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Introduction

• We have observed that each sequence can be expressed in the time domain as the weighted sum of

infinite impulse sequences shifted in time:

x(n) =
+∞∑

m=−∞

x(m)δ(n −m).

• In this chapter, we will explore an alternative representation of sequences through the weighted sum of

infinite complex exponential sequences of the form e−jωn, where ω represents the normalized angular

frequency.

• This approach allows us to achieve a meaningful representation of sequences in the frequency domain

and introduces the concept of signal spectrum.
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The Fourier series

• Let us assume that xp(t) is a complex function (xp(t) ∈ C), periodic with period T , continuous in t (with

t ∈ R).

• Then,

xp(t) =
+∞∑

n=−∞

cn · e j
2π
T

nt

where

cn =
1

T

∫ + T
2

− T
2

f (t) e−j 2π
T

nt dt

• For the Euler’s formula

e j θ = cos θ + j sin θ,

and xp(n) is the sum of infinite sine and cosine functions at different frequencies, with each sine/cosine

function multiplied by an appropriate weight coefficient.

A. Carini Digital Signal and Image Processing 3 / 49



The Fourier series

• We can represent the function xp(t) in the angular frequency domain
2π

T
n = Ω by associating to every

discrete frequency
2π

T
n the corresponding coefficient cn:

• The periodic signal is represented in the frequency domain by an infinite number of discrete “lines”,

corresponding to the coefficients of the Fourier series expansion of the signal.

• These lines are uniformly spaced and separated by
2π

T
.
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The Continuous-Time Fourier Transform

• The frequency domain representation of a continuous-time signal xa(t) is given by the Continuous-Time

Fourier Transform (CTFT), defined as

Xa(jΩ) =

∫ +∞

−∞
xa(t) e

−jΩtdt

• The CTFT is also referred to as the Fourier spectrum, or simply spectrum, of the continuous-time signal.

• The continuous-time signal xa(t) can be reconstructed from its CTFT by means of the inverse

continuous-time Fourier transform (ICTFT), defined as

xa(t) =
1

2π

∫ +∞

−∞
Xa(jΩ)e

jΩtdΩ.

A. Carini Digital Signal and Image Processing 5 / 49



The Continuous-Time Fourier Transform

• Note the bijective mapping between the signal xa(t) and its transform:

xa(t)
CTFT←→ Xa(jΩ)

• Ω is a real variable representing the continuous-time angular frequency, measured in rad/s.

• The inverse transform can be interpreted as the linear combination of infinitesimally small complex

exponential signals of the form 1
2π
e jΩtdΩ.

• We can also express the transform in polar form:

Xa(jΩ) =
∣∣Xa(jΩ)

∣∣ · e jθa(Ω),

where θa(Ω) = arg {Xa(jΩ)}.

•
∣∣Xa(jΩ)

∣∣ is referred to as the magnitude spectrum, and θa(Ω) is called the phase spectrum.

• Both
∣∣Xa(jΩ)

∣∣ and θa(Ω) are real functions of the angular frequency Ω.

A. Carini Digital Signal and Image Processing 6 / 49



The Continuous-Time Fourier Transform – existence

• Note that not all signals admit the CTFT. The integral
∫ +∞
−∞ ·dt may not converge.

• The CTFT exists if the continuous-time signal xa(t) satisfies the Dirichlet conditions:

1. The signal has a finite number of discontinuities and a finite number of maxima and minima in any

finite interval.

2. The signal is absolutely integrable, i.e., ∫ +∞

−∞

∣∣xa(t)∣∣ < +∞

• If these conditions are satisfied,
∫ +∞
−∞ xa(t)e

−jΩtdt converges and xa(t) =
1
2π

∫ +∞
−∞ Xa(jΩ)e

jΩtdΩ apart

from the discontinuity points.
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CTFT Example

•

xa(t) =

{
e−αt t ≥ 0

0 t < 0
,

with 0 < α < +∞.

