
RELATIVISTIC COVARIANCE 
AND KINEMATICS 

4.1 REVIEW OF LORENTZ TRANSFORMATIONS 

The special theory of relativity is based on two postulates: 

1. The laws of nature are the same in two frames of reference in uniform 

2. The speed of light is c in all such frames. 

relative motion with no rotation. 

Let us consider two frames K and K‘, as shown in Fig. 4.1, with a 
relative uniform velocity u along the x axis. The origins are assumed to 
coincide at t =O. If a pulse of light is emitted at the origin at t “ 0 ,  each 
observer will see an expanding sphere centered on his own origin. This is a 
consequence of postulate 2 and is inconsistent with classical concepts, 
which would have the sphere always centered on a point at rest in the 
“ether.” The reconciliation of this result requires us to view both space and 
time as quantities peculiar to each observer and not universal. Therefore, 
we have the equations of the expanding sphere in each frame 
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Figure 4.1 Two inertial fmmes with a relatioe uelocity u along the x axis. 

where t‘ does not equal t ,  as in Newtonian physics. The actual relations 
between x y z t and x’ y’ z’ t’ can be deduced by fairly elementary means if 
some further postulates (homogeneity and isotropy of space) are in- 
troduced. The result is  called the Lorentt transformation : 

x’ = y ( x  - ut) 

Y“Y 
z ’ = z  

t ’ = y  t - - x ,  ( 3 

(4.2a) 

(4.2b) 

(4.2~) 

(4.2d) 

where 

(4.2e) 

The inverse of this transformation is easily found: 

x = y ( x ’ +  ut’), y =y’ 

z = z ‘ ,  t = y  t ’ + - x ’  . ( cv2 1 
It should be noted that this inverse has the same form as the original 
except that the primed and unprimed variables are interchanged, and u is 
replaced by - u .  

Since space and time are both subject to transformation, the basic unit is 
now an event, specified by a location in space and by its time of oc- 
currence. Lorentz transformations always refer to events. 
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We now consider some elementary consequences of Lorentz transforma- 
tions. 

1. Length Contraction (Lorentz-Fitzgerald Contradon) 

Suppose a rigid rod of length Lo = x i  - xi  is camed at rest in the frame K'. 
What is the length as measured in K? This length is equal to L = x 2 - x , ,  
where x2 and x ,  are the positions of the ends of the rod at the same time t 
in the frame K. Thus we have the result 

The rod appears shorter by a factor y- '=(I  - u ~ / c ~ ) ' / ~ .  The effect is 
really symmetric between the two observers. If the rod were carried by K ,  
then K' would see its length contracted. How then can both take place 
together? If both carry rods (of the same length when compared at 
rest-say, meter sticks) each thinks the other's rod has shrunk! The point 
here is that each observer would object to the manner in which the other 
has carried out the measurement, since it would appear to each that the 
two ends of the moving stick were not marked at the same time by the 
other observer. This accounts for the apparent lack of symmetry implied 
by the contraction. (Since the Lorentz transformation of time depends on 
position, temporal simultaneity is not Lorentz invariant.) 

2. Time Dilation 

Suppose a device (clock) at rest at the origin of K' measures off an interval 
of time To= t i -  t i .  What is the interval of time measured in K? Note that 
in K', the device moves so that x' = 0. Thus we obtain 

The interval measured has increased by a factor y = (1  - u 2 / c 2 ) -  so 
that the moving clock appears to have slowed down. Again, the effect is 
symmetrical between the two observers: K' thinks clocks in K have slowed 
down, too. The resolution of this apparent contradiction is again a result of 
looking at the manner of measuring an interval of time between two events 
separated in space. K measures t ,  as the moving clock passes x , ,  then 
measures t, as it passes x2; he simply subtracts t 2 -  t ,  on the assumption 
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that his own two clocks at x 1  and x2 are synchronized. K’ will object to this, 
since according to his observations the two clocks in K are not synchro- 
nized at all. 

In both the time-dilation and length-contraction effects we can see the 
powerful role played by the questions of synchronization of clocks and of 
the whole concept of simultaneity. Many of the apparent contradictions of 
special relativity are simply a result of the relativity of simultaneity between 
two events separated in space. 

3. Transformation of Velocities 

If a point has velocity u’ in frame K‘, what is its velocity u in frame K (Fig. 
4.2)? Writing Lorentz transformations for differentials [cf. Eqs. (4.2)] 

dx=y(dx’+udt ’ ) ,  &=&’ 

dz = dz‘, 

We then have the relations 

u; + u - =-= dx y(dx’+udt’)  - 
dt y (dt ’+udx’ /c* )  1 +uu; /c2  ’ 

a; 

4 
!v = y( 1 + uu;/c’) ’ 

y( 1 + uu:/c’) . 
u, = 

(4.5a) 

(4.5b) 

(4.52) 

K 

Figure 4.2 Lorentt tramformation of wlocitks. 



The generalization of these equations to an arbitrary velocity v, not 
necessarily along the x axis, can be stated in terms of the components of u 
perpendicular to and parallel to v: 

The directions of the velocities in the two frames are related by the 
aberration formula, 

where u’=lu’l. The azimuthal angle cp remains unchanged. An interesting 
application is for the case u’ = c,  where 

sin 9’ 
tan8= 

y(cos9’+ u / c )  ’ 

COS9’+ u / c  
1 + (./C) cos9’ * 

cos 8 = 

(4.8a) 

(4.8b) 

Equations (4.8) represent the aberration of light. 

to u in K‘. Then we have 
It is instructive to set 8’ = n/2,  that is, a photon is emitted at right angles 

C 
tanB= - 

YV ’ 
1 

Y 
sin8= - .  

(4.9a) 

(4.9b) 

Now for highly relativistic speeds, y>> 1, 8 becomes small: 

(4.10) 
1 

Y 
e - - .  

If photons are emitted isotropically in K‘, then half will have 8’ <77/2 and 
half 9‘>n/2 (see Fig. 4.3). Equation (4.10) shows that in frame K photons 
are concentrated in the forward direction, with half of them lying within a 
cone of half-angle l /y .  Very few photons will be emitted having B>>l/y. 
This is called the beaming effect. 
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h ’  h 

Figuw 4.3 
frrune K’. 

Relativistic beaming of mdiation emitted isotmpically in the rest 

4. Doppler Effect 

We have seen that any periodic phenomenon in the moving frame K’ will 
appear to have a longer period by a factor y when viewed by local 
observers in frame K. If, on the other hand, we measure the arrival times of 
pulses or other indications of the periodic phenomenon that propagate 
with the velocity of light, then there will be an additional effect on the 
observed period due to the delay times for light propagation. The joint 
effect is called the Doppler effect. 

In the rest frame of the observer K imagine that the moving source 
emits one period of radiation as it moves from point 1 to point 2 at 
velocity u. If the frequency of the radiation in the rest frame of the source 
is o’ then the time taken to move from point 1 to point 2 in the observer’s 
frame is given by the time-dilation effect: 

Now consider Fig. 4.4 and note I =  o h t  and d =  v At cose. The difference in 
arrival times AtA of the radiation emitted at 1 and 2 is equal to At minus 
the time taken for radiation to propagate a distance d. Thus we have 

Therefore, the observed frequency w will be 

277 w’ w= - = (4.1 1) 

This is the relativistic Doppler formula. The factor y - ’  is purely a 
relativistic effect, whereas the 1 -(u/c)cosB factor appears even classi- 
cally. One distinction between the classical and relativistic points of view 
should be mentioned, however. The classical Doppler effect (say, for sound 
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Observer 

Figwe 4.4 Geometty for the Doppler effect. 

waves) requires knowledge not only of the relative velocity between source 
and observer but also the velocities of source and observer relative to the 
medium (say, air) carrying the waves. The relativistic formula has no 
reference to an underlying medium for the propagation of light, and only 
the relative velocity of source and observer appears. 

