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Basic principles of causal
inference



Why causal inference?

• So far, we have been interpreting regressions predictively: given the
values of several inputs, the fitted model allows us to predict y ,
typically considering the n data points as a simple random sample
from a hypothetical infinite “superpopulation” or probability
distribution.

• This part of the course considers causal inference, which concerns
what would happen to an outcome y as a result of a treatment,
intervention, or exposure z , given pre-treatment information x .
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Causal inference: basic concepts

• Causal effects are conceptualized as a comparison between different
potential outcomes of what might have occurred under different scenarios.

• This comparison could be between a factual state (what did happen) and
one or more counterfactual states (representing what might have
happened), or it could be a comparison among various counterfactuals.

• We will study causal effects through regression and predictors. In a
regression framework, the treatment will be:

zi =

{
1 if unit i receives the “treatment"
0 if unit i receives the “control",

(1)

or, for a continuous treatment:

zi = level of the “treatment" assigned to unit i . (2)
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Randomized experiments and observational studies

We will study the basics of causal inference in two distinct scenarios:

• randomized experiments: experiments with units randomly assigned to
receive treatment and control, and with the units in the study considered as
a random sample from a population of interest. The random sampling and
random treatment assignment-sometimes performed according to blocks or
strata-allow us to estimate the average causal effect of the treatment in the
population, and regression modeling can be used to refine this estimate.

• observational studies: in observational studies treatments are observed
rather than assigned (for example, comparisons of smokers to non-smokers),
and it is not at all reasonable to consider the observed data under different
treatments as random samples from a common population. In these studies
there can be systematic differences between groups of units that receive
different treatments—differences that are outside the control of the
experimenter. Often, however, observational studies refer more broadly to
survey data settings where no intervention has been performed.
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The fundamental problem of causal inference i

• We begin by considering the problem of estimating the causal effect of a
treatment compared to a control, for example in a medical experiment.
Formally, the causal effect of a treatment z on an outcome y for an
observational or experimental unit i can be defined by comparisons between
the outcomes that would have occurred under each of the different
treatment possibilities.

• With a binary treatment z taking on the value 0 (control) or 1 (treatment),
we can define the potential outcomes, y 0

i and y 1
i for unit i as the outcomes

that would be observed under control and treatment conditions,
respectively. (These ideas can also be directly generalized to the case of a
treatment variable with multiple levels.)

• For someone assigned to the treatment condition (zi = 1), y 1
i is observed

and y 0
i is the unobserved counterfactual outcome—it represents what would

have happened to the individual if assigned to control. Conversely, for
control units, y 0

i is observed and y 1
i is counterfactual.

• The observed outcome for the unit i is then yi = y 0
i (1− zi ) + y 1

i zi .
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The fundamental problem of causal inference ii

• In either case, a simple treatment effect for unit i can be defined as:

individual treatment effect: τi = y1i − y0i . (3)

Causal effects can also be expressed as nonlinear functions of the
potential outcomes, but linear functions are conceptually simpler.

• The problem inherent in determining the effect for any given
individual, however, is that we can never observe both potential
outcomes y0i and y1i . This is commonly referred to as the
fundamental problem of causal inference.
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The fundamental problem of causal inference iii

• Running example: studying the relationship between fish oil supplements
and systolic blood pressure. 8 friends: 4 friends were placed in the “fish oil
supplement” treatment group. Members of this group agreed to consume 3
grams of fish oil supplements per day for one year while otherwise
maintaining their current diets. The other 4 friends agreed to simply
maintain their current diets free from fish oil supplements for the same year.
At the end of the study period, blood pressure was measured for each of
the eight participants (see next Figure 18.1).

• y 0
i : blood pressure that would result if the person had no supplement,

• y 1
i : blood pressure that would result if the person had received the
prescribed supplement.
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The fundamental problem of causal inference iv

• We cannot observe the blood pressure that would have resulted both
if, say, Audrey had taken the supplements and if she had not, thus the
causal effect is impossible to directly measure!
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Ways of getting around the problem i

• We cannot observe both what happens to an individual after taking
the treatment (at a particular point in time) and what happens to
that same individual after not taking the treatment (at the same
point in time).

• Thus we can never measure a causal effect directly. In essence, then,
we can think of causal inference as a prediction of what would happen
to unit i if zi = 0 or zi = 1. It is thus predictive inference in the
potential-outcome framework.