• This signal satisfies the Dirichlet conditions: it has a unique discontinuity and∫ +∞

−∞

∣∣xa(t)∣∣ = ∫ +∞

0

e−αtdt = − e−αt

α

∣∣∣∣+∞

0

= 0−
(
− 1

α

)
=

1

α
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CTFT Example

CTFT[xa(t)] = Xa(jΩ) =

∫ +∞

0

e−αt e−jΩtdt =

∫ +∞

0

e−(α+jΩ)tdt =
α− jΩ

α2 +Ω2∣∣Xa(jΩ)
∣∣ =√Re{}2 + Im{}2 = 1√

α2 +Ω2

θa(Ω) = arctan
Im{}
Re{} = −arctanΩ

α
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CTFT of a Dirac delta function

• The Dirac delta function δ(t) is a function of the continuous-time variable t with notable properties.

• It is defined as:

δ(t) =

{
0 t ̸= 0

+∞ t = 0

with ∫ +∞

−∞
δ(t)dt = 1.

• It is the limit, as T approaches 0, of the rectangular pulse

∆T (t) =


1

T
− T

2
≤ t ≤ +

T

2
0 elsewhere
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Properties of Dirac delta function

∫ +∞

−∞
f (t) δ(t)dt = f (0)∫ +∞

−∞
f (t) δ(t − t0)dt = f (t0)

CTFT
{
δ(t)

}
= ∆(jΩ) =

∫ +∞

−∞
δ(t)e−jΩtdt = 1

CTFT
{
δ(t − t0)

}
=

∫ +∞

−∞
δ(t − t0)e

−jΩtdt = e−jΩt0
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Properties of CTFT

• Linearity of the CTFT: If Fa(jΩ) is the CTFT of fa(t) and Ga(jΩ) is the CTFT of ga(t), the CTFT of

xa(t) = αfa(t) + βga(t), with α and β constants, is

Xa(jΩ) = αFa(jΩ) + βGa(jΩ).

• Time-shift property: If Ga(jΩ) is the CTFT of ga(t), the CTFT of xa(t) = ga(t − t0), with t0 constant, is

Ga(jΩ)e
−jΩt0 .

• Symmetry property of the CTFT: The CTFT of a real signal xa(t) ∈ R satisfies the property

Xa(−jΩ) = X ∗
a (jΩ)

where x∗ is the conjugate of x .

• Energy density spectrum: The total energy Ex of a continuous-time signal xa(t) is given by

Ex =

∫ +∞

−∞

∣∣xa(t)∣∣2dt.
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Energy density spectrum

• The total energy Ex of a continuous-time signal xa(t) is given by

Ex =

∫ +∞

−∞

∣∣xa(t)∣∣2dt.
• An absolutely integrable signal, i.e., a signal for which

∫ +∞

−∞

∣∣xa(t)∣∣dt < +∞, has finite energy, but

there exist signals with finite energy which are not absolutely integrable. Moreover, there are signals with

infinite energy (for example, periodic signals).

• If xa(t) admits Xa(jΩ), then Parseval’s Theorem holds:

Ex =

∫ +∞

−∞

∣∣xa(t)∣∣2dt = 1

2π

∫ +∞

−∞

∣∣Xa(jΩ)
∣∣2dΩ

• Sxx(Ω) =
∣∣Xa(jΩ)

∣∣2 is also called Energy density spectrum of the signal xa(t), and it provides the energy

content of the signal at angular frequency Ω.

• The energy of the signal xa(t) in a frequency range Ωa ≤ Ω ≤ Ωb can be computed by integrating Sxx(Ω)

over the interval [Ωa,Ωb]:

Ex,r =
1

2π

∫ Ωb

Ωa

Sxx(Ω)dΩ.
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Band limited signals

• A full-band continuous-time signal xa(t) has a spectrum occupying the entire frequency range.

• A signal is called band-limited if its spectrum occupies only a portion of the frequency range

−∞ < Ω < +∞.

