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Time domain representation

e In digital signal processing, signals are sequences of numbers (called samples) function of an independent
variable (called time), which is an integer in the interval [—o0, +oc].

e In the following, we will denote the generic sequence as {x(n)}, where x(n) represents the sample of the
sequence at time n. [Later, when there will be no ambiguity, we will directly represent our sequence as

x(n)]
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Figure 2.1: Graphical representation of a discrete-time sequence {x[n]}.
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Representations of sequences DEGLI STUDI
DITRIESTE

e We will represent or define a sequence through the use of

e a mathematical law:

{x(m) = e
2 n=20
wop={ 3 020

e a sequence of numbers between { }:

{x(n)} = {...,0.95,—0.2,2T.1,1.2,—3.2,...}

where the arrow denotes the element at n = 0, with elements to the left of the arrow corresponding to n < 0,
and elements to the right corresponding to n > 0.
e The sequence {x(n)} is often generated by sampling a continuous-time signal x,(t) (an analog signal) at
uniformly spaced intervals:
x(n) = xa(t) = x3(nT).

t=nT
e The interval time T that separates two consecutive samples is referred to as the sampling period. Its
reciprocal is known as the sampling frequency Fr = %

e In either scenario, x(n) is referred to as the n-th sample of the sequence.
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Length of a discrete-time sequence

e Discrete-time signals, i.e., sequences, possess either finite or infinite length.

e A finite-length sequence is defined only within the interval
Ny <n< N>
where —oo < N; < N> < +o00, and the sequence has length (or duration):
N =N, — N, +1.

e A sequence of length N comprises only N samples. It can be transformed into an infinite-length sequence
by assigning 0 values outside the [N1, N] interval. This operation is known as zero-padding.
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Infinite-length sequences
‘ DITRIESTE

e There are three types of infinite-length sequences:
e Causal sequences, when x(n) =0 Vn < 0. (The sequence has non-zero element only for n > 0).

e Anti-causal sequences, when x(n) =0 Vn > 0.
e Two-sided sequences, with non-zero elements both for n < 0 and n > 0.

e In the following, we will frequently examine finite-length causal sequences, which are defined solely in the

interval [0, N — 1].
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Operations on sequences
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e Given two sequences x(n) and y(n) we define the following operations:

e The product of two sequences:

This operation is also called modulation.

x(n)

\z z w1(n)=x(n) - y(n)
y(n) S
e The scalar multiplication of one sequence for a constant A:

wa(n) = Ax(n)

x(n) & wo(n) =A x(n)

3>
>
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e The addition of two sequences:
ws(n) = x(n) + y(n),
x(n)

\C ws(n)=x(n) + y(n)
y(n) 7
e The time-shift :

wa(n) = x(n — N).

If N > 0, we say that the sequence has been delayed by N samples.
If N < 0, we say that the sequence has been time advanced of |N| samples.

Unit delay: Unit advance:
Xx(n) Wy(n)=x(n-1) x(n) ws(n)=x(n+1)
— > 1 —> AN I T
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Operations on sequences: delay examples
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Operations on sequences: delay examples

(x(n)}= {...,—3,-2,-1,0,2,4,...}
T
{x(n—=1)}= {..,-3,-2,-1,0,2,4,...}
T
(x(mM}= {...,-3,-2,-1,0,2,4,...}
T
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Operations on sequences

e The time-reversal or folding operation:
ws(n) = x(—n)

e The pick-off node,

x(n) x(n)

x(n)

e An example of time-reversal:

(x(mMY = {...,-3,-2,-1,0,2,4,...}
)

(x(=n)} = {...,4,2,0,—1,-2,-3,...}
T
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Classification of sequences according to symmetry properties 0 DEGLI STUDI

e A real signal is called symmetric or even if:

x(n) = x(—n)
e A real signal is called anti-symmetric or odd if:
x(n) = —x(—n)

e A real signal can be decomposed in the addition of an even and an odd signal:

x(n) = Xev(n) + Xoa(n)
[x(n) + x(—n)]
Xod(n) = > [x(n) = x(=n)]