• Viewed this way, estimating causal effects requires one or some
combination of the following: close substitutes for the potential
outcomes, randomization, or statistical adjustment.
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Ways of getting around the problem ii

• Close substitutes: one might object to the formulation of the fundamental
problem of causal inference by noting situations where it appears one can
actually measure both y 0

i and y 1
i on the same unit—consider, for example

drinking tea one evening and milk another evening, and then measuring the
amount of sleep each time.

• Statistical adjustment: when treatment and control groups are not
similar, modeling or other forms of statistical adjustment can be used to fill
in the gap.

• Randomization and experimentation: use the outcomes observed on a
sample of units to learn about the distribution of outcomes in the
population. The basic idea is that since we cannot compare treatment and
control outcomes for the same units, we try to compare them on similar
units. Similarity can be attained by using randomization to decide which
units are assigned to the treatment group and which units are assigned to
the control group. ⇒ Cleanest solution!
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Randomized experiments



Estimate the average treatment effect i

• Although we cannot estimate individual-level causal effects (3) (without
making strong assumptions, as discussed previously), we can design studies
to estimate the population average treatment effect:

average treatment effect = avg(y 1
i − y 0

i ) (4)

• The cleanest way to estimate the population average is through a
randomized experiment in which each unit has a positive chance of
receiving each of the possible treatments.

• For example, if n0 units are selected at random from the population and
given the control, and n1 other units are randomly selected and given the
treatment, then the observed sample averages of y for the treated and
control units can be used to estimate the corresponding population
quantities, avg(y 0) and avg(y 1), with their difference estimating the
average treatment effect in (4) (and with standard error

√
s20/n0 + s21/n1).

• This works because the y 0
i ’s for the control group are a random sample of

the values of y 0
i in the entire population. Similarly, the y 1

i ’s for the
treatment group are a random sample of the y 1

i ’s in the population.
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Estimate the average treatment effect ii

• The starting point is the comparison of treatment and control groups, and we can
run into trouble if these two groups are not sufficiently similar or balanced.

• In Figure 18.1, we see that the people who received treatment were on average
older than the controls. This difference could have occurred just by chance or
perhaps because those who agreed to take the supplements were more concerned
about their blood pressure and the study offered them a chance to try out the
supplements for free, while those who agreed to be in the no-supplements group
did not care if the supplements might benefit their health.

• The groups whose outcomes we were comparing differed in their pre-treatment
characteristics. This difference matters because age is also predictive of the
outcome.

• In practice, we can never ensure that treatment and control groups are balanced
on all relevant pre-treatment characteristics. However, there are statistical
approaches that may bring us closer. At the design stage, we can use
randomization to ensure that treatment and control groups are balanced in
expectation, and we can use blocking to reduce the variation in any imbalance. At
the analysis stage, we can adjust for pre-treatment variables to correct for
differences between the two groups to reduce bias in our estimate of the sample
average treatment effect.
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The assumption of ignorability in controlled experiments

• In a completely randomized design, the probability of being assigned to the
treatment is the same for each unit in the sample.

• Moreover, the treatment assignment is a random variable that is
independent of the potential outcomes, a statement that can be written
formally as,

y 0, y 1 ⊥ z. (5)

As a consequence under repeated randomizations, there will be no
differences, on average, in the potential outcomes, comparing treatment
and control groups. This property is commonly referred to as ignorability.

• Ignorability does not imply that the groups are perfectly balanced. Rather,
it implies that there is no imbalance on average across repeated
randomizations.

• Said another way, ignorability implies that the value of someone’s potential
outcomes does not provide any information about his or her treatment
group assignment.
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Motivations for blocks

• Sometimes a randomized experiment could benefit from a preliminary
blocking structure to which apply randomization.

• The goal when creating blocks is to minimize the variation of each type of
potential outcome, y 0 and y 1, within the block. In practice researchers only
have access to observed pre-treatment variables when making decisions
regarding how to define blocks (defined by age, for instance, or even as
age×sex).

• So, to the extent possible, the predictors used to define the blocks should
be those that are believed to be predictive of the outcome based on either
theory or on results from previous studies. The more predictive the blocking
variable, the bigger the precision gains at the end of the day.
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The regression framework of causal inference i

• In the usual regression context, predictive inference relates to
comparisons between units, whereas causal inference addresses
comparisons of different treatments if applied to the same units.
More generally, causal inference can be viewed as a special case of
prediction in which the goal is to predict what would have happened
under different treatment options.