• An ideal band-limited signal has spectrum that is zero outside a certain range Ωa ≤
∣∣Ω∣∣ ≤ Ωb, with

0 ≤ Ωa,Ωb ≤ +∞, i.e.,

Xa(jΩ) =

{
0 0 ≤ |Ω| < Ωa

0 Ωb < |Ω| < +∞

• It is not possible to generate an ideal band-limited signal, but in most applications, it suffices to ensure

that the signal has sufficiently low energy outside the interval [Ωa,Ωb] of interest.

• A signal is called low-pass if its spectrum occupies the frequency range 0 ≤ |Ω| ≤ Ωp, where Ωp is called

the signal bandwidth.

• A signal is called high-pass if its spectrum occupies the frequency range Ωp ≤ |Ω| ≤ +∞, and the signal

bandwidth extends from Ωp to ∞.

• Eventually, a signal is called passband if its spectrum occupies the frequency range

0 < ΩL ≤ |Ω| ≤ ΩH < +∞, where ΩH − ΩL is the signal bandwidth.
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The Discrete-Time Fourier Transform

• The frequency domain representation of a discrete-time signal is given by the Discrete-Time Fourier

Transform (DTFT).

• This transform expresses a sequence as a weighted combination of complex exponential sequences of the

form e jωn, where ω is the normalized angular frequency, and ω ∈ R.

• If it exists, the DTFT of a sequence is unique and the original sequence can be recovered from its

transform with an inverse transform operation.

• The DTFT X (e jω) of a sequence x(n) is defined by:

X (e jω) =
+∞∑

n=−∞

x(n)e−jωn.
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DTFT of a unit impulse sequence

• Let us compute the DTFT of the unit impulse sequence δ(n),

δ(n) =

{
1 n = 0

0 n ̸= 0

∆(e jω) =
+∞∑

n=−∞

δ(n)e−jωn = 1 · e−jω0 = 1

A. Carini Digital Signal and Image Processing 16 / 49



DTFT of a causal exponential sequence

• Let us compute the DTFT of the causal exponential sequence x(n) = αnµ(n), where |α| < 1 and µ(n) is

the unit step sequence.

X (e jω) =
+∞∑

n=−∞

αnµ(n)e−jωn =
+∞∑
n=0

αne−jωn =
+∞∑
n=0

(
αe−jω

)n
=

1

1− αe−jω

since |αe jω| = |α| < 1.

• To derive this result, we have used the following identity:

+∞∑
n=0

qn =
1

1− q
if |q| < 1.
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Inverse DTFT

• The DTFT is a periodic function of ω with a period of 2π:

X (e j(ω+2πk)) =
+∞∑

n=−∞

x(n)e−j(ω+2πk)n =
+∞∑

n=−∞

x(n)e−jωn · e−j2πkn =
+∞∑

n=−∞

x(n)e−jωn = X (e jω),

where we used the fact that e−j2πkn = 1 for k and n integers.

• Note that
+∞∑

n=−∞

x(n)e−jωn is the Fourier series expansion of the periodic function X (e jω).

• The coefficients of the Fourier series, x(n), can be computed from X (e jω) using the Fourier integral:

x(n) =
1

2π

∫ +π

−π

X (e jω)e jωndω,

which is the Inverse Discrete-Time Fourier Transform (IDTFT).

• The IDTFT can be interpreted as the linear combination of infinitesimally small complex exponential

signals of the form
1

2π
e jωndω weighted by the complex function X (e jω).
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IDTFT proof

• Let us verify that

x(n) =
1

2π

∫ +π

−π

X (e jω)e jωndω.

• By replacing the definition of X (e jω) with

X (e jω) =
+∞∑

l=−∞

x(l)e−jωl

we have

x(n) =
1

2π

∫ +π

−π

+∞∑
l=−∞

x(l)e−jωle jωndω =

and by interchanging
∫

and
∑

:

=
1

2π

+∞∑
l=−∞

x(l)

∫ +π

−π

e jω(n−l)dω

• For computing this integral, we will consider two cases.
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IDTFT proof

• If n ̸= l ,∫ +π

−π

e jω(n−l)dω =

∫ +π

−π

cos
[
ω(n−l)

]
dω+j

∫ +π

−π

sin
[
ω(n−l)

]
dω =

sin
[
ω(n − l)

]
(n − l)

∣∣∣∣∣
+π

−π

=
2 sin

[
π(n − l)

]
(n − l)

= 0.

