector identity 

v x ( v x E) = V( v -E) - V ~ E  

(in Cartesian components) and the first equation, we obtain the vector 
wave equation for E: 

(2.17) 

An identical equation holds for B, since Eq. (2.16) is invariant under E+B, 
B+ - E. 

Let us now consider solutions of the form 

(2.18a) 

(2.18b) 
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where i, and 8, are unit vectors, E,  and B, are complex constants, and 
k = kn and w are the “wave vector” and frequency, respectively. Clearly, 
such solutions represent waves traveling in the n direction, since surfaces 
of constant phase advance with time in the n direction. By superposing 
such solutions propagating in all directions and with all frequencies, we 
can construct the most general solution to the source-free Maxwell’s 
equations. Substitution into Maxwell’s equations yields: 

i k  9, E,  = 0 ik*b,B,= 0 

iw iw 
i k x I , E , =  ,$B, i k x $ B , =  - - - I1Ew 

C 

(2.19) 

The top two equations tell us that both I ,  and I ,  are transverse (perpendic- 
ular) to the direction of propagation k .  With this information, the cross 
products in the bottom two equations can be done, and we see that a, and 
I ,  are perpendicular to each other. The vectors a,, i,, and k form a 
right-hand triad of mutually perpendicular vectors. The values of Eo and 
B, are related by 

so that 

and 

(2.20a) 02- 2 2 - - c  k .  

Taking k and w positive, as implied by the above discussion, we have 

o=ck. (2.20b) 

This in turn implies 

E,= B,. (2.21) 

The waves propagate with a phase velocity that can be found from 
up,, = o/k, so that 

Vph = c. (2.22) 



The waves, as expected, travel at the speed of light. (In a vacuum the 
group velocity, u,rdw/ak,  equals c also.) 

We can now compute the energy flux and energy density of these waves. 
Since E and B both vary sinusoidally in time, the Poynting vector and the 
energy density actually fluctuate; however, we take a time aueruge, since 
this ic ir. most cases what is measured. 

Now, it can easily be shown (Problem 2.1) that if A ( t )  and B(t) are two 
complex quantities with the same sinusoidal time dependence, that is, 

A ( t )  = @eiw' B( t )  = ae'"', 
then the time average of the product of their real parts is 

(ReA(t).ReB(t)) =; Re(@% * ) = f  Re(@*%). (2.23) 

We have used * to denote complex conjugation. Thus the time-averaged 
Poynting vector [cf. Eq. (2.12)] satisfies 

C 
(S) = -Re(E,B,*). 

877 

Since E,= B,, 

(2.24a) 

(2.24b) 

Similarly, the time-averaged energy density is [cf. Eq. (2.1 l)] 

(2.25a) 
1 

1677 
( U ) =  -Re(E,E,*+B,B,*), 

or, with E,= B,, 

(2.25b) 

Therefore, the velocity of energy flow is ( S ) / (  U )  = c also. 
The above results have all been for propagation in a vacuum. Similar 

results hold, at least formally, if we use a dielectric constant and permea- 
bility that are constants. However, in practice these quantities usually 
depend on frequency, so a more careful approach is required. Some effects 
of refraction and dispersion are treated in Chapter 8. 
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2.3 THE RADIATION SPECTRUM 

The spectrum of radiation depends on the time uariafion of the electric 
field (we can ignore the magnetic field, since it mimics the electric field). A 
consequence is that one cannot give a meaning to the spectrum of 
radiation at a precise instant of time, knowing only the electric field at one 
point. Instead, one must talk about the spectrum of a train of waves, or of 
the radiation at a point during a sufficiently long time interval At .  If we 
have such a time record of the radiation field of length At,  we still can only 
define the spectrum to within a frequency resolution Aw where 

AwAt > 1.  (2.26) 

This uncertainty relation is not necessarily quantum in nature (although it 
can be proved from the energy-time uncertainty relation), but is a property 
of any wave theory of light. 