Xev(n) =

= N
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Classification of sequences according to symmetry properties 0 DEGLI STUDI

e A complex signal is called conjugate-symmetric if

which means that the real part of x(n) is even and the imaginary part is odd.

e A complex signal is called conjugate-antisymmetric if

which means that the real part of x(n) is odd and the imaginary part is even.
e A complex signal can be decomposed in the addition of a conjugate-symmetric and a
conjugate-antisymmetric signal:
x(n) = xes(n) + Xca(n)
1 *
Xes(n) = 5 [x(n) 4+ x"(—n)]

seolli]) = %[x(n) —x*(—n)]
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Classification of sequences according to periodicity or aperiodicity

e A sequence such that x,(n) = x,(n + kN) for all n, with N € IN, N > 0, and k € Z, is called a periodic
sequence with period N.

e The smallest N > 0 for which x,(n) = x,(n + kN) is called fundamental period of the sequence.

e A sequence that is not periodic is called aperiodic.

A. Carini Digital Signal and Image Processing 14 /27



Classification of sequences according to energy and power ( DEGLI STUDI

e The energy E, of a signal x(n) is:

n=—oo

e A finite length sequence has always finite energy.

e An infinite-length sequence can have finite or infinite energy.
e For example, the sequence
1
— n>1
Xl(n) = n
0 n<0
+oo 2 2
1 s
h E= =] =—.
as energy nz:; <n) 6
e The sequence
1
— n>1
x2(n) = Vn -
0 n<O0

+oo
has energy E, = Z (%) = +o0.

n=1
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Classification of sequences according to energy and power

e The average power of an aperiodic signal is:

PXIKLIJrooZK—f—l Z‘

e The average power can be related to the energy by defining the energy in the interval [-K, K]:

Eck= Y |x(n)|,

5
Pe= lim ==K
K—+oco 2K + 1
From this relation we see that a signal with fixed energy has zero average power.

The average power of an infinite-length sequence can be finite or infinite.

For example, the signal x(n) = a for all n has average power P, = a°.

The average power of a periodic signal x,(n) of period N is

1 N—1 )
Px - N Z ‘Xp(n)|
n=0

A signal with finite energy is called an energy signal.

A signal with finite average power is called a power signal.
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e A sequence is called bounded if there exists a constant By such that
‘X(n)! < B« vn.

e A sequence is called absolutely summable if

+o0o
Z ’x(n)‘ < +o0.
e A sequence is called square-summable if
+o0
Z |x(n)|2 < Ho0.
n=—oo

An example of a sequence that is square-summable but not absolutely summable is the sinc sequence:

sin[wen]

_— 0
x(n) = w. TN n ?i .

™ n=
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e The unit sample sequence §(n), also called discrete-time impulse or unit impulse, is defined by

5(n){1 n=20

0 n#0
Thus,
1 n=k
— k) =
o(n = k) {0 n#k
I |
1 ]
—~ J3 2101 2 3 4 56 432201 0 2 34 5 6
{a) (b)

Figure 2.20: (a) The unit sample sequence {§[n]} and (b) the shifted unit sample sequence {§[n — 2]}.
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Basic sequences: unit sequence ; EGLI STUDI

e Any sequence can be represented as the sum of infinite unit impulses, each shifted in time and
appropriately weighted.

e For example,

{...,0.95,-0.2,1.2,-3.2,1.4...} =...0.95-{6(n+2)} —0.2-{6(n+1)}+1.2-{6(n)}
0 —32-{o(n—1)} +1.4{6(n—2)} +...
e As a general rule, we have
{a(m} = > a(m)}{s(n—m)}

where §(n — m) are the time-shifted unit impulses and a(m) are the corresponding weights.
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Basic sequences: unit step

e The unit step sequence is defined by

T
S 3 A Ih1 53456
e Note that: -
p(n) =>_6(n—m)
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e The real sinusoidal sequence is defined by
x(n) = Acos (won + ¢)

= Acos (27rfbn + qb)

wo = 27fy is called normalized angular frequency or simply angular frequency.
fo is called normalized frequency or simply frequency.