• If n = l , ∫ +π

−π

e jω(n−l)dω =

∫ +π

−π

e jω0dω = 2π.

• Thus, in general, it is ∫ +π

−π

e jω(n−l)dω = 2πδ(n − l)

where δ(n) is the unit impulse sequence.

• Eventually, we have

1

2π

+∞∑
l=−∞

x(l)

∫ +π

−π

e jω(n−l)dω =
+∞∑

l=−∞

x(l)δ(n − l) = x(n)

Q.E.D.
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More on DTFT

• In general, the DTFT of a sequence is a complex function of the real variable ω:

X (e jω) = Xre(e
jω) + jXim(e jω)

with Xre(e
jω) and Xim(e jω) ∈ R.

Xre(e
jω) =

1

2

[
X (e jω) + X ∗(e jω)

]
,

Xim(e jω) =
1

2j

[
X (e jω)− X ∗(e jω)

]
.

• The DTFT can be expressed in polar form as

X (e jω) =
∣∣∣X (e jω)

∣∣∣ e jθ(ω)

where
∣∣X (e jω)

∣∣ is called magnitude spectrum, and θ(ω) is called the phase spectrum:

θ(ω) = arctan
Xim(e jω)

Xre(e jω)

• Note that there is an indetermination of 2πk, with k ∈ Z, in the knowledge of θ(ω).
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Symmetry properties of the DTFT of a real sequence

• If x(n) ∈ R:

X (e−jω) = X ∗(e jω).

In fact:

X ∗(e jω) =
+∞∑

n=−∞

x∗(n)e jωn =
+∞∑

n=−∞

x(n)e−j(−ω)n = X (e−jω).

• For this relation, if x(n) ∈ R we have that

Xre(e
−jω) = Xre(e

jω) is an even function,

Xim(e−jω) = −Xim(e jω) is an odd function,∣∣∣X (e−jω)
∣∣∣ = ∣∣∣X (e jω)

∣∣∣ is an even function,

θ(−ω) = −θ(ω) is an odd function.

• If x(n) is real and even (x(n) = x(−n)),

X (e jω) = Xre(e
jω) is an real function.

• If x(n) is real and odd (x(−n) = −x(n)),

X (e jω) = jXim(e jω) is an imaginary function.
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Convergence conditions

• The series that defines the Fourier transform could or could not converge.

• We say that the DTFT exists if its series converges according to some criteria.

• Sufficient conditions for the existence of the DTFT of a sequence x(n) are the following:

• x(n) is absolutely summable, i.e.,
+∞∑
−∞

|x(n)| < +∞

In this case, we talk about uniform convergence.

• x(n) is a finite energy signal
+∞∑
−∞

|x(n)|2 < +∞

In this case, we talk about mean square convergence.

• These two conditions are quite restrictive. Note that the first condition is stronger than the second. An

absolutely summable signal is always a finite energy signal because:

+∞∑
−∞

|x(n)|2 ≤

(
+∞∑
−∞

|x(n)|

)2

.
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Example of uniform convergence

• An absolutely summable signal is the following causal exponential sequence

x(n) = αnµ(n)

for |α| < 1.

• Indeed,
+∞∑

n=−∞

|αnµ(n)| =
+∞∑
n=0

|αn| = 1

1− |α| < +∞.