Let us assume, for mathematical simplicity, that the radiation is in the 
form of a finite pulse. (In practice, we only require that E(r) vanishes 
sufficiently rapidly for t+? 00.) Also, let us treat only one of the two 
independent components of the transverse electric field, say E(r) = ii*E(t). 
With these assumptions we may express E( t )  in terms of a Fourier integral 
(Fourier transform): 

The inverse of this is 

E( 1 )  = I ,??(o)e -iO'dw. 
-a3 

(2.27) 

(2.28) 

The function k ( w )  is complex; however, since E( t )  is real we can write 

so that the negative frequencies can be eliminated. 
Contained in $(a) is all the information about the frequency behavior of 

E(t ) .  To convert this into frequency information about the energy we write 
the energy per unit time per unit area in terms of the Poynting vector: 

dW c 
dtdA 47l 
-- - - E 2 ( f ) .  (2.29) 
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The total energy per unit area in the pulse is 

dW c w - = -J E 2 ( f ) d t .  dA 477 - m  
(2.30) 

But from Parseval’s theorem for Fourier transforms, we know that 

W 

E ’( t ) dt = 2aJ I g( w )  /’dw. (2.31) J- a0 - w  

By the above symmetry property of &w) we have 

I2(w)I2= lk( -w)12, 

so that 
a3 

E ’( t ) dt = 47(,“ 1 &a) (’dw. J- m 

Thus we have the result 

and we may identify the energy per unit area per unit frequency: 

cl Jfb) I* dW 
dA dw 
-= 

(2.32) 

(2.33) 

It should be noted that this is the total energy per area per frequency 
range in the entire pulse; we have not written “per unit time.” In fact, to 
write both dt and dw would violate the uncertainty relation between w and 
t .  However, if the pulse repeats on an average time scale T, then we may 
formalb write 

(2.34) 

This formula also can be used to define the spectrum of a portion of length 
T of a much longer signal. If a very long signal has more or less the same 
properties over its entire length (property of time stationarity) then we 
expect that the result will be independent of T for large T, and we may 
write 

1 -  
= c lim --(E,(u)(~, 

dW 
dAdwdt ~-,m T 
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where we have written the subscript T on ,!?,(a) to emphasize that this is 
the transform of a portion of the function E ( t )  of length T. In this way we 
can generalize our discussion to include infinitely long waves (such as sine 
waves) using formulas based on finite pulses. 

If the properties of E ( t )  vary with time, then one expects that the 
spectrum as determined by analyzing a portion of length Twill depend on 
just what portion is analyzed. In that case the whole efficacy of the 
concept of local spectrum depends on whether the changes of character of 
E(t )  occur on a time scale long enough that one can still define a length T 
in which a suitable frequency resolution Aw- 1 / T can be obtained. If this 
condition is not met, a local spectrum is not useful, and one must consider 
the spectrum of the entire pulse as the basic entity. 

Let us consider now some typical pulse shapes and their corresponding 
spectra. (See Figs. 2.1, 2.2, and 2.3.) Study of these should give some 
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( ‘ t i  

Figure 2.Ia Ekctric field of a pulse of duration T. 

( b )  

Figure 2.Ib Power spectrum for a. 



F i e r e  2.2a Ekctnc feu of a SinuSoidpI pulse of fwquency wo a d  duration T. 

( b )  

Figure 2.2b Power spectnun for a. 

( 0 )  I 
Figum 2.34 E&ctric&&i of a &nped sksoki  of the form ex-( - t /  vsinwot.  
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I c I i ( w ) l 2  

Figure 2.36 Power spectrum for (1. 

insight into the relationships that are useful in estimating spectra from 
particular processes. Note that the graphs of clE(w)lZ are always symmetric 
about the origin-sometimes we have drawn the curves for both positive 
and negative w for convenience, while in other cases we have only drawn 
them for positive w. Only the values for positive w need concern us. 

Some general rules can be seen in these simple examples: First, the time 
extent of the pulse T determines the width of the finest features in the 
spectrum by means of Aw- 1 / T. Second, the existence of a sinusoidal time 
dependence within the pulse shape causes the spectrum to be concentrated 
near w-wo. 

2.4 POLARIZATION AND STOKES PARAMETERS 

Monochromatic Waves 

The monochromatic plane waves described in Eq. (2.18) are linearly 
polarized; that is, the electric vector simply oscillates in the direction I , ,  
which, with the propagation direction, defines the plane of polarization. By 
superposing solutions corresponding to two such oscillations in perpendic- 
ular directions, we can construct the most general state of polarization for 
a wave of given k and w. We need consider only the electric vector E; the 
magnetic vector simply stays perpendicular to and has the same magnitude 
as E. Let us examine the electric vector at an arbitrary point (say, r=O) 
and choose axes x and y with corresponding unit vectors f and f (see Fig. 
2.4). The direction of the wave is out of the page, toward the observer. 
Then the electric vector is the real part of 

E = ( f E ,  + fE2) e --Iw' = Eoe -'@'. (2.35) 
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Figure 2.4 Rotation of x and y efectric field components through angie x to 
coincide with principal axes of the polarization ellipse. 