We can also write the Doppler formula as 

(4.12a) 

It is easy to show that the inverse of this is 

(4.12b) 

5. Proper Time 

Although intervals of space and time are separately subject to Lorentz 
transformation and thus have differing values in differing frames of 
reference, there are some quantities that are the same in all Lorentz frames. 
An important such Lorentz invariant is the quantity dr defined by 

C’ dT2 = C’ dt2 - ( dx2 + 4’ + dz’). (4.13) 
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This is called the proper time element between the events differing by 
dx,dy,dz in space and dt in time. It is easily shown from Eqs. (4.2) that dr 
is left unchanged under Lorentz transformations, dr = dr'. 

The quantity dr is called a proper time interval, because it measures time 
intervals between events occumng at the same spatial location (dx = dy = 
dz = 0), that is, ticks of clocks carried by an observer, which measure his 
own time. 

If the coordinate differentials refer to the position of the origin of 
another reference frame traveling with velocity u, then 

(4.14) 

Equation (4.14) is just the time dilation formula (4.4) in which dr is the 
time interval measured by the observer in motion. 

4.2 FOUR-VECTORS 

We could continue to find Lorentz transformation properties of physical 
quantities using ad hoc methods, as in the preceding sections. However, a 
great deal of order can be brought to this task by introducing the concept 
of four-vectors. A four-vector has transformation properties that are identi- 
cal to the transformation of coordinates of events [Eq. (4.2)]. Once it is 
established that a certain quantity is a four-vector, its transformation 
properties are fully defined. Most physical quantities can be related to 
four-vectors or to their generalizations-the tensors. It is easy to construct 
invariants from vectors and tensors, and in ths  way a physical result can 
often be obtained without using the Lorentz transformation at all. 

The squared length of the three-dimensional vector x, namely, x2+y2+ 
z2 ,  is an invariant with respect to three-dimensional rotations. By analogy, 
the invariance of the quantity s2 = - c 2 ~ 2  = - c2t2 + x 2  + y 2  + z2 suggests 
that the quantities x, y ,  I and t can be formed into a vector in a 
four-dimensional space, and that Lorentz transformations correspond to 
rotations in this space. Let us define 

x0=ct  

x ' = x  

x2=y 

x3 = z .  

(4.15) 
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The quantities xp for p=O, 1,2,3 define coordinates of an event in space- 
time. Just as x, y ,  and z form the components of a three-dimensional 
spatial vector x, we shall say that xp are the components of a four-dimen- 
sional space-time vector 2, or simply a four-uector. 

The fact that the expression for s2  contains a minus sign in front of c2t2 
means that space-time is not a Euclidean space; it is a special space called 
Minkowski space. Such a space can be handled in two ways, either by 
including \r-1 in the definition of the time component or by the 
introduction of a metric. Although the former method has some simplify- 
ing features, the latter method lends itself to the transition to general 
relativity, and so we adopt i t  here. Once the notational difficulties of the 
metric approach are mastered, it is not much.more complicated than the 

Let us define the Minkowski metric. In Cartesian coordinates, the 
approach. 

components of TJ,,, are: 

-1, i fp=v=O 
+ 1, if p = v =  1,2,3 (4.16a) 

0 if p # v .  

The distinction between superscripted and subscripted indices is explained 
shortly. The metric T J ~  can be presented as the 4 X 4 array (matrix): 

( - 1  0 0 0 )  
(4.16b) 

1 0 0 0 1 1  

Note that this metric is symmetric: 
+ y 2 +  zZ can now be written in terms of the metric: 

= qvp. The invariant s2= - c2r2 + x2 

3 3  

p=o u = o  
s2=  ql,*xPx” (4.17a) 

An important and beautiful notational advance (originated by Einstein) 
is the summation convention: In any single term containing a repeated 
Greek index, a summation is implied over that index with values 0, 1, 2, 
and 3. Therefore, we can write Eq. (4.17a) without the summation signs, 
since both p and v are repeated, once in q,” and then in xp or x”: 

s z =  TJ,,”XPX”. (4.17b) 
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We shall henceforth use the summation convention unless otherwise 
stated. 

A few remarks should be made about the summation convention. Since 
a repeated index is summed over, its exact designation is irrelevant. 
Therefore, it is often called a dummy index, and any Greek letter can be 
used for it. Equation (4.17b) can also be written s2=771+xLIxT, for example. 
Another point is that an index cannot be repeated more than twice in a 
single term; for example, the combination qwx” is regarded as meaning- 
less. 

An equivalent way to use the Minkowski metric is to define another set 
of components of the vector 2, denoted by x,,, where 

x g =  - ct, 
x ,  = x ,  

x ,=y ,  
x 3 = z .  

(4.18) 

These differ from the superscripted components x p  only in the sign of the 
time component. The superscripted components are called the con- 
travariant components, and the subscripted components are called the 
covariant components. The relation between the two can be written 

(4.19a) 

(4. I9b) 

Thus the metric can be used to raise or lower indices. Now the invariant s2 
can be written simply 

(Summation on indices occurs only between contravariant and covariant 
indices. As we show later, this ensures Lorentz invariance.) 

The Lorentz transformation (4.2) (corresponding to a boost along the x 
axis) can be written simply in terms of a set of coefficients defined by the 
array (with p =u/c) 

Y - P Y  0 0 
= 

0 0 1 0  
0 0 0 1  

(4.20) 
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Then Eq. (4.2) can be written 

x’r= APyx *. (4.21) 

In fact, any arbitrary Lorentz transformation in Cartesian coordinates can 
be written in the form (4.2 l), since the spatial three-dimensional rotations 
necessary to align the x axes before and after the boost are also of linear 
form. The coefficients A”, of such an arbitrary Lorentz transformation 
will, in general, not be given by Eq. (4.20), but will be more complicated. 

The transformation law (4.21) defines the transformation of the con- 
travariant components of the vector 2. Since the transformation must leave 
the quantity s2 invariant, we must have 

This can be true for arbitrary x p  only if 

This equation can be regarded as the condition on the coefficients App  that 
yields the most general kind of Lorentz transformation, The transforma- 
tions of interest to us are of a more restrictive nature, however. Note that 
Eq. (4.22) can be written in matrix form as q=hTqA, where AT is the 
transpose matrix of A. Taking determinants of this yields the result that 
det A = 5 1. We restrict ourselves to proper Lorentz transformations, for 
which 

detA= + 1 .  (4.23a) 

This rules out reflections, such as x+ - x, that would change a right- 
handed coordinate system into a left-handed one. We also assume isochro- 
n o u ~  Lorentz transformations, for which 

A’,> 1, (4.23b) 

so that the sense of flow of time is the same in K and K‘. Note that the 
boost (4.20) satisfies both (4.23a) and (4.23b). 

The transformation of the covariant components xp of the vector can be 
deduced from Eq. (4.19b) and (4.21): 

., XI = Ap”xv (4.24) 
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where the coefficients A,‘ are simply related to the APy by 

- 
A,” = qpJraqav. (4.25) 

From the invariance of s2 = x ”x, we easily deduce 

A$iaP = Y )  (4.26) 

where we have introduced the Kronecker-S: 

1 p = v  
S P n = {  0: pfv .  

(4.27) 

These are the components of the 4 X 4 unit matrix, which accounts for the 
substitution property of S p y :  For any arbitrary quantity Q” we have 

Note the useful result 

77?,” = 8,”. (4.28) 

Multiplying Eq. (4.21) by A,d and using Eq. (4.26) yields the inverse 
transformation: 

- 
x a = APax‘,. (4.29) 

Everything so far has referred to the vector x’ alone. We now wish to 
define a general four-vector A’ as having four contravariant components A P 
in each Lorentz frame, such that the transformation of components be- 
tween any two frames is given by the same transformation law as applies 
to x”, namely, Eq. (4.21): 

A ’ P = A a Y A Y .  (4.30) 

The covariant components of A’ are found from the equation analogous to 
Eq. (4.19a), 

A,  = -q,“A ”. (4.3 1) 

These transform according to 
- 

A,’, = A,”A,. (4.32) 
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Let us 
which 
yields, 

consider another four-vector B’ having covariant components B,,, 
transform llke B; = &“B,. Multiplying this equation by Eq. (4.30) 
with the use of Eq. (4.26), 

A ~ ~ B ~ = A ~ ~ , ; ~ , , ~ A ~ B , = s ~ ~ A ~ B , = A ~ B , .  