We have already seen that its DTFT is
1

1− αe−jω
.
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Example of mean square convergence

• A signal that is not absolutely summable (but has a DTFT) is the signal with the following ideal low-pass

DTFT:

HLP(e
jω) =

{
1 0 ≤ |ω| ≤ ωc

0 ωc < |ω| ≤ π

• Let us compute the corresponding signal, which we will encounter frequently.
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Example of mean square convergence

• Let us compute the IDTFT:

hLP(n) =
1

2π

∫ +π

−π

HLP(e
jω)e jωndω,

• For −∞ < n < +∞ and n ̸= 0:

hLP(n) =
1

2π

∫ +ωc

−ωc

e jωndω =
1

2π

[
e jωcn

jn
− e−jωcn

jn

]
=

sin(ωcn)

πn
,

• For n = 0

hLP(n) =
1

2π

∫ +ωc

−ωc

dω =
ωc

π

• Thus,

hLP(n) =


ωc

π
n = 0

sin(ωcn)

πn
n ̸= 0

• Since
sinωcn

πn
=

ωc

π

sin(ωcn)

ωcn
,

and assuming by convention that
sin(ωc0)

ωc0
= 1, we can write for all n

hLP(n) =
sin(ωcn)

πn
.
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Further of DTFT convergence

• The DTFT can be defined also for a certain class of sequences that are not absolutely summable, nor have

finite energy, e.g., the unit step sequence, the sinusoidal sequence, or the complex exponential sequence.

• In these cases the expression of the DTFT involves Dirac delta functions.
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Example

• The DTFT of the complex exponential sequence x(n) = e jω0n is

X (e jω) =
+∞∑

k=−∞

2πδ(ω − ω0 + 2πk)

The DTFT X (e jω) is a periodic function in ω with period 2π and it is called a periodic pulse train.

• Let us prove this relation by computing the IDTFT:

x(n) =
1

2π

∫ +π

−π

+∞∑
k=−∞

2πδ(ω − ω0 + 2πk)e jωndω

• If −π < ωo ≤ π, the only non-null function in the interval [−π,+π] is δ(ω − ω0), thus

x(n) =
1

2π
2π

∫ +π

−π

δ(ω − ω0)e
jωndω = e jω0n
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Properties of DTFT

• Let us assume that G(e jω) is the DTFT of g(n) and that H(e jω) is the DTFT of h(n).

• Linearity property: If x(n) = αg(n) + βh(n), with α and β constants, the DTFT of x(n) is

X (e jω) = αG(e jω) + βH(e jω).

• Time reversal: The DTFT of g(−n) is G(e−jω).

• Time-shifting: The DTFT of g(n − n0) is e
−jωn0G(e jω).

• Frequency-shifting: The DTFT of e jω0ng(n) is G(e j(ω−ω0)).

• Frequency differentiation: The DTFT of ng(n) is j
dG(e jω)

dω
.

• Modulation: The DTFT of g(n) · h(n) is
1

2π

∫ +π

−π

G(e jθ)H(e j(ω−θ))dθ.

• Parseval theorem:
+∞∑

n=−∞

g(n)h∗(n) =
1

2π

∫ +π

−π

G(e jω)H∗(e jω)dω
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Properties of DTFT

αg(n) + βh(n)
DTFT←→ αG(e jω) + βH(e jω)

g(−n) DTFT←→ G(e−jω)

g(n − n0)
DTFT←→ e−jωn0G(e jω)

e jω0ng(n)
DTFT←→ G(e j(ω−ω0))

ng(n)
DTFT←→ j

dG(e jω)

dω

g(n) · h(n) DTFT←→ 1

2π

∫ +π

−π

G(e jθ)H(e j(ω−θ))dθ

+∞∑
n=−∞

g(n)h∗(n) =
1

2π

∫ +π

−π

G(e jω)H∗(e jω)dω
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Proof of Parseval theorem

+∞∑
n=−∞

g(n)h∗(n) =
+∞∑

n=−∞

g(n)

(
1

2π

∫ +π

−π

H∗(e jω)e−jωndω

)

=
1

2π

∫ +π

−π

H∗(e jω)

(
+∞∑

n=−∞

g(n)e−jωn

)
dω

=
1

2π

∫ +π

−π

G(e jω)H∗(e jω)dω

Q.E.D.
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Examples of Use of DTFT Theorems

• Let us compute the DTFT of the finite length exponential sequence:

y(n) =

{
αn 0 ≤ n < M − 1

0 otherwise

with |α| < 1.

y(n) = αnµ(n)− αnµ(n −M) = αnµ(n)− αMαn−Mµ(n −M)

• We already know that:

αnµ(n)
DTFT←→ 1

1− αe−jω

• For the linearity and the time shift properties we have

Y (e jω) =
1

1− αe−jω
− αM e−jωM

1− αe−jω
=

1− αMe−jωM

1− αe−jω
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Examples of Use of DTFT Theorems

• Let us compute the DTFT of the causal sequence v(n) defined by the finite difference equation:

d0v(n) + d1v(n − 1) = p0δ(n) + p1δ(n − 1)

with d0 ̸= 0, and d1 ̸= 0.