• We illustrate the use of regression in the setting of controlled
experiments, going through issues of adjustment for pre-treatment
predictors, interactions, and pitfalls that can arise when building a
regression using experimental data and interpreting coefficients
causally.
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The regression framework of causal inference ii

For each item i we can have at least three sorts of measurements (see also next
Figure 19.1):

• Pre-treatment measurements, also called covariates, xi . As noted above,
these are not strictly required for causal inference but in practice can be
essential for checking and adjusting for pre-treatment differences between
treatment and control groups, estimating treatment interactions, and
making inferences about average treatment effects in subpopulations and in
the general population.

• The treatment zi , which equals 1 for treated units and 0 for controls.

• The outcome measurement, yi , which we label as y 1
i for units that have

been exposed to the treatment and y 0
i for units that received the control.

17



The regression framework of causal inference iii
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The Electric Company data example

Electric Company Data (ROS book, 19.2; G&H book, 9.3)
The goal is to measure the causal effect of a new educational television program,
The Electric Company, on children’s reading ability. Selected classes of children in
grades 1–4 were randomized into treated and control groups. At the beginning and
the end of the school year, students in all the classes are given a reading test, and
the average test score within each class is recorded: our entire analysis will be then
at the classroom level, that is, we treat the classes as the observational units in this
study.

The experiment was performed around 1970 on a set of 192 elementary school
classes in two cities, Fresno and Youngstown. For each city and grade, the
experimenters selected a small number of schools (10–20) and, within each school,
they selected the two poorest reading classes of that grade. For each pair, one of
these classes was randomly assigned to continue with its regular reading course and
the other was assigned to view the TV program.

This is an example of a matched pairs design: there are characteristics of the
school—both observable and, potentially, unobservable—that are predictive of
future student outcomes that we would like to adjust for explicitly by forcing
balance through our design. For simplicity we shall analyze this experiment as if the
treatment assignment had been completely randomized within each grade. 19



Plotting the average post-treatment outcome i

• y0i , y1i : outcomes at class level.

• zi = 1 if the class undertook the television program (the treatment,
here).

• xi : pre-test score given for each class at the beginning of the school,
before the treatment was applied.

• In the next Figures, we plot the distribution of the outcome, the
average post-treatments scores, in the control and treatment group
for each grade (Figure 19.2), and the same information but arranged
in a different orientation to allow easier comparison between treated
and control groups in each grade (Figure 19.3; for each histogram,
the average is indicated by a vertical line).

• Visual comparisons across treatment groups within grades suggest
that watching The Electric Company may have led to small increases
in average test scores, particularly for the lower grades.
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Plotting the average post-treatment outcome ii
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Plotting the average post-treatment outcome iii
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A first regression model

• We start by estimating a single treatment effect using the simplest possible
estimate, a linear regression of post-test on treatment indicator, which
would be the appropriate analysis had the data come from a completely
randomized experiment with no available pre-treatment information.

• When treatments are assigned completely at random, we can think of the
treatment and control groups as two random samples from a common
population. The population average under each treatment, avg(y 0) and
avg(y 1), can then be estimated by the sample average, and the population
average difference between treatment and control, avg(y 1)− avg(y 0)—that
is, the average causal effect—can be estimated by the difference in sample
averages, ȳ1 − ȳ0.

• Equivalently:
yi = α + θzi + errori , (6)

where θ corresponds to the average causal effect of the treatment. In fact,
linear regression on an indicator variable is a comparison of averages (try as
an exercise!).

23



Separate analysis within each grade i

• Given the large variation in test scores from grade to grade, it makes
sense to take the next step and perform a separate regression analysis
on each grade’s data. This is equivalent to fitting a model in which
treatment effects vary by grade—that is, an interaction between
treatment and grade indicators—and where the residual variance can
be different from grade to grade as well.

• The resulting estimates and uncertainty intervals for model (6) are
given in Figure 19.4(a). The treatment appears to be generally
effective, perhaps more so in the low grades, but it is hard to be sure,
given the large standard errors of estimation. Sample sizes are
approximately the same in each of the grades, but the estimates for
higher grades have lower standard errors because the residual
standard deviations of the regressions are lower in these grades.
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Separate analysis within each grade ii
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Adjusting for pre-test i

• We can use the information about pre-test to improve our treatment effect
estimates, using a regression model such as:

yi = α + θzi + βxi + errori , (7)

where xi denotes the average pre-test scores of the students in classrom i .
The coefficient θ still represents the average treatment effect in the grade,
but adjusting for pre-treatment score, xi , can reduce the uncertainty in the
estimate-see Figure 19.4(b).