¢ is called initial phase.

A is the amplitude of the sinusoidal signal.
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Basic sequences: real exponential sequence (7 BF%;ESSTT%N

e The real exponential sequence is defined by

x(n) = Aa" AaceR

e If 0 < a< 1, itis an exponentially decreasing sequence.

TTTTT?? 99900aac

-10 5 0 5 10

e If a > 1, it is an exponentially increasing sequence.

. omoww?"fTT?TﬁH

-10 5 0 5 10

e If —1 < a<0,itisan alternated exponentially decreasing sequence.
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e If a < —1, it is an alternated exponentially increasing sequence.
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Basic sequences: complex exponential sequence DEGLI STUDI

e The complex exponential sequence is defined by
x(n) = Aa" a=r.“ = g0t
with A, a € C.
e Since A = !A’ -e/?, we can also write:
x(n) = |A} o ej(“°"+¢)

= |A|e”°"[cos (won+ @) + jsin (won + qﬁ)]

e The real and imaginary parts of the complex exponential sequence are sinusoids with amplitude that
increase or decrease exponentially.

A notable special case of the complex exponential sequence is the generalized sinusoidal sequence

x(n) = ej(“°"+d’) = cos (won + @) + jsin (won + ¢).
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Properties of sinusoidal sequences

e Property: A sinusoidal (or generalized sinusoidal) sequence is periodic if and only if the normalized

frequency fy is a rational number, i.e., fo € Q.

e Proof: A sequence x(n) is periodic if and only if x(n) = x(n+ N) for some N > 0 and for all n.
Let us impose this equality. In our case:

A- cos [2rfon + ¢] = A- cos [2rfo(n+ N) + ¢]
Thus, the arguments can differ only by a multiple of 27:
2rfo(n+ N) + ¢ = 2nfon + ¢ + 27k

with k € Z. By simplifying the last identity we arrive to:

foN = k — fo NEQ

Q.E.D.
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Properties of sinusoidal sequences DEGLI STUDI
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e Property: Two sinusoidal sequences with the same amplitude and phase, whose angular frequencies
differ for a multiple of 27, are equal.

e Proof: Let us consider
x1(n) = Acos (win + ¢)

x2(n) = Acos (w2n + ¢)
with w2 = w1 + k-2m and k € Z. Thus

x>(n) = Acos (wln + k2mwn + ¢) =

= Acos (wln + zj)) = x1(n)

Q.E.D.
e |n the sinusoidal sequence
x(n) = Acos (won + ¢),
the frequency of oscillations in x(n) increases with wo varying from 0 to .
The frequency of oscillations in x(n) is maximum for wo = 7 (since x(n) = ..., —A,+A, —A,+A,...).

(
The frequency of oscillations in x(n) decreases with wo varying from 7 to 27.
Eventually, this behavior repeats (with period 27) in the intervals [27, 4], [47, 67], etc..
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Properties of sinusoidal sequences

e Let us consider the sinusoidal function

A. Carini

Xa(t) = Acos(Qt + ¢) = Acos(2nft + ¢).

1
Let us sample it with a sampling frequency Fs = ?:
x(n) = xa(t) - Acos(2rfnT + ¢)
t=n

=A cos(27r,__in + @)

This is a sinusoidal sequence with normalized frequency fy = Fis It explains the origin of the term
'normalized frequency’: it is normalized with respect to the sampling frequency.

If 0 < 2m— < m, i.e., Fs > 2f, the sinusoidal sequence follows the behavior of the sinusoidal function:
as f increa;es, fo increases, and the frequency of oscillation increases.

On the contrary, if 27TL > m, the sinusoidal sequence is unable to accurately follow the behavior of the

Fs
sinusoidal function.
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