This generalization of Eq. (2.18) can be characterized as having replaced 
a,E, by the general complex vector Eo. The complex amplitudes E ,  and E2 
can be expressed as 

El = & , elcp),  E2 = E2 el*>. (2.36) 

Taking the real part of E, we find the physical components of the electric 
field along 

Ex=&, C O S ( ~ - + , ) ,  E,=G,cos(at-+J. (2.37) 

These equations describe the tip of the electric field vector in the x-y 
plane. 

We now show that the figure traced out is an ellipse, and hence the 
general wave is said to be elliptically polarized. First of all, note that the 
equations for a general ellipse relative to its principal axes x’ andy’, which 
are tilted at an angle x to the x -  and y-axes (see Fig. 2.4), can be written 

(2.38) 

where - 77/2 < p <77/2. The magnitudes of the principal axes are clearly 
&, lcospI and Go Isinpl, since (E:/&,~osp)~ +(E;/&, sin/3)2 = 1.The 
ellipse will be traced out in a clockwise sense for O<p<a/2 and counter- 
clockwise sense for - 77/2<p<O, as viewed by an observer toward whom 
the wave is propagating. These possibilities are called, respectively, right- 
and left-handed elliptical polarjzation. Other terms are, respectively, negu- 
five and positive heliciw. 

and 9 to be 

E: = &, cos /? cos wt,  E; = - Go sin p sin at, 
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Two degenerate cases of elliptical polarization can occur: When /3= rt 
s / 4  the ellipse becomes a circle, and the wave is said to be circularly 
polarized. When /3 = 0 or ? a/2, the ellipse narrows to a straight line, and 
the wave is said to be linearly polarized. In this latter case the wave is 
neither right-handed nor left-handed. 

Let us now make the connections between the quantities that appear in 
Eq. (2.37) and those defining the principal axes of the ellipse. To do this we 
transform the electric field components in Eq. (2.38) to the x-  and y-axes 
by rotating through the angle x (see Fig. 2.4). This yields 

Ex = &,( cos /3 cos x cos wt + sin p sin x sin wt ) 

Ey = &,(COS @ sin x cos wt - sin /3 cos Xsin wt) 

These are identical with Eq. (2-37) if we take 

&, COS+I=&oCOSpCOSX, (2.39a) 

&, sin+, = &,sinPsinX, (2.39b) 

&, cos+, = &, cos /3 sinx, (2.39~) 

&, sin +, = - F, sinP cos x. (2.39d) 

Given G I ,  +,, &,, @, these equations can be solved for Go, p, and x. A 
convenient way of doing this is by means of the Stokes parameters for 
monochromatic waves, which are defined by the equations: 

I = &; + E; = &; 

Q s &; - &$ = & ; C O S ~ / ? C O S ~ X  

(2.40a) 

(2.40b) 

( 2 . a )  

(2.404 

u =2&, &, cos(+, - +,) = &: cos2/3 sin2x 

v s 2&, G, sin(+, - 4,) = &: sin 2p. 

The alternate forms follow from manipulations of Eqs. (2.39). Thus we 
have 

&,=fi (2.41a) 

(2.41b) 
V 

sin 2p = - 
I 

(2.41~) 
U 

tan2x= -. 
Q 
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Pure elliptical polarization is determined solely by three parameters: &,, 
j3, and x .  Therefore, one expects a relation to exist between the four Stokes 
parameters in this case; in fact, we have 

Z 2 =  Q 2 +  U 2 +  V 2  (2.42) 

for a monochromatic wave (pure elliptical polarization.) 
The meanings of the Stokes parameters are as follows: I is nonnegative 

and is proportional to the total energy flux or intensity of the wave. In 
practice, it is customary to choose a single proportionality factor in all of 
the definitions of (2.40) so that I is precisely the flux or intensity, but we 
shall omit it here. V is the circuzarity parameter that measures the ratio of 
principal axes of the ellipse. The wave has right- or left-handed polariza- 
tion when V is positive or negative, respectively; V=O is the condition for 
linear polarization. There is only one remaining independent parameter, Q 
or U, which measures the orientation of the ellipse relative to the x-axis; 
Q = U = 0 is the condition for circular polarization. 