Thus the scalar product of A’ and B, 

is a Lorenit invariant or scalar. In particular, the “square” of a vector 
A’ = A PA,, is an invariant. Thus our starting point, the invariance of x”, is 
seen to be a general property of four-vectors. We should point out that in 
Minkowski space, where the metric is not wholly positive, it is possible for 
the “square” of a four-vector to be positive, zero, or even negative; these 
possibilities are associated with what are called, respectively, a spacelike, 
null, or timelike four-vector. 

The zeroth component of any four-vector A is called the time-component 
A’, while the first, second, and third form an ordinary three-vector A, 
called the space-components. Often it is convenient to use latin indices to 
describe the space part, so that these always range over the values 1,2, and 
3. For example, we write 

- -  
A . B =  - A O B O + A . B =  - A O B O + A ‘ B ; .  (4.34) 

Three-vectors are always denoted by a boldfaced symbol, whereas four- 
vectors are denoted by an arrow over the symbol. It should be understood, 
however, that the division of a four-vector into spatial and time compo- 
nents is dependent on the coordinate system. It  is clear that a boost will 
mix these parts, although spatial rotations will not; for this reason the 
division will only depend on the velocity of the frame of reference but not 
on its orientation. 

Let us introduce some physically interesting four-vectors other than the 
prototype 2. First of all we see that the difference between the coordinates 
of two different events xf - xp is also a vector, since each term transforms 
by the same linear transformation. In particular, the difference between 
two infinitesimally neighboring events dx” constitutes a four-vector. Divid- 
ing now by the invariant dr clearly also yields a four-vector, thefour-ueloc- 
ily c, for which 

(4.35) 
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The zeroth component of this is 

(4.36a) 

where y, = (1 - u 2 / c 2 ) -  ‘ I 2 ,  and u is the magnitude of the ordinary velocity 
u = dx/dt .  The spatial components are 

dx‘ 
dr 

U’= __ = y, u i. (4.36b) 

We may write 

G= Yu( ;). (4.37) 

Thus the spatial part of 6 is y, times the ordinary velocity, whereas the 
time component is y, times c. In this way we have promoted the ordinary 
velocity into a four-vector. The transformation of Up under the boost 
(4.20) is 

U’O= y(  UO- PU’) ,  

u” = y( - DUO+ ul), 
(/‘2= u=, 
U’3= u’* 

With the above definitions we have 

Y,,C = Y( C Y ,  - P Y P  1 )7 

yu.u’I = y( - Pcy, + y u u l ) ,  

yu,u’2 = y,u 2 , 

y,d3 = y,u 3 . 

The first two of these are 

y,, = YY,( 1 - uu1/c2), 
y,.u” = yy,( u 1 - u ) .  

(4.38a) 

(4.38b) 

Since ul=ucosO, we obtain the transformation for speed in terms of the 
y’s: 

(4.39) 
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Dividing (4.38b) by (4.38a) yields the previously derived formula (4.5a): 

u ’ - u  ur’ = 
1 - vu ’ /c2  . 

The “length” of 6 is found from 

which is clearly Lorentz invariant. 

the ordinary velocity u vanishes (the rest frame). In that case, we have 
The four-velocity takes a particularly simple form in a frame in which 

(4.41) 

Only the time component is nonzero. This property makes I? a useful tool 
in picking out the time componznt of an arbitrary vector as measured by 
an observer with four-velocity U :  

1 
A’o= - - C 

- +  

But since U,A’P= U.A is an invariant, we can write generally 

(4.42) 

where U.2 can be evaluated in any convenient frame, not necessarily the 
rest frame. Two examples of this formula can be checked immediately: 
First, set A= c, and we obtain the trivial result U’O= c. Set 2=2, and we 
find 

1 - -  A “ =  - - U - A ,  
C 

1 dx” 1 d  
c P dr 2c dr 

x j o =  - - x  __ = - - - ( x  x ” )  

1 d  
2c dr 

= - -  - ( - c2 r2 )=c r ,  

which is correct, since the proper time is physically 
clock in the rest frame. 

equal to the time of a 
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Another four-vector can be introduced by the following indirect argu- 
ments: An electromagnetic wave of plane type has space and time depen- 
dence proportional to exp(ik-x- i d ) .  The phase of this wave must be an 
invariant to all observers, since the vanishing of the electric and magnetic 
fields in one frame implies their vanishing in all frames. (A charged 
particle moving on an unaccelerated straight-line trajectory in one frame 
must have such a trajectory in all frames, by the relativity principle.) 
Notice that we may write 

- 
k . x - at = k,x = k-2 ,  

where 

k"=(  "k/'). (4.43) 

It can be shown easily that sinse the product < e x '  is an invariant and x' is 
an arbitrary four-vector, then k Tust be a four-vector also. Therefore, we 
can write the transformation for k immediately 

k'O=y(kO-/?k'), 

k" = y( - pko+ k ' ) ,  

kP2 = k2, 

kf3 = k31 

(4.44a) 

(4.44b) 

( 4 . M )  

(4.444 

Since IkJ = w / c  for electromagnetic waves, we have k' = (w/c)cosf?, so that 
the zeroth component of the transformation reduces to the Doppler 
formula 

w'=wy 1- -cos8 . (4.45) 
( c  " 1  

Another way of deriving (4.45) is to apply (4.42) with A = k" 
Note that k' is a null vector, since 

(4.46) 

where the last quantity vanishes by Eq. (2.20a). 
The construction of four-vectors is by no means an automatic proce- 

dure, as our experience so far has shown. In two cases ( x p  and k")  we have 



simply used a known three-vector for the spatial part and added an 
appropriate time component. In one case ( U p )  we had to multiply by an 
appropriate factor y, to make the resultant a four-vector. In some cases to 
be treated presently (electric and magnetic fields) there is no four-vector 
that corresponds to a given three-vector. The systematic construction of 
four-vectors is best accomplished by means of temur analysis, which we 
now consider. 

4.3 TENSOR ANALYSIS 

We are already familiar with some kinds of tensors: A zeroth-rank tensor is 
precisely what we have been calling a Lorentz invariant or Lorentz scalar. 
A first-rank tensor is precisely what we have been calling a four-vector. 

Let us now define a second-rank tensor. The contravariant components 
of such a tensor, say T, are given by the sixteen numbers T p y ,  where, as 
usual, p and v take on the values 0, 1, 2, and 3. The defining transforma- 
tion properties of T are given by 

T'Pw= Afi,r,T"'. (4.47) 

We can define an associated set of covariant components Tpy by lowering 
indices with the Minkowski metric 

It is easy to show that these components transform as 

It is also possible to define mixed components such as 

(4.48) 

(4.49) 

(4.50) 

These have the transformation properties 

= A P ~ ; I , , ~ T ~ ~ ,  (4.51a) 

T', , '=ApaKrTaT. (4.5 1 b) 
- 

The position of the tensor index, as a superscript or subscript, determines 
whether it is contravariant or covariant in its transformations. 
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Since second-rank tensors are perhaps less familiar than vectors, let us 
give several examples: 

1. The sixteen quantities A’B“, formed from the components A P  and B‘ 
of two vectors. This can be proved by multiplying the transformation 
laws for the vector components: 

This is precisely of the form (4.47). 

second rank 7)’’” transform by 
2. The Minkowski metric qP”. The transformation of components of the 

By comparison with Eq. (4.26), q’ap= q a p .  Thus qap has the same 
components in all frames, as we have assumed. 

3. The Kronecker-delta 13;. A proof similar to the preceding one for the 
metric can be given starting with Eq. (4.26). This shows that 8: forms 
the components of a mixed second-rank tensor. 

Higher-rank tensors can be defined in a similar fashion. The transform?- 
tion law involves a factor A for each contravariant index and a factor A 
for each covariant index. 

There are a number of simple and useful rules of tensor analysis that can 
be used to form tensors from other tensors: 

1. Addition. Two tensors of the same type, having the same free indices, 
can be added to form another tensor of that same type. Examples: 
AP+ BP; FP,+ GPv.  The proof follows from the linearity of the trans- 
formations. 

