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Time domain representation

• In digital signal processing, signals are sequences of numbers (called samples) function of an independent

variable (called time), which is an integer in the interval [−∞,+∞].

• In the following, we will denote the generic sequence as {x(n)}, where x(n) represents the sample of the

sequence at time n. [Later, when there will be no ambiguity, we will directly represent our sequence as

x(n).]
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Representations of sequences

• We will represent or define a sequence through the use of

• a mathematical law:

{x(n)} = e|n|

{x(n)} =

{
2 n = 0

1 n ̸= 0

• a sequence of numbers between { }:

{x(n)} = {. . . , 0.95,−0.2, 2.1, 1.2,−3.2, . . .}
↑

where the arrow denotes the element at n = 0, with elements to the left of the arrow corresponding to n < 0,

and elements to the right corresponding to n > 0.

• The sequence {x(n)} is often generated by sampling a continuous-time signal xa(t) (an analog signal) at

uniformly spaced intervals:

x(n) = xa(t)
∣∣∣
t=nT

= xa(nT ).

• The interval time T that separates two consecutive samples is referred to as the sampling period. Its

reciprocal is known as the sampling frequency FT = 1
T
.

• In either scenario, x(n) is referred to as the n-th sample of the sequence.
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Length of a discrete-time sequence

• Discrete-time signals, i.e., sequences, possess either finite or infinite length.

• A finite-length sequence is defined only within the interval

N1 ≤ n ≤ N2

where −∞ < N1 ≤ N2 < +∞, and the sequence has length (or duration):

N = N2 − N1 + 1.

• A sequence of length N comprises only N samples. It can be transformed into an infinite-length sequence

by assigning 0 values outside the [N1,N2] interval. This operation is known as zero-padding.
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Infinite-length sequences

• There are three types of infinite-length sequences:

• Causal sequences, when x(n) = 0 ∀n < 0. (The sequence has non-zero element only for n ≥ 0).

• Anti-causal sequences, when x(n) = 0 ∀n > 0.

• Two-sided sequences, with non-zero elements both for n < 0 and n ≥ 0.

• In the following, we will frequently examine finite-length causal sequences, which are defined solely in the

interval [0,N − 1].
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Operations on sequences

• Given two sequences x(n) and y(n) we define the following operations:

• The product of two sequences:

w1(n) = x(n) · y(n),

This operation is also called modulation.

• The scalar multiplication of one sequence for a constant A:

w2(n) = Ax(n)
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Operations on sequences

• The addition of two sequences:

w3(n) = x(n) + y(n),

• The time-shift :

w4(n) = x(n − N).

If N > 0, we say that the sequence has been delayed by N samples.

If N < 0, we say that the sequence has been time advanced of |N| samples.

Unit delay: Unit advance:
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Operations on sequences: delay examples
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Operations on sequences: delay examples

{x(n)} = {. . . ,−3,−2,−1, 0, 2, 4, . . .}
↑

{x(n − 1)} = {. . . ,−3,−2,−1, 0, 2, 4, . . .}
↑

{x(n)} = {. . . ,−3,−2,−1, 0, 2, 4, . . .}
↑
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Operations on sequences

• The time-reversal or folding operation:

w5(n) = x(−n)

• The pick-off node,

• An example of time-reversal:

{x(n)} = {. . . ,−3,−2,−1, 0, 2, 4, . . .}
↑

{x(−n)} = {. . . , 4, 2, 0,−1,−2,−3, . . .}
↑
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Operations on sequences: folding example
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Classification of sequences according to symmetry properties

• A real signal is called symmetric or even if:

x(n) = x(−n)

• A real signal is called anti-symmetric or odd if:

x(n) = −x(−n)

• A real signal can be decomposed in the addition of an even and an odd signal:

x(n) = xev(n) + xod(n)

xev(n) =
1

2

[
x(n) + x(−n)

]
xod(n) =

1

2

[
x(n)− x(−n)

]
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Classification of sequences according to symmetry properties

• A complex signal is called conjugate-symmetric if

x(n) = x∗(−n),

which means that the real part of x(n) is even and the imaginary part is odd.