Quasi-monochromatic Waves 

The monochromatic waves just treated are said to be completely or 100% 
polarized, since the electric vector displays a simple, nonrandom direc- 
tional behavior in time. However, in practice we never see a single 
monochromatic component but rather a superposition of many compo- 
nents, each with its own polarization. An important case of interest occurs 
when the amplitudes and phases of the wave possess a relatively slow time 
variation, so that instead of Eq. (2.36) we have 

To be precise, we assume that over short times, of order l/o, the wave 
looks completely polarized with a definite state of elliptical polarization, 
but over much longer times, At>> I / w ,  characterizing the times over which 
&,, E,, 9, and rp2 change substantially, this state of polarization can 
change completely. Such a wave is no longer monochromatic; by the 
uncertainty relation its frequency spread Aw about the value w can be 
estimated as Aw> 1/At so that Aw<<w. For this reason the wave is called 
quasi-monochromatic. The frequency spread Aw is called the bandwidth of 
the wave, and the time At  is called the coherence time. 

The quantitative characterization of quasi-monochromatic waves de- 
pends on what kind of measurements can be made. In principle, for strong 
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waves the precise time variations of the quantities &,, &,, +,, and +, could 
be measured; this would be the most detailed characterization possible. On 
the other hand, most measurements are not so detailed and usually involve 
some apparatus in which the radiation eventually falls on a detector that 
measures the time-averaged square of the electric field, for example, the 
energy flux (2.24b). Before falling on the detector the radiation may pass 
through a variety of devices that have the effect of forming a linear 
combination of the two independent electric field components with arbi- 
trary weights and phases. For radio waves such devices include dipole 
antennas and electric delay lines; the optical equivalents are found in 
polarizing filters and quarter-wave plates. 

If we suppose that any time delays involved are short compared to the 
coherence time of the wave, then we can show that the outcome of a 
measurement with such a device depends on simple extensions of the 
Stokes parameters previously introduced. 

We first note that the most general linear transformation of field 
components by devices of the type described above can be written 

where A,,, (ij = 1,2), are complex constants describing the measuring 
apparatus. What is measured is the average sum of the squares of the x' 
and y' components of electric field. The average of the square of the x' 
component is 

2([ReE;e- '" ' ]2)  = J A , , J 2 ( E , E ~ )  +A, ,A~ , (E ,E ,* )  

+ A,,A:,(E,E: ) 

+ l~I2l2(E2E:).  (2.45) 

Eq. (2.23) has been used to average over the "fast" variations in the field 
described by the e - - I w c  term. The brackets ( ) on the right-hand side then 
refer only to time averaging of the slowly varying combinations of E , ( t )  
and E2(t).  For example, 

where 0 to T is the time interval over which the measurement is made. The 
average square of they component yields a result analogous to Eq. (2.45) 
with A,, and A,, replacing A , ,  and A,,, respectively. 
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It is clear from the above that the measurement depends on the radia- 
tion field only through the four complex quantities (E,(t)E;C(t)), where i ,  
j -  1, 2. These in turn are equivalent to four real quantities, since ( E , E : )  
and (E,E:)  are real and ( E I E Z )  and ( E , E ? )  are complex conjugates. A 
common and convenient set of four real quantities used to express ( E j 4 ? )  
are the Stokes parameter for quasi-monochromatic waves, 

I = ( E , E : )  + (E,E,*) = (E :  + &;) (2.47a) 

Q ( E l  E:) - (E,E,I)  = (&: - 5:)  (2.47b) 

U 3 ( E l  E ; )  + ( E 2 E : )  = (2F I F, COS(+, - +2)) (2.47~) 

V f (2.47d) 
1 
(( E ,  E ; )  - ( E2 E: ) ) = (2& , G, sin(+, - +,)), 

using Eqs. (2.36). We see that these definitions are generalizations of Eqs. 
(2.40), to which they reduce when G , ,  G,, and +* are time independent. 
The Stokes parameters are the most complete description of the radiation 
field, in the sense that two waves having the same parameters cannot be 
distinguished by any measurements using an apparatus of the type de- 
scribed above. 