• Figure 19.5 (next slide) shows the before-after data for the Electric
Company experiment. For grades 2–4, the same test was given to the
students at the beginning and the end of the year, and so it is no surprise
that all the classes improved whether treated or not. For grade 1, the
pre-test was a subset of the longer test, which explains why the pre-test
scores for grade 1 are so low. We can also see that the distribution of
post-test scores for each grade is similar to the next grade’s pre-test scores,
which makes sense.
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Adjusting for pre-test ii
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Adjusting for pre-test iii

There are some benefits of adjusing for pre-treatment scores:

• If the predictor has a strong association with the outcome it can help to
bring each estimate closer (on average) to the truth, and if the
randomization was less than pristine, the addition of predictors to the
equation may help us adjust for systematically unbalanced characteristics
across groups: potential to adjust for both random and systematic
differences between the treatment and control groups-see Figure 19.4(b).

• This reasoning applies not just to pre-test but to any pre-treatment
variables that help to predict the outcome. In practice, we can neither
collect nor analyze everything, and our models (linear and otherwise) are
themselves only approximations, so we can only try to reduce our errors of
estimation, not bring them all the way to zero.

• Crucially, when fitting such a regression it is only appropriate to adjust for
pre-treatment predictors, or, more generally, predictors that would not be
affected by the treatment.
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Treatment interactions and poststratification i

• Once we include pre-test in the model, it is natural to interact it with
the treatment effect. The treatment effect is then allowed to vary
with the level of the pre-test. Then:

yi = α+ θzi + βxi + τzixi + errori , (8)

where the treatment effect is θ + τx , and the summary treatment
effect in the sample is 1

n
∑n

i=1(θ + τxi).

• Figure 19.6 shows the Electric Company data with separate intercepts
and slopes estimated for the treatment and control groups. As with
Figure 19.5, for each grade the difference between the regression lines
is the estimated treatment effect as a function of pre-test score.

29



Treatment interactions and poststratification ii
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Treatment interactions and poststratification iii

• For frther illustration, let’s focus on grade 4 classes. We fit the model (8)
with the following instruction:

stan_glm(post_test ~ treatment + pre_test +
treatment:pre_test,
data=electric, subset=(grade==4))

yielding

Median MAD_SD
(Intercept) 39.41 4.90
treatment 11.61 7.98
pre_test 0.68 0.05
treatment:pre_test -0.09 0.07
Auxiliary parameter(s):

Median MAD_SD
sigma 2.17 0.25

• The estimated treatment effect is now 11.61− 0.09x . Centering x before
including it in the model allows the treatment coefficient to represent that
treatment effect for classes with the mean pre-test score for the sample. 31



Treatment interactions and poststratification iv

• To get a sense of the uncertainty, we can plot the 20 random simulation
draws of the estimated treatment effect, as displayed in next Figure 19.7.
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Treatment interactions and poststratification v

• We can compute the estimated average treatment across the model’s
simulations to represent the uncertainty in the average treatment effect
previously introduced. The result is 1.8 with a standard deviation of
0.7—similar to the result from the model adjusting for pre-test but with no
interactions (try as exercise to produce the results!).

• In general, for a linear regression model, the estimate obtained by including
the interaction, and then averaging over the data, reduces to the estimate
with no interaction. The motivation for including the interaction is thus to
get a better idea of how the treatment effect varies with pre-treatment
predictors, not to simply estimate an average effect.

• Identification of treatment interactions is also important when we want to
generalize experimental results to a broader population. If treatment effects
vary with pre-treatment characteristics and the distribution of these
characteristics varies between the experimental sample and the population
of interest, the average treatment effects will typically be different.
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Treatment interactions and poststratification vi

• In survey sampling, stratification refers to the procedure of dividing
the population into disjoint subsets (strata), sampling separately
within each stratum, and then combining the stratum samples to get
a population estimate.

• Poststratification is the analysis of an unstratified sample, breaking
the data into strata and reweighting as would have been done had the
survey actually been stratified.

• Stratification can adjust for potential differences between sample and
population using the survey design; poststratification makes such
adjustments in the data analysis.

• Modeling interactions is important when we care about differences in
the treatment effect for different groups, and poststratification then
arises naturally if a population average estimate is of interest.
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Interpreting regression coefficients as treatment effects

• It can be tempting to take the coefficients of a fitted regression model and
give them a causal interpretation, but this can be a mistake—even if the
data come from randomized experiments.

• Sometimes in fact the data structure could be not suited to suggest causal
explanations in the regression coefficients.