• Let us apply the DTFT to both terms of the finite difference equation.

• By exploiting the linearity and time-shit properties and remembering that DTFT{δ(n)} = 1, we have

d0V (e jω) + d1e
−jωV (e jω) = p0 + p1e

−jω

Thus,

V (e jω) =
p0 + p1e

−jω

d0 + d1e−jω
.
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Examples of Use of DTFT Theorems

• Let us compute the DTFT of y(n) = (−1)nαnµ(n) with |α| < 1.

• It is also

y(n) = e jπn (αnµ(n)) = e jπnx(n),

where we considered x(n) = αnµ(n).

• We can apply the frequency-shifting property:

Y (e jω) = X (e j(ω−π)) =
1

1− αe−j(ω−π)
=

1

1 + αe−jω
.
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Energy density spectrum

• The total energy of a sequence g(n) is given by

Eg =
+∞∑

n=−∞

|g(n)|2 .

• By applying the Parseval theorem with h(n) = g(n) we have

Eg =
1

2π

∫ +π

−π

∣∣∣G(e jω)
∣∣∣2 dω .

• Sgg (e
jω) =

∣∣G(e jω)
∣∣2 is called energy density spectrum, and it defines how the energy of the sequence is

distributed over the frequency spectrum.

• Let us compute the energy of the low-pass ideal signal:

+∞∑
n=−∞

|hLP(n)|2 =
1

2π

∫ +π

−π

∣∣∣HLP(e
jω)
∣∣∣2 dω =

1

2π

∫ +ωc

−ωc

dω =
ωc

π
< +∞
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Band-limited signals

• In general, the spectrum of a discrete-time signal is defined on the entire frequency range −π < ω ≤ +π.

A band-limited signal has a spectrum that is limited to part of this range.

• An ideal low-pass signal has

X (e jω)

{
̸= 0 0 ≤ |ω| ≤ ωp

= 0 ωp < |ω| ≤ π

ωp is called signal bandwidth.

• An ideal high-pass signal has

X (e jω)

{
= 0 0 ≤ |ω| < ωp

̸= 0 ωp ≤ |ω| ≤ π

The signal bandwidth is given by π − ωp.

• An ideal passband signal has

X (e jω)


= 0 0 ≤ |ω| < ωa

̸= 0 ωa ≤ |ω| ≤ ωb

= 0 ωb < |ω| < π

The signal bandwidth is given by ωb − ωa.
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The sampling theorem

• We want to study the relations that link the continuous-time signals with the corresponding discrete-time

signals.

• Let us consider a continuous-time signal ga(t). We assume to uniformly sample it with sampling period

T . We obtain the sequence:

g(n) = ga(nT ) −∞ < n < +∞.

• The sampling frequency is FT =
1

T
.

• The CTFT of ga(t) is

Ga(jΩ) =

∫ +∞

−∞
ga(t)e

−jΩtdt,

and the DTFT of g(n) is

G(e jω) =
+∞∑

n=−∞

g(n)e−jωn.

• We want to find the relation that exists between Ga(jΩ) and G(e jω).
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The sampling theorem

• Mathematically, we can consider the sampling operations as the product of a signal ga(t) and a periodic

pulse train p(t), where

p(t) =
+∞∑

n=−∞

δ(t − nT ),

composed of an infinite sequence of Dirac pulses uniformly spaced in time and separated by the period T .