2. Multiplication. Given two tensors having distinct free indices, multi- 
plication will yield a tensor of rank equal to the sum of the ranks of 
the two tensors. Examples: A @By is a second-rank tensor; also F’”’G,, 
is a fourth-rank tensor. The general proof follows the lines outlined 
above for A ”B ”. 

3. Raising and Lowering Indices. The Minkowski metric can be used to 
change contravariant indices into covariant ones, and vice versa, by 
the processes of raising and lowering. For example, see Eqs. (4.19), 



(4.31), and (4.48). The proof of this result depends on the results 
I 

qpAPa = Av‘TTa, (4.52a) 

7 ) p i i C L o =  Ay,7)ro, (4.52b) 

which follow from Eqs. (4.25) and (4.28). This means the lowering 
operator q,, in commuting with the Lorentz transformation 
coefficients A, changes them to A, and this changes a contravariant 
index into a covariant one. A similar statement holds for the raising 
operator 7)””. 

4. Contraction. Consider a tensor having at least two indices, one of 
which is contravariant and the other covariant. If these two indices are 
set equal, implying a summation over that index, then the result is a 
tensor of rank two less. Examples: The scalar product of two vectors 
AJ’B,, can be regarded as the contraction of the second-rank tensor 
APB”. If TP”, is a third-order tensor, then Tw,  is a vector. Note that 
contraction can be used more than once in a single term. Thus starting 
with the fourth-rank tensor Fp“GaT we can form the invariant FpGp. 
Let us prove this property of contraction for the above example of 
Tp,. From the transformation law for T p ,  we obtain 

But A“&;=iS; [cf Eq. (4.26)], so that 

showing that TPYy is indeed a vector. The general proof of this property 
follows along similar lines. 

5. Gradients of Tensor Fields. A tensorfield is defined as a tensor that is a 
function of the spacetime coordinates xo,x1,x2, x3. Then the gradient 
operation a/ax” acting on such a field produces a tensor field of one 
higher rank with p as a new couariant index. A convenient notation for 
the gradient operation is a comma followed by the index p. Thus, for 
example, if h is a scalar, then h,,-aA/axp is a covariant vector. 
Similarly T””,, = a+‘”/axa is a third-rank tensor. We shall prove this 
rule for the special case of the vector field A”. Differentiating the 
transformation 

gives 

A’” = Ap,A 
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where we have used Eq. (4.29) to evaluate ax*/W“. This is recognized 
as the transformation for a second-rank tensor with contravariant 
index p and covariant index Y. Note that we have assumed that the 
components of A are constant, a result in Cartesian coordinate systems 
but not in general (e.g., spherical) coordinate systems. In non-Carte- 
sian systems, partial derivatives do not form the components of a 
tensor. 

The above rules of tensor analysis are extremely useful in practice. Once 
they have been mastered they become almost automatic; the notation itself 
almost provides sufficient guidance as to the correct forms. In this regard 
we note that although the summation convention allows summation over 
any two indices, only when it involves a subscript-superscript pair is the 
result assured as a tensor. (See Problem 4.5.) Thus we have always been 
careful to define quantities with superscripts and subscripts in such a way 
as to satisfy this requirement. 

Some further definitions concerning tensors follows: Tensors of second 
rank TP are symmetric or antisymmetric if T p =  TvP or if T p =  - T’P, 
respectively. The divergence of a tensor field is a gradient followed by a 
contraction of the gradient index with one of the other contravariant 
indices; For example, A”,,rdivergence of the vector A ” ;  TI”,‘= 
divergence of the tensor T“. 

A tensor equation is a statement that two tensors of the same rank and 
type are equal. A fundamental property of a tensor equation is that if it is 
true in one Lorentz frame, then it is true in all Lorentz frames. This is clearly 
true, since each side transforms in the same way. For this reason tensor 
equations automatically obey the postulate of relativity, which makes them 
an ideal way to state the laws of nature. ms property of the equations of 
physics under Lorentz transformation is called inuariunce of form or 
Lorentz covariance or simply covariance. (This use of the word “covari- 
ance” has nothing to do with covariant components of tensors.) Covari- 
ance plays a powerful role in helping decide what the proper equations of 
physics are; in the next section we see this role clearly. 

4.4 COVARIANCE OF ELECTROMAGNETIC PHENOMENA 

It is empirically found that Maxwell’s equations are valid in all Lorentz 
frames. The two parameters that enter Maxwell’s equations and the 
Lorentz force equation are c and e, the velocity of light and charge, 
respectively. If Maxwell’s equations are to be Lorentz invariant in form, 
then c and e must be Lorentz scalars; c is invariant by one of the 



126 Rehtivistic CmMriance and Kinematics 

postulates of special relativity. Also, it is an empirical fact that e is 
invariant. If p is a charge density, then de=pdx,dx,dx, is a Lorentz 
invariant. But the four-volume element dx,dx, dx2dx, is an invariant, since 
the Jacobian of the transformation from x,, to x,’, is simply the determinant 
of A, which has been shown [Eq. (4.23a)I to be unity. Thus p must 
transform in the same manner as the zeroth component of a four-vector. 

To find the other three components, note that the equation of charge 
conservation 

a p  
at 
- +V*j=O 

can be written as a tensor equation, 

where Jhas components 

j M = (  7 ) .  

(4.53) 

(4.54) 

This four-vector is called the four-current. 

Lorentz gauge, Eqs. (2.66): 
We next look at the set of vector and scalar wave equations in the 

If we define the four-potential 

A . = (  ;), 
then the wave equations may be written as the tensor equations 

The Lorentz gauge 

(4.55) 

(4.56) 

1 a+ 
at  

V *A+ - - = O ,  
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should be preserved under Lorentz transformations, since it was used to 
obtain the tensor equations (4.56). Indeed, it can be written as a scalar 
equation, 

A a,a = 0. (4.57) 

What is the tensor representing the fields themselves, E and B? Since 
these fields are obtained from derivatives of A and +, they should be 
expressible in terms of derivatives of the four-potential A, ,u .  Since E and B 
have six components all together, we consider the antisymmetric tensor 

because a rank two antisymmetric tensor has exactly six independent 
components. From the relationship between the fields and potentials, 
(2.58) and (2.60), we may write the components as 

To check that Fp is the object we want, let us see that it can be used to 
write Maxwell’s equations in tensor form: The two Maxwell equations 
containing sources, 

1 aE 477 
c at c 

V*E=477p, V x B - - - = - j  

can be written as 

(4.60) 

as can easily be checked. Note that Eq. (4.53), (4.56), (4.57), and (4.60) all 
involve tensor divergences. The conservation of charge, Eq. (4.53), easily 
follows from Eq. (4.60): 

where the last relation follows from the fact that 
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The “internal” Maxwell equations, 

1 aB 
V*B=O, V x E +  - - =O, 

c at 

can be written as 

F,, (I + Fop, v + F ” ,  p = 0. (4.6 1 a) 

This equation can be written concisely as 

F[ ,,(I] = 0, (4.6 1 b) 

where [ I  around indices denote all permutations of indices, with even 
permutations contributing with a positive sign and odd permutations with 
a negative sign, for example, 

Using the same notation, we can write 

F, = A [ v , p l .  (4.63) 

Since F is a second-rank tensor, its components transform in the usual 
way, that is, 

Y 

I... 

F;” = A/F,,  . (4.64) 

Using this transformation law and the definition of Fpv we obtain the 
transformation law for the fields E and B. For a pure boost with velocity 
v = cfl, these equations can be written in the form: 

EC = Ell B;l = BII (4.65a) 

E;=y(E,  +PxB) B ; = y ( B L - f l ~ E ) .  (4.65b) 

One immediate consequence of these equations is that the concept of a 
pure electric or pure magnetic field is not Lorentz invariant. If the field is 
purely electric (B=O) in one frame, in another frame it will be, in general, 
a mixed electric and magnetic field. Thus the general term electromagnetic 
field. 