• As an imaginary example, suppose you conduct a meta-analysis of studies
of incentive in sample surveys. You find 39 randomized experiments on the
effects of incentives on survey response rates. In each experiment,
respondents were randomly assigned to two or more conditions (for
example, no incentive, an incentive of 2 euros, or an incentive of 5 euros).

• (Continue) A regression was then fit, predicting change in response rate
compared to several predictors. However, cautions need to be attached to
the estimates: they only apply to the sorts of surveys in the meta-analysis,
which might not be representative of future surveys of interest, and it could
be a mistake to extrapolate beyond the data. Because the incentive
conditions were not randomly assigned to surveys, we have to be open to
this sort of non-causal interpretation.
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Adjusting for post-treatment variables

• We recommend adjusting for pre-treatment covariates when
estimating causal effects in experiments and observational studies.
However, it is generally not a good idea to adjust for variables
measured after the treatment.

• As discussed in Section 21.1 of the ROS book, information on
post-treatment variables can be included in the more complicated
framework of instrumental variables or in more general mediator
strategies.

• In brevity, adjusting for a post-treatment variable can bias the
estimate of the treatment effect, even when the treatment has been
randomly assigned to study participants. For a detailed explanation,
see Section 19.6 of the ROS book.

36



Observational studies



Causal inference in observational studies i

• So far, we introduced a statistical formalization of causal effects using
potential outcomes, focusing on the estimation of average causal effects
and interactions using data from randomized controlled experiments.

• In theory, the simplest solution to the fundamental problem of causal
inference is, as we have described, to randomly sample a different set of
units for each treatment group assignment from a common population, and
then apply the appropriate treatments to each group.

• In practice, however, we often work with observational data because,
compared to experiments, observational studies can be more practical to
conduct and can have more realism with regard to how the program or
treatment is likely to be “administered” in practice-due to logistic, ethical,
or financial constraints which can make it difficult or impossible to
externally assign treatments.
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Causal inference in observational studies ii

• As we have discussed, however, in observational studies treatments are
observed rather than assigned (for example, comparisons of smokers to
nonsmokers), and it is not at all reasonable to consider the observed data
under different treatments as random samples from a common population.

• In an observational study, there can be systematic differences between
groups of units that receive different treatments—differences that are
outside the control of the experimenter—and they can affect the outcome,
y .

• In this case we need to rely on more data than just treatments and
outcomes and implement a more complicated analysis strategy that will rely
upon stronger assumptions. The strategy discussed in this section, however,
is relatively simple and relies on controlling for confounding covariates
through linear regression.
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The challenge of causal inference i

• When we are not able to randomly assign study participants to treatments,
we present two simple examples in which predictive comparisons with
observational data do not yield appropriate causal inferences.

• Consider a hypothetical medical experiment in which 100 patients receive
the treatment and 100 receive the control condition. In this scenario, the
causal effect represents a comparison between what would have happened
to a given patient had he or she received the treatment compared to what
would have happened under control. We suppose that the treatment effect
is zero.
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The challenge of causal inference ii

• Now let us further suppose that treated and control groups systematically
differ, with healthier patients receiving the treatment and sicker patients
receiving the control. This scenario is illustrated in Figure 20.1, where the
distribution of previous health status is different for the two groups. This
scenario leads to a positive predictive comparison between the treatment
and control groups, even though the causal effect is zero. This sort of
discrepancy between the predictive comparison and the causal effect is
sometimes called selection bias.

• Conversely, it is possible for a truly nonzero treatment effect to be erased in
the predictive comparison. Figure 20.2 illustrates: the treatment has a
positive effect for all patients, whatever their previous health status, as
displayed by outcome distributions.
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The challenge of causal inference iii

• So, for any given unit, we would expect the outcome to be better under
treatment than control. However, suppose that this time, sicker patients
are given the treatment and healthier patients are assigned to the control
condition, as illustrated by the different heights of these distributions. It is
then possible to see equal average outcomes of patients in the two groups,
with sick patients who received the treatment canceling out healthy
patients who received the control.

• Previous health status plays an important role in both these scenarios
because it is related both to treatment assignment and future health status.
Simple comparisons of average outcomes across groups that ignore this
variable will be misleading because the effect of the treatment will be
“confounded” with the effect of previous health status. For this reason,
such predictors are sometimes called confounding covariates.
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Zero causal effect but positive predictive comparison
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Positive causal effect but zero positive predictive comparison
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Adding regression predictors

• The preceding examples illustrate how a simple predictive comparison is not
necessarily an appropriate estimate of a causal effect. However, we could
compare treated and control units conditional on previous health status.

• Another way to estimate the causal effect in this scenario is to regress the
outcome on two inputs: the treatment indicator and previous health status.