• A complex signal is called conjugate-antisymmetric if

x(n) = −x∗(−n),

which means that the real part of x(n) is odd and the imaginary part is even.

• A complex signal can be decomposed in the addition of a conjugate-symmetric and a

conjugate-antisymmetric signal:

x(n) = xcs(n) + xca(n)

xcs(n) =
1

2

[
x(n) + x∗(−n)

]
xca(n) =

1

2

[
x(n)− x∗(−n)

]
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Classification of sequences according to periodicity or aperiodicity

• A sequence such that xp(n) = xp(n + kN) for all n, with N ∈ N, N > 0, and k ∈ Z, is called a periodic

sequence with period N.

• The smallest N > 0 for which xp(n) = xp(n + kN) is called fundamental period of the sequence.

• A sequence that is not periodic is called aperiodic.

A. Carini Digital Signal and Image Processing 14 / 27



Classification of sequences according to energy and power

• The energy Ex of a signal x(n) is:

Ex =
+∞∑

n=−∞

∣∣x(n)∣∣2.
• A finite length sequence has always finite energy.

• An infinite-length sequence can have finite or infinite energy.

• For example, the sequence

x1(n) =


1

n
n ≥ 1

0 n ≤ 0

has energy Ex =
+∞∑
n=1

(
1

n

)2

=
π2

6
.

• The sequence

x2(n) =


1√
n

n ≥ 1

0 n ≤ 0

has energy Ex =
+∞∑
n=1

(
1

n

)
= +∞.
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Classification of sequences according to energy and power

• The average power of an aperiodic signal is:

Px = lim
K→+∞

1

2K + 1

K∑
n=−K

∣∣x(n)∣∣2.
• The average power can be related to the energy by defining the energy in the interval [−K ,K ]:

Ex,K =
K∑

n=−K

∣∣x(n)∣∣2,
Px = lim

K→+∞

Ex,K

2K + 1
.

From this relation we see that a signal with fixed energy has zero average power.

• The average power of an infinite-length sequence can be finite or infinite.

• For example, the signal x(n) = a for all n has average power Px = a2.

• The average power of a periodic signal xp(n) of period N is

Px =
1

N

N−1∑
n=0

∣∣xp(n)∣∣2
• A signal with finite energy is called an energy signal.

• A signal with finite average power is called a power signal.
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Other classifications

• A sequence is called bounded if there exists a constant Bx such that∣∣x(n)∣∣ ≤ Bx ∀n.

• A sequence is called absolutely summable if

+∞∑
n=−∞

∣∣x(n)∣∣ < +∞.

• A sequence is called square-summable if

+∞∑
n=−∞

∣∣x(n)∣∣2 < +∞.

An example of a sequence that is square-summable but not absolutely summable is the sinc sequence:

x(n) =


sin[ωcn]

πn
n ̸= 0

ωc

π
n = 0
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Basic sequences: unit sequence

• The unit sample sequence δ(n), also called discrete-time impulse or unit impulse, is defined by

δ(n) =

{
1 n = 0

0 n ̸= 0
.

Thus,

δ(n − k) =

{
1 n = k

0 n ̸= k
.
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Basic sequences: unit sequence

• Any sequence can be represented as the sum of infinite unit impulses, each shifted in time and

appropriately weighted.

• For example,

{. . . , 0.95,−0.2, 1.2,−3.2, 1.4 . . .}
↑

= . . . 0.95 · {δ(n + 2)} − 0.2 · {δ(n + 1)}+ 1.2 · {δ(n)}
−3.2 · {δ(n − 1)}+ 1.4{δ(n − 2)}+ . . .

• As a general rule, we have {
a(n)

}
=

+∞∑
m=−∞

a(m){δ(n −m)}

where δ(n −m) are the time-shifted unit impulses and a(m) are the corresponding weights.
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Basic sequences: unit step

• The unit step sequence is defined by

µ(n) =

{
1 n ≥ 0

0 n < 0
.

• Note that:

µ(n) =
+∞∑
m=0

δ(n −m)

δ(n) = µ(n)− µ(n − 1)
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Basic sequences: real sinusoidal sequence

• The real sinusoidal sequence is defined by

x(n) = A cos
(
ω0n + ϕ

)
= A cos

(
2πf0n + ϕ

)
ω0 = 2πf0 is called normalized angular frequency or simply angular frequency.

f0 is called normalized frequency or simply frequency.