Any scalar formed from F, represents a function of E and B which is a 
Lorentz invariant. One such scalar is just the dot product of F with itself, 
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or “square” of F 

FPy Fw = 2(B2 - E2). (4.66) 

Thus BZ - EZ = B” - E’’ is invariant under Lorentz transformations. 
Another scalar which can be obtained from F is just the determinant of F: 

detF= (EoB)~.  (4.67) 

Thus E . B = E . B  is also an invariant. It is easy to show that the determi- 
nant of any second-rank tensor is a scalar, since 

det AaP = det A;K,.K,” = (det X)’det A;” 

= detAL,. 

4.5 
TRANSFORMATIONS 

A PHYSICAL UNDERSTANDING OF FIELD 

It is sometimes useful to understand Lorentz transformations of quantities 
in terms of a piecemeal intuitive approach, as well as in terms of the 
elegant language of tensor transformations. For example, by means of a 
simple physical model we can derive the transformation of the electromag- 
netic fields E and B represented in Eqs. (4.65) for the case of an initially 
pure electric field (B=O). Consider a charged capacitor with plates per- 
pendicular to the x axis in its rest frame K‘. Let CJ be the surface charge 
density (esu/cm’). Then it is known that the electric field inside is E=47ru, 
independent of the separation of the plates d and has a direction normal to 
the plates. 

In frame K’ the capacitor is moving with velocity u and the plates are 
separated by d /  y. The surface charge density is unchanged IJ ’ = a, because 
the net charge on a surface element is invariant, and the surface area of the 
element is also invariant, because the y and z components are unchanged. 
Since the field depends only on surface charge density and not on plate 
separation we have E‘=  E, so that in general we have 

as we had previously found. 
Now consider the capacitor turned so that the plates are perpendicular 

to they axis. The charge density o is now increased by a factor y because 
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of length contraction, and we also have a surface current density of 
magnitude p‘ = - u‘u, which gives rise to a magnetic field in the z direction 
of magnitude B,’= -(4r/c)p‘. Thus for this case we have 

EL=yEI,  B;= -yPXE,.  

It is also possible to treat the case of an initially pure magnetic field by a 
similar model, and thus to derive Eqs. (4.65) by superposition. However, 
we omit the details here. 

4.6 FIELDS OF A UNIFORMLY MOVING CHARGE 

Let us apply Eqs. (4.65) to find the fields of a charge moving with constant 
velocity u along the x axis. In the rest frame of the particle the fields are 

where 

The inverse of the transformation of the fields Eq. (4.65) is simply found 
by intercharging primed and unprimed quantities and reversing the sign of 
u. Then it follows that 

These are given in terms of the primed coordinates. We can Lorentz 
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transform the coordinates to give 

qyz E =- 
I r3 

(4.68) 

where 

r3  = [ y 2 ( x  - ut)2 + y 2  + z2I3l2. 

Now, we may show that Eqs. (4.68) are precisely what one obtains from 
the fields given by the Litnard-Wiechert potentials Eqs. (3.7a) and (3.7b). 
To do this, let us first find where the retarded position of the particle is. 
For simplicity, assume z = 0. Then we have (Fig. 4.5) 

R t = t - -  
C 

re t 

2 R 2 = y 2  + (X - orret) 

=y2+ x - v t + -  ( uR C )2 
Solving for R ,  we obtain 

R = y"z+ y (  y2+ y 2 x 2 ) 1/2 , 

Eigutv 4.5 Ewiuation of the mdiationfidd from the mtamkd position of the 
particle. 
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where 

x - x  - vt.  

We can write the unit vector n as 

~9 + ( x - ut + V R  / c)ZZ 
R 

n= 

and K as: 

Thus we have the result 

4 YR4 -= 
Y2R2K3 ( y 2 + y x  2-2 ) 3/2 ’ 

(4.69a) 

(4.69b) 

Using Eqs. (4.69a) and (4.69b), and Eq. (4.68), we find that 

which is identical to the field components of Eq. (3.10). 
An important application of these results is the case of a highly relativis- 

tic charge, y > l .  For simplicity, let us choose the field point to be a 
distance b from the origin along the y axis; this involves no loss in 
generality (see Fig. 4.6). Then we have the results 

E X = - guyt B,=O 
( y2u2r2 + b2)3 /2  

E, = 9Yb By=O 
( y2u2t2 + b2)3/2 

(4.70a) 

(4.70b) 

E, = O  B, = BE,. (4.70~) 

For large y we have 1 and E,wB,.  In Fig. 4.7 Ex and E, are plotted as 
functions of time. We see that the fields are strong only when t is of the 
same order as b / y u .  This means that the fields of the moving charge are 



Y 

.f 

concentrated in the plane transverse to its motion, in fact, into an angle of 
order l /y.  The fields are also mostly transverse, since Ex is at maximum 
only of order q / b Z .  Therefore, the field of a highly relativistic charge 
appears to be a pulse of radiation traveling in the same direction as the 
charge and confined to the transverse plane. This connection between the 
fields of a highly relativistic charge and an associated radiation field is an 
important one and is used in the method of virtual quanta, to be discussed 
in Chapter 5 .  

Figww 4.7 Tk-dependenc4 of fields fnom a parti& of myom high wkity. 
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We can determine the equivalent spectrum of this pulse of virtual 
radiation. First we must find the transform 

I 
2 a  

k ( w )  = - 1 E2( t )  eiwr dt 

(4.7 1) 

This integral can be done in terms of the modified Bessel function of order 
one, K,: 

(4.72a) 

Thus the spectrum is 

(4.72b) 
d W  
dA d o  

The spectrum starts to cut off for w > y u / b ,  which we could have predicted 
on the basis of the uncertainty principle, since the pulse is confined 
roughly to a time interval of order b / y u .  In fact, the complete behavior of 
&a) can be estimated to within a factor of - 2 just by analysis of the 
picture of E(t ) :  E( t )  has a maximum q y / b 2  for a time interval - b / y u .  
Thus we approximate 

We have found the spectrum per unit area at a distance b from the line 
of the charge’s motion. To find the total energy per unit frequency range, 
we must integrate this over dA = 277b db (see Fig. 4.8): 

d W  
do 

(4.73) 

The lower limit has been chosen not as zero but as some minimum 
distance b ~ , , ,  such that the approximation of the field by means of 
classical electrodynamics and a point charge is valid. Two possible choices 
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Figure 4.8 Area e&ment perpedicuku to the Oelocity of a moving pmti'e&. 

are (1) bmin = radius of ion, if field is that of an ion and (2) b---A/rnc = 
Compton wavelength of particle. The integral is now 

where 

This integral can be done in terms of Bessel functions 

dW 2q2c 
-- - __ [ x K , ( x ) K , ( x ) - f x 2 ( K : ( x ) - K ~ ( x ) > ] .  (4.74b) 
did nu2 

Two limiting forms occur when w is small, w<<yu/b,,,, and when w is 
large, w>>yu/bmln: 

__ dW = --exp( q2c - --), 2wbmin w>- YU 

dw 2 v 2  bmn 

(4.75a) 

(4.75b) 

These forms can be derived approximately by direct integration of xK:(x) ,  
using the asymptotic results K l ( x ) -  1 /x, x<< 1, and K l ( x ) - ( n / 2 x ) ' / 2 e  - x ,  

x>> 1. 



4.7 RELATIVISTIC MECHANICS AND THE LORENTZ 
FOUR-FORCE 

The equations of electrodynamics came to us in the already covariant form 
of Maxwell’s equations. Unfortunately, the equations of dynamics as given 
by Newton are not in convariant form; this is clear since they obey 
Galilean not Lorentz invariance. Therefore, we must find new equations 
that reduce to the Newtonian ones for low velocities but that obey the 
principles of relativity. To do this we are guided by the requirement that 
these equations be cast in covariant, tensor form. 