• If health status is the only confounding covariate—that is, the only variable
that predicts both the treatment and the outcome—and if the regression
model is properly specified, then the coefficient of the treatment indicator
corresponds to the average causal effect in the sample.

• In general, then, causal effects can be estimated using regression if the
model includes all confounding covariates (predictors that can affect
treatment assignment or the outcome) and if the model is correct.

• Confounders can be observed, and everything is ok, or not observed, then
they are “omitted” or “lurking” variables that complicate the quest to
estimate causal effects.
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Omitted variable bias i

• We can quantify the bias incurred by excluding a confounding covariate in
the context where a simple linear regression model is appropriate and there
is only one confounding covariate.

• Suppose the “correct” model is:

yi = β0 + β1zi + β2xi + εi , (9)

where zi is the treatment and xi is the covariate for unit i .

• If instead the confounding covariate, xi , is ignored, one can fit the model,

yi = β∗
0 + β∗

1 zi + ε∗
i . (10)

• To understand the relationship between (9) and (10), it helps to define a
third regression:

xi = γ0 + γ1zi + νi . (11)
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Omitted variable bias ii
• If we substitute this representation of x into the original, correct, equation

and rearrange terms, we get

yi = β0 + β2γ0 + (β1 + β2γ1)zi + εi + β2νi . (12)

• Equating the coefficients of z in (10) and (12) we get:

β∗
1 = β1 + β2γ1. (13)

• This correspondence helps demonstrate the definition of a confounding
covariate. If there is no association between the treatment and the possible
confounder (that is, γ1 = 0) or if there is no association between the
outcome and the confounder (that is, β2 = 0), then the variable is not a
confounder because there will be no bias (β2γ1 = 0).

• We explained the bias that can be incurred if a model is specified
incorrectly, and we provided some intuition for the types of problems that
can arise when we fail to account for all confounders.
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Observational studies and confounding covariates i

• We used the term observational study to refer to any nonexperimental
research design. This study could be prospective or retrospective, and it
may or may not involve direct manipulation of the treatment or potential
causal variable of interest.

• Advantage: more practical to conduct and may more accurately reflect how
the treatment is likely to be administered in practice or the population that
might be likely to be exposed to it.

• However, in observational studies, treatment exposure is observed rather
than manipulated and it is not reasonable to consider the observed data as
reflecting a random allocation across treatment groups.

• Thus, in an observational study, there can be systematic differences
between groups of units that receive different treatments with respect to
key covariates, x , that can affect the outcome, y .
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Observational studies and confounding covariates ii

• Such covariates that are associated with the treatment and the potential
outcomes are typically called confounders or confounding covariates
because if we observe differences in average outcomes across these groups,
we can’t separately attribute these differences to the treatment or the
confounders—the effect of the treatment is thus “confounded” by these
variables.

• We briefly explore both the dangers and possibilities for using observational
data to infer causal effects. The approaches discussed all involve direct or
indirect attempts to address imbalance and lack of overlap in potential
outcomes by adjusting for potential confounding covariates that act, in
essence, as proxies for the potential outcomes. These approaches include
regression adjustments, stratification, matching, and weighting, and
combinations of these.
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Electric Company data example i

We begin again with the Electric Company data example.

• Once the treatments had been assigned in this experiment, the teacher for
each class assigned to the treatment group had the choice of replacing or
supplementing the regular reading program with the television show. That
is, all the classes in the treatment group watched the show, but some
watched it instead of the regular reading program and others received it in
addition.

• This procedural detail reveals that the treatment for the randomized
experiment is more subtle than described earlier. As implemented, the
experiment estimated the effect of making the program available, either as
a supplement or replacement for the current curriculum.

• We now consider something slightly different: the effect of using the show
to complement versus substitute for the existing curriculum.
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Electric Company data example ii
• Given our inferential goal, it would be naive to simply compare outcomes

across the children assigned to these two new treatment options—Replace
or Supplement—and expect this to estimate the treatment effect. This is
an example of the concern that prompts the advice “correlation is not
causation.”

• What if we could envision a conditional random assignment similar to the
randomized block designs discussed in the previous chapter? For instance
suppose that the probability of assignment to the Replace or Supplement
groups was determined by the average pre-test scores in that classroom,
plus, potentially, some “noise,” or variables unrelated to the potential
outcomes.

• Ignorability of the Replace or Supplement decision implies that pre-test
score is the only confounding covariate.