Equation (2.42) will not hold for arbitrary quasi-monochromatic waves. 
It is easy to show from the Schwartz inequality, that 

the equality sign holding only when the ratio of E , ( t )  to E,(t)  is a complex 
constant, independent of time. This latter condition implies that the 
electric vector traces out an ellipse of fixed shape and fixed orientation and 
only its overall size changes slowly with time. Such a wave is completely 
equivalent to a pure elliptically polarized (a monochromatic) wave because 
their Stokes parameters are the same. Summarizing, we have from Eqs. 
(2.47) and (2.48) that 

Z 2 > Q 2 +  U 2 +  V 2 ,  (2.49) 

the equality holding for a completely elliptically polarized wave. 
At the other extreme there is the completely unpolarized wave, where the 

phases between E l  and E, maintain no permanent relation and where 
there is no preferred orientation in the x-y plane, so that (G:) = (&$). In 
this case 

Q = U =  V=O, (2.50a) 
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I 
Q 
U 

.v 

or 

Q 2 +  U z +  V 2 = 0 .  (2.50b) 

An important property of the Stokes parameters is that they are additive 
for a superposition of independent waves. By independent we mean that 
there are no permanent phase relations between the various waves, and 
that over the relevant time scales the relative phases can be assumed to be 
randomly and uniformly distributed from 0 to 271. For a superposition of 
different waves, each having its own E,’k) and EJk), k = 1, 2, 3 * , we have 

E ,  = x Efk’,  E2= x El” (2.51) 
k I 

so that 

( E , q )  = 2 x ( E f k ) E $ ’ ) * )  = ( E f k ) E i k ) * ) .  (2.52) 

Because of the random phases only terms with k = I survive the averaging, 
as indicated. It follows that 

k I  k 

I =  x I ‘ k ’  (2.53a) 

Q= 2 Q ( k )  (2.53b) 

U =  2 U‘k’ (2.53~) 

v= x V‘k’, (2.53d) 

proving the additivity. 

be represented as 
By the superposition principle, an arbitrary set of Stokes parameters can 

(2.54) 

The first term on the right represents the Stokes parameters of a com- 
pletely unpolarized wave of intensity I - d m  and the second 
represents the Stokes parameters of a completely (elliptically) polarized 
wave of intensity \/-, since it satisfies Eq. (2.42). Therefore an 
arbitrary wave can be regarded as the independent superposition of a 



completely polarized and a completely unpolarized wave. With this decom- 
position the meaning of the Stokes parameters for a quasi-monochromatic 
wave can be reduced to the meanings previously given for the completely 
polarized part plus that for the unpolarized part. Such a wave is therefore 
said to be partially polarized. The degree of polarization is defined in terms 
of this representation as the ratio of the intensity of the polarized part to 
the total intensity: 

IT=-= IPOI iQ2+ U 2 +  V 2  
I I (2.55) 

This is often given in terms of percentages. 
A special case that appears frequently in applications is partial linear 

polarization, where V=O. Such radiation can be analyzed using a single 
linear polarizing filter (or dipole antenna), which picks out the component 
of the electric field in one direction. The measurement consists of rotating 
the filter until the maximum values of intensity are found. The maximum 
value I,,, will occur when the filter is aligned with the plane of polariza- 
tion (the x’-axis), and the minimum value will occur along in the direction 
perpendicular to it (the y’-axis). The unpolarized intensity only contributes 
one-half of its intensity to any given measurement, since the total is shared 
between any two perpendicular directions. Therefore, the maximum and 
minimum values of intensity are 

I m u  = Iunpol+ I p o I y  (2.56a) 

Imin = L 2 I unpolr (2.56b) 

where Z u n p o l = Z - ~ ~  and Z w l = d w .  From Eq. (2.55) we 
have, finally, 

One should be cautioned that this formula applies only in cases in which 
the polarization is known to be of plane type. It will underestimate the true 
degree of polarization if circular or elliptical polarization is present. 

2.5 ELECTROMAGNETIC POTENTIALS 

Because of the form of Maxwell’s equations, [cf. Eqs. (2.6)], especially the 
“internal equations,” it is found that the E and B fields may be expressed 
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completely in terms of a scalar potential N r ,  t) and a vector potential A(r, t). 
There are several reasons for wanting to do this: One scalar plus one 
vector is simpler than two vectors. Also, the equations determining + and 
A are quite a bit simpler than Maxwell’s equations for E and B. Finally, 
the relativistic formulation of electromagnetic theory is simpler in terms of 
the potentials than in terms of the electric and magnetic fields. 