ϕ is called initial phase.

A is the amplitude of the sinusoidal signal.
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Basic sequences: real exponential sequence

• The real exponential sequence is defined by

x(n) = Aan A, a ∈ R

• If 0 < a < 1, it is an exponentially decreasing sequence.

• If a > 1, it is an exponentially increasing sequence.

• If −1 < a < 0, it is an alternated exponentially decreasing sequence.

• If a < −1, it is an alternated exponentially increasing sequence.
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Basic sequences: complex exponential sequence

• The complex exponential sequence is defined by

x(n) = Aan a = r · e jω0 = eσ0+jω0

with A, a ∈ C.

• Since A =
∣∣A∣∣ · e jϕ, we can also write:

x(n) =
∣∣A∣∣ · eσ0n · e j

(
ω0n+ϕ

)
=

∣∣A∣∣eσ0n
[
cos

(
ω0n + ϕ

)
+ j sin

(
ω0n + ϕ

)]
.

• The real and imaginary parts of the complex exponential sequence are sinusoids with amplitude that

increase or decrease exponentially.

A notable special case of the complex exponential sequence is the generalized sinusoidal sequence

x(n) = e j
(
ω0n+ϕ

)
= cos

(
ω0n + ϕ

)
+ j sin

(
ω0n + ϕ

)
.
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Properties of sinusoidal sequences

• Property: A sinusoidal (or generalized sinusoidal) sequence is periodic if and only if the normalized

frequency f0 is a rational number, i.e., f0 ∈ Q.

• Proof: A sequence x(n) is periodic if and only if x(n) = x(n + N) for some N > 0 and for all n.

Let us impose this equality. In our case:

A · cos
[
2πf0n + ϕ

]
= A · cos

[
2πf0(n + N) + ϕ

]
Thus, the arguments can differ only by a multiple of 2π:

2πf0(n + N) + ϕ = 2πf0n + ϕ+ 2πk

with k ∈ Z. By simplifying the last identity we arrive to:

f0N = k =⇒ f0 =
k

N
∈ Q.

Q.E.D.
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Properties of sinusoidal sequences

• Property: Two sinusoidal sequences with the same amplitude and phase, whose angular frequencies

differ for a multiple of 2π, are equal.

• Proof: Let us consider

x1(n) = A cos
(
ω1n + ϕ

)
x2(n) = A cos

(
ω2n + ϕ

)
with ω2 = ω1 + k · 2π and k ∈ Z. Thus

x2(n) = A cos
(
ω1n + k2πn + ϕ

)
=

= A cos
(
ω1n + ϕ

)
= x1(n)

Q.E.D.

• In the sinusoidal sequence

x(n) = A cos
(
ω0n + ϕ

)
,

the frequency of oscillations in x(n) increases with ω0 varying from 0 to π.

The frequency of oscillations in x(n) is maximum for ω0 = π (since x(n) = . . . ,−A,+A,−A,+A, . . .).

The frequency of oscillations in x(n) decreases with ω0 varying from π to 2π.

Eventually, this behavior repeats (with period 2π) in the intervals [2π, 4π], [4π, 6π], etc..
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Properties of sinusoidal sequences

• Let us consider the sinusoidal function

xa(t) = A cos(Ωt + ϕ) = A cos(2πft + ϕ).

Let us sample it with a sampling frequency Fs =
1

T
:

x(n) = xa(t)
∣∣∣
t=nT

= A cos(2πfnT + ϕ)

= A cos(2π
f

Fs
n + ϕ)

This is a sinusoidal sequence with normalized frequency f0 =
f

Fs
. It explains the origin of the term

’normalized frequency’: it is normalized with respect to the sampling frequency.

If 0 < 2π
f

Fs
< π, i.e., Fs > 2f , the sinusoidal sequence follows the behavior of the sinusoidal function:

as f increases, f0 increases, and the frequency of oscillation increases.

On the contrary, if 2π
f

Fs
> π, the sinusoidal sequence is unable to accurately follow the behavior of the

sinusoidal function.
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