• When the probability of assignment to the treatment varies with the level
of a pre-treatment variable, it is important to account for that variable
when estimating the treatment effect.
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Electric Company data example iii

• Perhaps the easiest way to do this with a continuous covariate is by
including it as a regression predictor. For our example, we add to our data
frame a variable called supp that equals 0 for the replacement form of the
treatment, 1 for the supplement, and NA for the controls; this last drops
the control observations from the analysis.

• Then we estimate the following regression for each grade:

yi = β0 + β1suppi + β2xi + εi , (14)

where xi is the pre-test score. Estimates are reported in Figure 20.3 (next
slide). The uncertainties are high enough that the comparison is
inconclusive except in grade 2, but on the whole the pattern is consistent
with the reasonable hypothesis that supplementing is more effective than
replacing in the lower grades.
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Electric Company data example iv
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The assumption of ignorability i

• In randomized experiments, as previously mentioned, it is usual to assume a
ignorability hypothesis, meaning that

y 0, y 1 ⊥ z, (15)

which says that the distribution of the potential outcomes, (y 0, y 1), is the
same across levels of the treatment variable, z.

• In observational studies, unlike completely randomized studies, it is typically
implausible to assume independence between the potential outcomes and
the treatment indicator. Instead, the key structural assumption is that,
conditional on the covariates, x , the distribution of potential outcomes is
the same across levels of the treatment variable, z.

y 0, y 1 ⊥ z | x , (16)
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The assumption of ignorability ii

which is even called conditional ignorability. In other words, the treatment
has (or varieties of the treatment have) been assigned at random
conditional on the inputs in the regression analysis (in this case, pre-test
score) with respect to the potential outcomes.

• In the randomized block experiment, units are randomly assigned to
treatment conditions within strata defined by the blocking variables, w .
This design ensures that, within blocks defined by w , the distribution of the
potential outcomes is the same across treatment groups—just as is true for
all pre-treatment variables (or variables unaffected by the treatment).

• Recall that potential outcomes are conceptualized as existing before the
treatment even occurs. In the randomized block experiment, the blocking
variables are the only confounding covariates by design.

• In the observational studies we consider in this section, however, no actual
randomized assignment has taken place.
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The assumption of ignorability iii

• Crucially, however, we must make the leap of faith that we have
conditioned on the appropriate set of confounders, x , such that the
distribution of potential outcomes for observations who have the same level
of these confounders is the same across treatment groups.

• As with the randomized block experiment, this assumption is called
ignorability of the treatment assignment in the statistics literature. It is
also called selection on observables or the conditional independence
assumption in econometrics. The same assumption is often referred to as
all confounders measured or exchangeability in the epidemiology literature.
Failure to satisfy the assumption is sometimes referred to as hidden bias or
omitted variable bias, a term that is also used more generally in statistics
outside the causal context.
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The assumption of ignorability iv

• The term ignorability reflects that this assumption allows the researcher to
ignore the model for the treatment assignment as long as analyses
regarding the causal effects condition on the predictors needed to satisfy it.
If ignorability holds, causal inference does not, in theory, require modeling
the treatment assignment mechanism.

• Recall that analyses of data resulting from completely randomized
experiments need not condition on any pre-treatment variables to be
unbiased—this is why we can use a simple difference in means to estimate
causal effects. Analyses of such data can benefit from conditioning on
pre-treatment variables, however, by achieving more precise estimates
through a reduction in unexplained variation in the response variable.
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The assumption of ignorability v

• Randomized experiments that block or match satisfy ignorability
conditional on those design variables used to block or match (this assumes
that the blocking variables are associated with the outcome). One should
therefore include these blocking or matching variables when estimating
causal effects, both for concerns of bias and efficiency.

• The same holds for observational studies that satisfy ignorability. If the
probability of treatment varies with a covariate that also predicts the
outcome (a confounder), then estimation of treatment effects must
condition on this confounding covariates in order to be unbiased. If a
variable is related to the outcome but not the treatment, then we can
include it to increase efficiency.
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Imbalance and lack of complete overlap i

• Causal inference is cleanest when the units receiving the treatment are
comparable to those receiving the control. However, in an observational
study, the treatment and control groups are likely to be different in multiple
ways.

• If these differences across groups are with respect to unobserved
confounders, then ignorability cannot be satisfied and the methods in this
section are not appropriate.

• If these differences are with respect to observed confounders, then we can
try to create comparability using the approaches discussed.

• To better understand the tradeoffs between these approaches, it will help to
have a clearer understanding of two sorts of departures from
comparability—imbalance and lack of complete overlap.
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Imbalance and lack of complete overlap ii

• Imbalance with measured confounders occurs when the distributions of
confounders differ for the treatment and control groups.