The’ rest mass of a particle mo is a scalar by definition, since it can be 
invariantly defined (go to a frame in which the particle is at rest and 
measure it). Then the four-momentum of a particle, P’ is defined by 

PP =moUp. (4.76) 

In the nonrelativistic limit, the spatial components of the four-momen- 
tum are just the components of the ordinary three-momentum, mov. To 
interpret all the components relativistically, consider the expansion of Poc 
for u<c: 

Pot= mocUo= mOc2 = moc2 + f mou2 + . - . (4.77) 

The second term in (4.77) is the nonrelativistic expression for the lunetic 
energy of the particle; therefore, we interpret E = Poc as the total energy of 
the particle. The quantity moc2, being independent of u, is interpreted as 
the rest energy of the particle. If the relativistic expression for the spatial 
momentum is then defined as p=yomovI then PP=(E/c ,p ) .  Then from 
Eqs. (4.40), (4.76) and (4.77): 

E 2  
- + I P 1 2 3  

C2 

E 2  = m;c4 + c21p12. (4.78) 

Since photons are massless and travel at the speed of light, the four- 
momentum cannot be defined by Eq. (4.76). In this case we still define 
P p = ( E / c , p ) ,  but we use the quantum relations E=hw and p=hk.  From 
Eq. (4.43) we then have 

(4.79) 

The momentum four-vector for photons is null, F2=0 ,  since E=lplc.  
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Now, in exactly the same way as we obtained the four-velocity from the 
displacement four-vector, we can define a four-acceleration U P  by taking 
another derivative, with respect to the scalar interval, of the four-velocity : 

(4.80) 

In the nonrelativistic limit, in which y,,wl, the spatial components of the 
four-velocity and four-acceleration are approximately equal to their non- 
relativistic, three-vector counterparts. 

Note that the four-acceleration and four-velocity are orthogonal (their 
dot product vanishes): 

(4.81) 

Having defined the four-acceleration, we can define another four-vector, 
the four-force FP,  so as to obtain a relativistic form 
" F =  

In the case of electromagnetism, we can explicitly 
known Lorentz force, 

of Newton's equation 

(4.82) 

evaluate FF from the 

Our Lorentz four-force should involve the electromagnetic fields embodied 
in the tensor FPy and the particle velocity embodied in the four-velocity U p  
and should also be a four-vector and proportional to the (scalar) charge of 
the body. The simplest possibility is 

(4.83) 

Substituting Eq. (4.83) into Eq. (4.82), we have the tensor equation of 
motion of a charged particle: 

e 
C V '  

F F =  - F* u' 

(4.84) e 
m0c 

u p =  - FFvUv .  
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Let us check the components of Eq. (4.84) to see if it is indeed what we 
want. The p = 0 component is, using Eqs. (4.59) and (4.76): 

= eE-v. 
dW 
dt 
- (4.85a) 

Equation (4.85a) is just the conservation of energy: the rate of change of 
particle energy W is the mechanical work done on the particle by the field, 
eEv.  Each spatial component (say, p= 1) of Eq. (4.84) is 

(4.85b) 

agreeing with the desired expression for the three-Lorentz force. 

origin, is always orthogonal to the four-velocity : 
Note from Eq. (4.81) and Eq. (4.82) that the four-force, regardless of its 

F. i7= m,(ii. C) = 0. (4.86) 

Equation (4.86) is a general property of any covariant formulation of 
mechanics in four-dimensional spacetime. It implies that every four-force 
must have some velocity dependence, although this dependence might 
become negligible in the nonrelativistic limit. For the Lorentz four-force, 
in particular, we find 

because Fpy is antisymmetric and UpU" is symmetric. 

4.8 EMISSION FROM RELATIVISTIC PARTlCLES 

Total Emission 

We would now llke to use relativistic transformations to find the radiation 
emitted by a particle moving at relativistic speeds. The idea is to move into 
an instantaneous rest frame K' ,  such that the particle has zero velocity at a 
certain time. The particle will not remain at rest in ths  frame (since it can 
accelerate), but at least for infinitesimally neighboring times the particle 
moves nonrelativistically. We can therefore calculate the radiation emitted 
by use of the dipole (Larmor) formula. Suppose a total amount of energy 
dW' is emitted in this frame in time dt'. The momentum of this radiation is 
zero, dp'=O, because the emission is symmetrical with respect to any 
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direction and its opposite direction. The energy in a frame K moving with 
velocity - v with respect to the particle is therefore 

dW= ydW', 

from the transformation properties of the four-momentum. The time 
interval dt is simply 

dt = y dt', 

since dt' is the proper time of the particle. The total power emitted in 
frames K and K' are given by 

d W' p '=  - dW p =  - 
dt ' dt' ' 

From above we see 

P =  P'.  (4.87) 

Thus the total emitted power is a Lorentz invariant for any emitter that 
emits with front-back symmetry in its instantaneous rest frame. Knowing 
this, we would like to express 
Larmor formula, we have [cf. 

the power in covariant form. Now, from the 
Eq. (3. I9)] 

(4.88) 

Recall, however, that because Z - c = O  [cf. Eq. (4.81)], and because Up= 
(c,O) in the instantaneous rest frame of the emitting particle, [cf. Eq. 
(4.41)], we have 

ah = 0. 

Thus 

So, we can write Eq. (4.88) in manifestly covariant form: 

2 2q - . 4  

3 2  
P =  -a.a. (4.90) 

The power can thus be evaluated in any frame just by computing a' in that 
particular frame and squaring it, 
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It is convenient to express P in terms of the three-vector acceleration 
d2x/dr2 rather than in terms of the four-vector acceleration d2xp/dr2 .  It 
can easily be shown (see Problem 4.3) that if K‘ is an instantaneous rest 
frame of a particle, then 

a;l= Y 3a,,, 

a; = y 2 a,. 

(4.9 1 a) 

(4.91b) 

Thus we can write 

(4.92) 

Angular Distribution of Emitted and Received Power 

In the instantaneous rest frame of the particle, let us consider an amount 
of energy dW‘ that is emitted into the solid angle dSt’=sinB‘dB‘d@’ about 
the direction at angle 8‘ to the x’ axis (see Fig. 4.9). It  is convenient to 
introduce the notations 

Since energy and momentum form a four-vector, the transformation of the 
energy of the radiation is, 

d W = y ( d  W’ + u dP:) = y ( 1 + Bp’) dW’. (4.93) 

Figurn 4.9 Lorentz tmfonnation of the angular dist&utim of emitted 
power. 
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We also have from Eq. (4.8b), 

P‘+P 
1 +ppLI .  p=- 

Differentiating this yields 

and since d+ = d+’, 

Thus we have the result 

dW dW‘ 
d 0  dS2‘ 
- I y3(i + pp1)3- 

(4.94) 

(4.95) 

(4.96) 

The power emitted in the rest frame P‘ is found simply by dividing dW’ 
by the time interval dr’. However, in frame K there are two possible choices 
for the time interval used to divide dW: 

1-dt = y dt’. This is the time interval during which the emission occurs 
in frame K [cf. Eq. (4.4)]. With this choice we obtain the emitted power in 
frame K:  P,. 

2-drA =y( l -pp)dr’ .  This is the time interval of the radiation as 
received by a stationary observer in K. The extra factor is the retardation 
effect due to the moving source [cf. Eq. (4.11) and (4.12b)l. With this 
choice we obtain the received power in frame K: P,. 

Thus we obtain the two results: 

The alternate forms follow from the equivalence 
(4.12b). 

(4.97a) 
dP‘ 
dS2‘ ’ 
- 

(4.97b) 
dP‘ 
d0’ * 

- 

of Eqs. (4.12a) and 



Which of these two should we use? P, is the power actually measured by 
an observer and so would seem to be the natural one. Also in favor of P, is 
that Eq. (4.97b) has the expected symmetry property of yielding the inverse 
transformation by interchanging primed and unprimed variables, along 
with a change of sign of p. For these reasons we deal with P, for the rest of 
this section, calling it simply P. 

It should be pointed out, however, that P, does have its uses (c.f. 
Jackson’s Sect. 14.3; also our discussion of emission coefficient, 54.9). In 
practice, the distinction between emitted and received power is often not 
important, since P, and P, are equal in an average sense for stationary 
distributions of particles. We discuss this further in the context of synchro- 
tron emission in $6.7. 