• The multiplication between ga(t) and p(t) results in a continuous-time function

gp(t) = ga(t) · p(t) =
+∞∑

n=−∞

ga(nT ) δ(t − nT ),

which is also composed of infinite Dirac impulses, placed at time t = nT , and weighted by the sample

value ga(nT ).

• We will provide two expressions for the CTFT of gp(t).
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The sampling theorem

• The first one is derived directly from the last expression of gp(n) considering that the CTFT of

{δ(t − nT )} is e−jΩnT .

• For the linearity property of the CTFT:

Gp(jΩ) =
+∞∑

n=−∞

ga(nT )e−jΩnT .

• By comparing this relation with the expression of G(e jω), we see that

G(e jω) = Gp(jΩ)|Ω=ω
T

Gp(jΩ) = G(e jω)
∣∣∣
ω=ΩT

• The DTFT G(e jω) coincides with the CTFT of gp(n), apart from a frequency axis normalization.

• This normalization maps the point at ω = 2π of G(e jω) to the point at ΩT = 2πFT of Gp(jΩ).
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The sampling theorem

• In what follows, we find a second form for Gp(jΩ).

• Assume you have two continuous time signals a(t) and b(t) with CTFT A(jΩ) and B(jΩ), respectively.

The CTFT of the product y(t) = a(t) · b(t) is

Y (jΩ) =
1

2π

∫ +∞

−∞
A(jΨ) ·B

(
j(Ω−Ψ)

)
dΨ

• We can use the property we have just proved to evaluate the CTFT of

gp(t) = ga(t) · p(t).

• We assume knowing the CTFT of ga(t). Let us compute the CTFT of the pulse train p(t).

• In what follows, we prove that

P(jΩ) =
2π

T

+∞∑
k=−∞

δ(Ω− k
2π

T
)

i.e., the CTFT of p(t) is also a uniformly spaced pulse train.
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Proof

• Note that the pulse train p(t) is a periodic signal with a period of T . Thus, we can expand p(t) with the

Fourier series:

p(t) =
+∞∑

k=−∞

cke
j 2π
T

kt

with

ck =
1

T

∫ T
2

− T
2

p(t)e−j 2π
T

ktdt =
1

T

∫ T
2

− T
2

δ(t)e−j 2π
T

ktdt =
1

T
e−j 2π

T
k0 =

1

T

• Thus,

p(t) =
1

T

+∞∑
k=−∞

e j
2π
T

kt

and for the linearity of the CTFT

P(jΩ) =
1

T

+∞∑
k=−∞

CTFT
{
e j

2π
T

kt
}
.
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Proof

• We can easily verify that

CTFT
{
e j

2π
T

kt
}
= 2πδ(Ω− 2π

T
k)

• Indeed, the IDFT of the right-hand side is

1

2π

∫ +∞

−∞
2πδ(Ω− 2π

T
k)e jΩtdΩ = e j

2π
T

kt

• Replacing CTFT
{
e j

2π
T

kt
}

in the expression of P(jΩ), we have

P(jΩ) =
2π

T

+∞∑
k=−∞

δ(Ω− k
2π

T
).

Q.E.D.
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The sampling theorem

• We can now compute Gp(jΩ)

Gp(jΩ) =
1

2π

∫ +∞

−∞
Ga(jΨ) ·P

(
j(Ω−Ψ)

)
dΨ =

=
1

2π

∫ +∞

−∞
Ga(jΨ) ·

2π

T

+∞∑
k=−∞

δ(Ω−Ψ− k
2π

T
)dΨ =

=
1

T

+∞∑
k=−∞

∫ +∞

−∞
Ga(jΨ) · δ(Ω−Ψ− k

2π

T
)dΨ =

=
1

T

+∞∑
k=−∞

Ga

(
j(Ω− k

2π

T
)
)
=

=
1

T

+∞∑
k=−∞

Ga

(
j(Ω− kΩT )

)
with ΩT =

2π

T
.
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The sampling theorem

• Consequently,

G(e jω) = Gp(jΩ)|Ω=ω
T
=

1

T

+∞∑
k=−∞

Ga

[
j
( ω
T

+ kΩT

)]
=

1

T

+∞∑
k=−∞

Ga

[
j
(ω + 2πk

T

)]
.