• When treatment and control groups suffer from imbalance, the simple
comparison of group averages, ȳ1 − ȳ0 is not, in general, a good estimate of
the average treatment effect. Instead, some analysis must be performed to
adjust for the pre-treatment differences between the groups.

• See Figure 20.4: two examples of imbalance with respect to a single
covariate, x . In Figure 20.4a, the groups have different means (dotted
vertical lines) and different skews. In Figure 20.4b, groups have the same
mean but different skews. In both examples, the standard deviations are
the same across groups.
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Imbalance and lack of complete overlap iii

• To see the consequences of imbalance on modeling, we try to make
inferences about the effect of a treatment variable (for instance, a new
reading program) on test score, y , while adjusting for a crucial confounding
covariate, pre-test score, x . Given the true treatment effect is θ and the
relationship between the response variable, y , and the sole confounding
covariate, x , is quadratic:

treated : yi = β0 + β1xi + β2x2
i + θ + errori

controls : yi = β0 + β1xi + β2x2
i + errori .
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Imbalance and lack of complete overlap iv

• Averaging over each group separately, solving the second equation for β0,
plugging back into the first, and solving for θ yields:

θ = ȳ1 − ȳ0 − β1(x̄1 − x̄0)− β2(x̄21 − x̄20),

where ȳ1, ȳ0 denote the average of the outcome test scores in the treatment
and control groups, respectively, x̄1, x̄0 represent average pre-test scores for
treatment and control groups, respectively.

• Ignoring x and simply using the raw treatment/control comparison, ȳ1 − ȳ0,
will yield a poor estimate of the treatment effect. It will be off by the
amount β1(x̄1 − x̄0)− β2(x̄2

1 − x̄20), which corresponds to systematic
pre-treatment differences between groups 0 and 1.
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Imbalance and lack of complete overlap v

• The magnitude of this bias depends on how different the distribution of x is
across treatment and control groups (specifically with regard to variance in
this case) and how large β1 and β2 are. The closer the distributions of
pre-test scores are across treatment and control groups, the smaller this
bias will be.

• Overlap or common support describes the extent to which the support of
the covariate data is the same between the treatment and control groups.

• There is complete overlap when there exist both treatment and control
units in all neighborhoods of the covariate space. Lack of complete overlap
in the confounders creates problems, because in that setting there are
treatment observations for which we have no empirical counterfactuals (that
is, control observations with the same covariate distribution) or vice versa.
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Imbalance and lack of complete overlap vi

• Figure 20.5 displays several scenarios of lack of complete overlap with
respect to one confounder. It becomes increasingly difficult to visualize
overlap as the dimension of the confounder space gets larger. Areas with
no overlap represent conditions under which we may not want to make
causal inferences.
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What should be covered next...

We broadly focused on causal inference strategies that assume ignorability of
exposure or treatment assignment. However, when are we really confident that
we have measured all confounders? There are some extensions/alternatives.

• Estimating causal effects indirectly using instrumental variables: in some
situations when the argument for ignorability of the treatment assignment
seems weak, there may exist another variable that does appear to be
randomly assigned or can be considered as such. If this variable, called the
instrument, I, is predictive of the treatment, z , then we may be able to use
it to isolate a particular kind of targeted causal estimand. The instrument
should only affect the treatment assignment but not have a direct effect on
the outcome.

• Regression discontinuity: often the assumption of ignorability is not
plausible; that is, it does not make sense to assume that treatment
assignment depends only on observed pre-treatment predictors. However,
we can design observational studies for which the assignment mechanism is
entirely known (as with a controlled experiment) but for which no explicit
randomization is involved.

• For more details, see Chapter 21 of the ROS book.
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Sum-up about the Electric Company data example

• You find the data in the official Moodle course page.
• For further open discussion in class:

• Repeat all the analysis.
• Fit the models (6), (7) and (8) from a Bayesian and a frequentist

point of view, provide the estimates (also from a graphical
perspective) and comment the results.

• Fit a multilevel/hierarchical model on these data and compare the
results with those previously obtained.
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Further reading

To properly capture the contents and the details about causal inference
modeling, we strongly suggest the following further reading:

• Chapter 18, 19, and 20 from Regression and Other Stories, by A.
Gelman, J. Hill, and A. Vehtari.

• Chapter 9 and 10 from Data Analysis using Regression and
Multilevel/Hierarchical models, by A. Gelman and J. Hill.
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