Let us now return to Eq. (4.97b). If the radiation is isotropic in the 
particle’s frame (or nearly isotropic), then the angular distribution in the 
observer’s frame will be highly peaked in the forward direction for highly 
relativistic velocities ( p- 1). In fact, let us write 

(4.98a) 
O 2  
2 

p=cos&l- -, 

It follows by expansion that 

(4.98b) 

(4.98~) 

This latter factor is sharply peaked near 0-0 with an angular scale of 
order l/y, in agreement with our previous discussion. 

Let us now apply these formulas to the case of an emitting particle. In 
the instantaneous rest frame of the particle the angular distribution is given 
by [cf. Eq. (3.18)] 

where 0’ is the angle between the acceleration and the direction of 
emission (see Fig. 4.10). Writing a’=a;,+a; and using 
and (4.91b), we obtain 

the results (4.91a) 

(4.99) 
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Figure 4.10 Geometry for dipole emission from a particle instantaneously at 
&?St. 

To use this formula we must relate 0' to the angles in the frame K. This is 
difficult in the general case, so we work out the angular distribution of the 
received power for special cases: 

1-Acceleration /I to Velocity. Here 0'= 6' so that 

(4.100) 

where we have used Eq. (4.94). Substituting Eq. (4.100) into Eq. (4.99) with 
a, =0, we obtain 

(4.101) 

2-Acceleration I to Velocity. Here cos 0' = sin 6' cos +', so that 

Thus we have the result 

(4.102) 



“ I )  

Figutv 4. I la  Dipole mdiation pattern for patii& at mst. 

(11) 

Figwp 4.llb Angular dktribution of mdiatim emitted by a partic& with 
parollel accelerariosl and wlocity. 

( r )  
Figutv 4 .11~ Same as a 

(11) 

Figwp 4.11d Angular distribution of mdhtion emitted by a particle with 
perpendicular acceleration and wlocity. 

3-Extreme Relativistic Limit. When y>> I ,  the quantity (1  - Pp) in the 
denominators becomes small in the forward direction, and the radiation 
becomes strongly peaked in this direction. Using the same arguments as 
before, we obtain 
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For the parallel-acceleration case the received radiation pattern is 

while for perpendicular acceleration, 

(4.104) 

(4.105) 

Both of these expressions depend on 8 solely through the combination yo. 
Therefore, the peaking is for angles 8- 1 / y, which can be seen in Fig. 4.1 1, 
where polar diagrams of the radiation patterns are given. 

4.9 
INTENSITY 

INVARIANT PHASE VOLUMES AND SPECIFIC 

Consider a group of particles that occupy a slight spread in position and in 
momentum at a particular time. In a frame comoving with the particles 
they occupy a spatial volume element d3x’= dx’4’dz’  and a momentum 
volume element d3p’ = dP: dP,’dPi, but no spread in energy, dW’= - dP6 
= O .  This is because the contribution to the energy from the space 
momentum in the rest frame is quadratic and thus vanishes to the first 
order. The group thus occupies an element of phase space d V ‘ =  d3p‘d3x‘. 
We now wish to show that any observer not comoving with the particles 
will conclude that they occupy the same amount of phase space in his 
frame d l r  = d3pd3x. Thus a phase space element is Lorentz invariant. 

Let the observer have velocity parameter p with respect to the comoving 
K ‘  frame and orient axes so that he moves along the x axis. Consider first 
the spatial volume element d3x occupied by the particles, as measured by 
K .  Since perpendicular distances are unaffected, 4 = dy‘ and dz = dz‘. But 
there is a length contraction in the x direction [cf. Eq. (4.3)], dx = y - ’ dx’, 
thus yielding the relation 

d3x=  y- ’d3x‘ .  (4.106a) 

Now consider the momentum volume element measured by the ob- 
server, d3p. The components of momentum transform as components of a 
four-vector, yielding dP;dP,’ = dP, dP,, dP, = y(dP: + PdP;). But since the 
particles have the same energy in the comoving frame, dP, = y dP:, and we 



obtain 

d3p= yd3p'. (4.106b) 

Combining Eqs. (4.106a) and (4.106b), we see that 

d Y - = d T .  (4.107a) 

Since frames K and K' have arbitrary relative velocity, we have the result 

dY= Lorentz invariant. (4.107b) 

Equation (4.107a) was strictly derived only for particles of finite mass, so 
that frame K' could be a rest frame. However, no reference to particle 
mass occurs in Eq. (4.107b), and therefore it has applicability to the 
limiting case of photons. 

From Eq. (4.107b), it follows simply that the phase space density 

dN 
d V  

f =  - (4.108) 

is an invariant, since the number of particles within the phase volume 
element, dN, is a countable quantity and therefore itself invariant. 

It is easy to relate the phase space density of photons to the specific 
intensity I, and thus determine the transformation properties of I,. This is 
done by evaluating the energy density per unit solid angle per frequency 
range in two ways, using f and also the quantity u,(Q), defined in 4 1.3: 

hvj) dp d D = U, ( Q )  d Q dv. (4.109) 

Since U,(S2) = I , / c  and p = h v / c  we find that I , / v 3  is simply proportional 
to the Lorentz invariant f, so that 

4 
- = Lorentz invariant. 
v3 

(4.110) 

Having determined the Lorentz transformation properties of the specific 
intensity, we should now like to determine the transformation properties of 
other transfer quantities. Because the source function occurs in the transfer 
equation as the difference Iv-S, ,  it is clear that S, must have the same 
transformation properties as I,, namely, 

(4.111) sv - = Lorentz invariant. 
Y 3  
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Figurn 4.12 Tmfonnation of a moving, absorbing medium 

To find the transformation of absorption coefficient we imagine material 
in frame K streaming with velocity u between two planes parallel to the x 
axis. Let K‘ be the rest frame of the material. (See Fig. 4.12). The optical 
depth T along the ray must be an invariant, since e-‘ gives the fraction of 
photons passing through the material, and this involves simple counting. 
Thus we have the result 

vayy = Lorentz invariant. 
I -- 1% 7 =  - - 

sine vsine 

The transformation of sin8 can be found by noting that vsin8 is simply 
proportional to the y component of the photon four-momentum k,. But 
both k, and I are the same in both frames, being perpendicular to the 
motion. Therefore 

vg = Lorentz invariant. (4.112) 

Finally we find the transformation of the emission coefficient j ,  = aYS, 
from Eqs. (4.1 1 1) and (4.1 12): 

J Y  
- = Lorentz invariant. 
Y 2  

(4.1 13) 

Another derivation of Eq. (4.1 13) can be based on Eq. (4.97a). The 
emission coefficient can be written as 

(4.1 14) 

where n is the density of emitters (particles/cm’). Now, from Eq. (4.12b) 
we have dv = dv’y( 1 + Pp’), and also n = yn’ by Lorentz contraction along 
the motion. Thus we have 
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and Eq. (4.113) follows. Notice that here it is essential to define the 
emission coefficient in terms of emitted rather than received power. 

It is often convenient to determine the quantities a,,,j,, S, and the like in 
the rest frame of the material. By the above results we can then find them 
in any frame. Because the transformation of Y involves the direction f? of 
the ray, these quantities will not, in general, be isotropic, even when they 
are isotropic in the rest frame. The observed nonisotropy of the cosmic 
microwave background can be used to find the velocity of the earth 
through the background (c.f. Problem 4.13). 

PROBLEMS 

4.1-In astrophysics it is frequently argued that a source of radiation 
which undergoes a fluctuation of duration At must have a physical 
diameter of order D s c A t .  This argument is based on the fact that even if 
all portions of the source undergo a disturbance at the same instant and 
for an infinitesimal period of time, the resulting signal at the observer will 
be smeared out over a time interval Atmin-D/c because of the finite light 
travel time across the source. Suppose, however, that the source is an 
optically thick spherical shell of radius R(t)  that is expanding with relativ- 
istic velocity @-l,y>>l and energized by a stationary point at its center, 
By consideration of relativistic beaming effects show that if the observer 
sees a fluctuation from the shell of duration At at time t, the source may 
actually be of radius 

R <2y2cAt, 

rather than the much smaller limit given by the nonrelativistic considera- 
tions. In the rest frame of the shell surface, each surface element may be 
treated as an isotropic emitter. 