From Maxwell’s equation V *B = 0 it follows that B may be expressed as 
the curl of some vector field A: 

B = V x A .  (2.58) 

The V xE equation can be written 

V x (E+ $) = O .  (2.59) 

1 
It follows that E+ -aA/at may be expressed as the gradient of some 
scalar field -+: 

C 

E = - V + -  
1 aA -- 

at . (2.60) 

Two of Maxwell’s equations have already been satisfied identically by 
virtue of the definitions of the potentials. The V*E equation can be written 

l a  
c at 

V2++ - -(V*A)= -4np, (2.61) 

where we have used the microscopic form of Maxwell’s equations ( p  = pfree 
+pbound). Equation (2.61) may also be written in the form 

The V x H  equation can be written 

V x ( V x A ) - -  l a  -( - V + - - - ) = - j  1 aA 47r 
at  at 

With the vector identity V x ( V x A ) =  - V2A+V(V*A) this becomes 

(2.62) 

(2.63) 

(2.64) 
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The potentials are not uniquely determined by the conditions imposed 
above. For example, the addition to A of the gradient of an arbitrary scalar 
function tc, will leave B unchanged: 

A - + A + V + ,  B+B. 

The electric field will also be unchanged if at the same time + is changed 
by 

These alterations of A and 9 are called Gauge transformations. Their value 
for our purposes lies in the possibility of choosing potentials in such a way 
to simplify the above equations. Note that since we have one free function, 
we can satisfy one scalar constraint equation. The most important choice 
made is a gauge for which the Lorentz condition is satisfied 

(2.65) 

The gauge corresponding to Eq. (2.65) is called the Lorentz gauge. With 
this gauge Eqs. (2.62) and (2.64) now become the following inhomogeneous 
equations: 

(2.66a) 

(2.66b) 

The solutions to Eqs. (2.66) may be written (see, e.g., Jackson 1975) as 
integrals over the sources: 

A(r,t)= -I-. 1 [ j ] d 3 r ‘  
c lr-r’l 

(2.67a) 

(2.67b) 

Equations (2.67) are the retardedpotentials. The notation [ Q ]  means that Q 
is to be evaluated at the retarded time 

[ Q]=Q(r’,r- --lr-r’l 7 . 
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The retarded time refers to conditions at the point r‘ that existed at a time 
earlier than t by just the time required for light to travel between r and r’. 
The interpretation is that information at point r’ propagates at the speed of 
light, so that the potentials at point r can only be affected by conditions at 
point r’ at such a retarded time. (A similar set of solutions with the 
advanced time t + c -‘lr - r’l are also possible mathematically, but are 
ordinarily excluded on the physical grounds of causality.) 

We now have a rather straightforward way of finding the electric and 
magnetic fields due to a given charge and current density: first, find the 
retarded potentials by means of the above integrals, and then determine E 
and B by their expressions in terms of the potentials. In the next chapter 
we determine the retarded potentials for a point charge in this way. 

2.6 APPLICABILITY OF TRANSFER THEORY AND 
THE GEOMETRICAL OPTICS LIMIT 

Following our discussion of waves, it is now possible to discuss more 
quantitatively the applicability of geometrical optics. In standard discus- 
sions of the propagation, or transfer, of radiation through matter, the 
specific intensity, with its associated concept of rays, is used as a funda- 
mental variable. However, there are certain limitations imposed on transfer 
theory by the wave or quantum nature of light. For example, we defined 
specific intensity by the relation 

dE= I ,dA  dadvdt ,  

where a!A, d 0 ,  dv, and dt were presumed to be infinitesimal. However, dA 
and d Q  cannot both be made arbitrarily small because of the uncertainty 
principle for photons: 

dx dp, & dp, = p2dA d 0  2 h2, 

dA d 0  2 X2. (2.68) 

As soon as the size of dA is of order of the square of the wavelength, the 
direction cannot be defined with any precision and the concept of rays 
breaks down. 

There is another limitation on the sizes of dt and dv because of the 
energy uncertainty principle 

d E d t Z h ,  
dv dt 2 1. (2.69) 
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For these reasons, when the wavelength of light is larger than atomic 
dimensions, as in the optical, we cannot describe the interaction of light on 
the atomic scale in terms of specific intensity. However, we may still 
regard transfer theory as a valid macroscopic theory, provided the absorp- 
tion and emission properties are correctly calculated from electromagnetic 
theory or quantum theory. 