• The DTFT is given by the periodic repetition, with a period of 2π, of the continuous spectrum

Ga

(
j
ω

T

)
.

• Ga

(
j
ω

T

)
is identical to Ga (jΩ), but the frequency axis has been normalized such that ω = 2π

corresponds to the angular sampling frequency ΩT = 2π
T
.

• In order to avoid any overlap between the repeated spectra, it must be

Ga

(
j
ω

T

)
= 0 for |ω| > π,

or, equivalently,

Ga (jΩ) = 0 for |Ω| > π

T
=

ΩT

2
.

• If this condition is satisfied, the discrete spectrum reproduces in the band [−π,+π] the continuous

spectrum.

• If this condition is not satisfied, we have a distortion caused by the overlap of the tails of the spectrum.

This distortion is called aliasing.
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The sampling theorem

• The frequency
1

2T
=

FT

2
is called Nyquist frequency.

• Similarly, the angular frequency
ΩT

2
is called Nyquist

angular frequency.

• Let us assume, for example, that our signal occupies the band

[−Ωm,+Ωm].

• If ΩT ≥ 2Ωm, the different repetitions of the spectrum do not

overlap.

• If ΩT < 2Ωm, the repetitions of the spectrum overlap, and we

have an aliasing error.
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The sampling theorem

• If the continuous-time signal spectrum is preserved in the discrete domain (i.e., if we do not have

aliasing), we can reconstruct the original signal from the samples g(n) = ga(nT ).

• For this purpose, let us build the signal:

gp(t) =
+∞∑

n=−∞

g(n)δ(t − nT ) =
+∞∑

n=−∞

ga(nT )δ(t − nT )

• We know its CTFT:

Gp(jΩ) =
1

T

+∞∑
k=−∞

Ga [j(Ω + kΩT )] .

This continuous spectrum is given by the periodic repetition of the spectrum Ga(jΩ) with period ΩT .

• If the signal has been sampled with a frequency ΩT > 2Ωm we do not have aliasing, and the repetitions of

Ga(jΩ) do not overlap.

• Thus, we can faithfully reconstructga(t) by passing gp(t) through a filter that lets the spectrum in band

[−Ωm,Ωm] pass without any alteration, while stopping all signal components outside that frequency range.

• We will see that such a filter is an ideal low-pass filter with bandwidth Ωm.

• We have just proved the theorem that is at the basis of all signal processing and modern

telecommunications, the sampling theorem.
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The sampling theorem or Nyquist-Shannon theorem

Let ga(t) be a band-limited signal, with Ga(jΩ) = 0 for |Ω| > Ωm. Then, ga(t) is

uniquely determined by its samples ga(nT ), (i.e., can be faithfully reconstructed

by its samples ga(nT ),) −∞ < n < +∞, if the angular sampling frequency

ΩT ≥ 2Ωm

with ΩT =
2π

T
.

• In other words, if we want to be able to recover the band-limited signal ga(t) from its samples, we must

sample the signal with a frequency at least twice the signal bandwidth.

• The signal can be recovered by generating the signal

gp(t) =
+∞∑

n=−∞

g(n)δ(t − nT )

and by filtering this signal with an ideal low-pass filter.
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Sampling real signals

• In general, real-world signals are not band-limited. They occupy an infinite band, but most of their energy

is concentrated at the low frequencies.

• To avoid distortions due to aliasing, the signal is typically filtered with a low-pass filter before sampling.

• This filter cuts off high frequencies and generates a band-limited signal. Such a filter is called an

anti-aliasing filter.

• After filtering, the signal can be safely sampled with a frequency greater than 2Ωm and processed as

desired.

• Also the signal that comes out of the Digital to Analog (D/A) converter is filtered with a low-pass filter,

called the reconstruction filter or anti-imaging filter.

• In this way, all the frequencies (the images) outside the band of the original signal, [−Ωm,+Ωm] are

removed.
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