This latter argument has been used to show that the active regions in 
quasars may be much larger than cat-1 light month across, and thus 
avoids much energy being crammed into so small a volume. 

4.2-Suppose that an observer at rest with respect to the fixed distant 
stars sees an isotropic distribution of stars. That is, in any solid angle d!J 
he sees dN = N(d!J2/4n) stars, where N is the total number of stars he can 
see. 

Suppose now that another observer (whose rest frame is K ’ )  is moving at 
a relativistic velocity f l  in the x direction. What is the distribution of stars 
seen by this observer? Specifically, what is the distribution function 



P(B’,+’) such that the number of stars seen by this observer in hs solid 
angle dQ’ is P(B‘,+‘)dQ‘? Check to see that jP(B’,+‘)dQ’= N ,  and check 
that P(B‘,+’) = N / 4 a  for p = 0. In what direction will the stars “bunch up,” 
according to the moving observer? 

4.3 

a. Show that the transformation of acceleration is 

a: 

y3u3 ’ 
a, = - 

where 

024: 

c2 
u = l + - .  

b. If K‘ is the instantaneous rest frame of the particle, show that 

a;, = y3al,, 

a ; = y a , ,  

where a,, and a ,  are the components parallel and perpendicular to the 
direction of u, respectively. 

2 

4.4-A rocket starts out from earth with a constant acceleration of l g  in 
its own frame. After 10 years of its own (proper) time it reverses the 
acceleration, and in 10 more years it is again at rest with respect to the 
earth. After a brief time for exploring, the spacemen retrace their journey 
back to earth, completing the entire trip in 40 years of their own time. 

a. Let t be earth time and x be the position of the rocket as measured 
from earth. Let T be the proper time of the rocket and let p= 
c - ’ d x / d t .  Show that the equation of motion of the rocket during the 
first phase of positive acceleration is 

d2x 

dt 
Y y = g .  
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b. Integrate this equation to show that 

c. Integrating again, show that 

d. Show that the proper time is related to earth time by 

so that 

x =  c' [ cosh( 5)- I ]  
g 

e. How far away do the spacemen get? 

f. How long does their journey last from the point of view of an earth 

Hint: In answering parts (e)  and (f) you need only the results for the 
first positive phase of acceleration plus simple arguments concerning 
the other phases. 

g. Answer parts (e) and (f) if the spacemen can tolerate an acceleration of 
2g rather than Ig. 

observer? Will friends be there to greet them when they return? 

4.5-Show that A aBa is not in general a scalar, where A " and B" are 
four-vector components. 

4.6-Suppose in some inertial frame K a photon has four-momentum 
components 

P, = ( - E,  E,  0,O). 

(We use units where c =  1). There is a special class of Lorentz transforma- 
tions-called the "little group of P"-which leave the components of P 
unchanged, for example, a pure rotation through an angle a in the y-z  



plane, 

' 1  0 0 0' ' - E' - E' 
0 1  0 0 E =  E 
0 0 cosa -sina 0 0 '  

.O 0 sina c o s a , ,  0 ,  , 0 ,  

4.7-An object emits a blob of material at  speed v at an angle 8 to the 

a. Show that the apparent transverse velocity inferred by the observer 
(i.e., the angular velocity on the sky times the distance to the object) is 

line-of-sight of a distant observer (see Fig. 4.13). 

v sin 9 
uapp= 1 -(u/c)cosB 

b. Show that tiapp can exceed c; find the angle for which oapp is maximum, 
and show that this maximum is urn,= yo. 

4.8-Let two different uniformly moving observers have velocities v ,  
and v2, in units where c = 1. Show that their relative velocity, as measured 

I 

I 
I 
I I 
I I 
I J. 

V 

Observer 

Figum 4.13 Emitting blob trawling at angk 8 with respect to the line of sight. 
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by one of the observers, satisfies 

(1 -v , -v2)2  - ( 1  - u;)( 1 - 0:) 

(1 -"l.v2)2 
" 2  = 

A straight application of velocity transformations is painfully tedious, 
but an application of 4-vector invariants is trivial! 

4.9-In ordinary three-space, Ohm's law is j= aE where j is the current, 
E the electric field, and u the conductivity. Assuming u is a scalar, write a 
four-tensor form of Ohm's law using the four-currentj,,, the Maxwell field 
tensor F,," and the four-velocity of the conducting element Up. Remember, 
a tensor equation that reduces to the correct expression in any frame (e.g., 
the rest frame of the conducting element) is correct in all frames. 

4.10-A particle of rest mass m moves with velocity u in frame K. In its 
rest frame K' the particle emits some of its internal energy W' in the form 
of isotropic radiation. 

a. Argue that there is no net reaction force on the particle and it remains 
at rest in K'. 

b. What is the total momentum of the emitted radiation as seen in frame 
K ?  

c. Since this momentum is emitted into the forward direction, does the 
particle slow down as a result? If so, how can this be reconciled with 
the fact that the particle remains at rest in K'? If not, how can this be 
reconciled with the conservation of momentum? 

4.11-A particle (rest mass m) initially at rest absorbs a photon of 
energy hv and converts this energy into increased internal energy (say, 
heat). The particle has increased its rest mass to m' and moves with some 
velocity D'. 

a. Setting up the conservation of energy and momentum, show that 

- 1/2 

m' 

b. By considering the appropriate Lorentz transformations, show that if 
the particle had been moving initially and absorbed a photon of energy 
hv, this same equation for the ratio of the initial and final rest masses 
holds with Y' replacing v, where v' is given by the Doppler formula. 



4.12-Consider a particle of dust orbiting a star in a circular orbit, with 
velocity 0. This particle absorbs stellar photons, heats up, and then emits 
the excess energy isotropically in its rest frame. 

a. Show that in absorbing a photon the angular momentum of the 
particle about the star does not change. (Assume the photons are 
traveling radially outward from the star.) 

b. When the particle emits its radiation, show that the velocity and its 
direction do not change, but that the angular momentum now de- 
creases by the ratio m/m' of the rest mass after and before emission. 
Denoting the angular momenta before and after by lo and I ,  show that 

c. Having obtained this general result, let us now assume u<<c and 
hv<<mc2. By expanding, show that to lowest order the change in 
angular momentum caused by one photon is 

Historical note: This result, although now for nonrelativistic particles, 
apparently cannot be derived classically. Attempts to do so by Poynt- 
ing and others led to results differing from the correct answer by 
various numerical factors. Robertson resolved the problem in 1937 
(Mon.  Not. Roy. Astron. SOC. 97, 423), showing that it is a relativistic 
effect even to lowest order. The above phenomenon is called the 
Poynting- Robertson effect. 

d. A dust grain having a mass m-lO-"g and cross section I J - ~ O - ~  cm2 
orbits the Sun at 1 A.U. Assuming that i t  always keeps a circular orbit, 
find the time for it to fall into the Sun. 

4.13 

a. Show that an observer moving with respect to a blackbody field of 
temperature T will see blackbody radiation with a temperature that 
depends on angle according to 

( 1  - 0 2 / c y 2  T '=  
1 + ( u / c ) c o s ~ '  
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b. The isotropy of the 2.7 K universal blackbody radiation at h=3 cm 
has been established to about one part in Id. What is the maximum 
velocity that the earth can have with respect to the frame in which this 
radiation is isotropic? [Isotropy is measured by the ratio (Zmm-- 
Zmi,,)/(Zmm+ Zdn).] A positive result of this magnitude has recently 
been obtained. 

4.14-A particle is accelerated by a force having components Fl, and F ,  
with respect to the particle's velocity. Show that the radiated power is 

P = (2e2/3m2c3)( F,: + y2F:) .  

Thus the perpendicular component has more effect in producing radiation 
that the parallel component by a factor y 2 .  

4.15-Show that U2m-c-2S2 is a Lorentz scalar, where U,, is the 
free-space electromagnetic energy density and S is the Poynting vector. 

4.16-Consider the stress-energy tensor for an electromagnetic field 

where FaB and v P  are the electromagnetic field tensor and Minkowski 
metric, respectively. 

a. Show that T p  is traceless: Tp,=O. 

b. Show that in free space TP' is divergenceless: TW,y = 0. 
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