A more precise, classical treatment of the validity of rays is known as 
the eikonal approximation. The essential features of thls approach can be 
seen if we treat a scalar field rather than the vector electromagnetic fields. 
Rays are curves whose tangents at each point lie along the direction of 
propagation of the wave. Clearly, these rays are well defined only if the 
amplitude and direction of the wave is practically constant over a distance 
of a wavelength A. This limit is called the geometrical optics limit. Let the 
wave be represented by a function g(r , t )  of the form 

g(r,  t )  = a(r, t)ei'J@,'), (2.70) 

where a(r,t) is the slowly varying amplitude and $(r,t) is  the rapidly 
varying phase. If a were strictly constant, then the local direction of 
propagation k of the wave (normal to the surfaces of constant phase +), is 
given by 

k =  V+, (2.71a) 

and the local frequency, w, is given by 

(2.7 1 b) 

The exact behavior of a and + is constrained by the waue equation for 
g(r9 tX 

1 

c2 at2 
V2g(r, t )  - - - - - 0, 

or, substituting in Eq. (2.70) for g(r, t), 

V2a---++a V % - - -  +2i  Va-V+----- 
c2 a2a at2 ( c 2  a % )  a t 2  ( c2 a+ at at 

-a(V$)'+- aJ/ 2=0 .  (2.72) 2 at ) 
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The geometrical optics limit can now be made precise. If 
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then the above equation reduces to 

(2.73) 

which is the eikonal equation. If Eqs. (2.71) are substituted for the 
gradients of 4, we obtain 

u2 
(kI2- - =O, 

C2 

which will be recognized [cf. Eq. (2.20a)l as the relationship between wave 
number and frequency of a plane wave. 

PROBLEMS 

2.1-Two oscillating quantities A ( t )  and B( t )  are represented as the real 
parts of the complex quantities &e-'u' and %e-ju'. Show that the time 
average of A B  is given by 

( A l l ) = +  Re(&*%)=+ Re(&%*). 

2.2-In certain cases the process of absorption of radiation can be 
treated by means of the macroscopic Maxwell equations. For example, 
suppose we have a conducting medium, so that the current density j is 
related to the electric field E by Ohm's law: 

j = uE, 

where u is the conductivity (cgs unit = sec-'). Investigate the propagation 



of electromagnetic waves in such a medium and show that: 

a. The wave vector k is complex 

where m is the complex index of refraction, defined by 

m 2 = p  ( I + -  43. 
b. The waves are attenuated as they propagate, corresponding to an 

absorption coefficient 

2w 
a, = - Im( m). 

C 

(Note: In some literature, minus signs appear in these formulas. This is 
because the wave is often taken to be exp( - ik-r + iwt) rather than the 
exp(ik*r - i d )  chosen here.) 

2.3-This problem is meant to deduce the momentum and angular 
momentum properties of radiation and does not necessarily represent any 
real physical system of interest. Consider a charge Q in a viscous medium 
where the viscous force is proportional to velocity: Fvisc= - pv. Suppose a 
circularly polarized wave passes through the medium. The equation of 
motion of the change is 

We assume that the terms on the right dominate the inertial term on the 
left, so that approximately 

Let the frequency of the wave be o and the strength of the electric field be 
E .  

a. Show that to lowest order (neglecting the magnetic force) the charge 
moves on a circle in a plane normal to the direction of propagation of 
the wave with speed Q E / P  and with radius Q E / P w .  
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b. 

C. 

d. 

e. 

f. 

g. 
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Show that the power transmitted to the fluid by the wave is Q 2 E 2 / f l .  

By considering the small magnetic force acting on the particle show 
that the momentum per unit time (force) given to the fluid by the wave 
is in the direction of propagation and has the magnitude Q 2 E 2 / P c .  

Show that the angular momentum per unit time (torque) gven to the 
fluid by the wave is in the direction of propagation and has magnitude 

? Q 2 E 2 / P w ,  where (k) is for (Fit) circular polarization. 

Show that the absorption cross section of the charge is 47rQ2/pc, 

If we now regard the radiation to be composed of circularly polarized 
photons of energy Ey=Ao,  show that these results imply that the 
photon has momentum p =?ik = h / A =  E y / c  and has angular momen- 
tum J = * A  along the direction of propagation. 

Repeat this problem with appropriate modifications for a linearly 
polarized wave. 

2.4-Show that Maxwell’s equations before Maxwell, that is, without the 
“displacement current” term c - ‘aD/at, unacceptably constrained the 
sources of the field and also did not permit the existence of waves. 
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