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Introduction B8 DEGLI STUDI
DITRIESTE

e \We have observed that each sequence can be expressed in the time domain as the weighted sum of
infinite impulse sequences shifted in time:

+oo

x(n) = Z x(m)o(n — m).

m=—o00

e In this chapter, we will explore an alternative representation of sequences through the weighted sum of
infinite complex exponential sequences of the form e ™", where w represents the normalized angular
frequency.

e This approach allows us to achieve a meaningful representation of sequences in the frequency domain
and introduces the concept of signal spectrum.
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The Fourier series DEGLI STUDI
DITRIESTE

e Let us assume that x,(t) is a complex function (x,(t) € C), periodic with period T, continuous in t (with

t € R).
e Then,
+oo P
Xxp(t) = Z Ch €T
where

_ ! +%f £) eI F g
c,,f?/_ (t)e

N~

e For the Euler’'s formula
e? = cos+sind,

and x,(n) is the sum of infinite sine and cosine functions at different frequencies, with each sine/cosine
function multiplied by an appropriate weight coefficient.
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The Fourier series

UNIVERSITA
DEGLI STUDI
DITRIESTE

. . .27 .
e We can represent the function x,(t) in the angular frequency domain — n = Q by associating to every
2w . -
Tn the corresponding coefficient c,:

n

%

discrete frequency
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e The periodic signal is represented in the frequency domain by an infinite number of discrete

“lines”,
corresponding to the coefficients of the Fourier series expansion of the signal.

. . 2
e These lines are uniformly spaced and separated by il
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The Continuous-Time Fourier Transform

e The frequency domain representation of a continuous-time signal x,(t) is given by the Continuous-Time
Fourier Transform (CTFT), defined as

X.(jQ) = /%o x,(t) e 7 dt

—o0o

e The CTFT is also referred to as the Fourier spectrum, or simply spectrum, of the continuous-time signal.

e The continuous-time signal x,(t) can be reconstructed from its CTFT by means of the inverse
continuous-time Fourier transform (ICTFT), defined as

1 +o00o

x(t) = o X,(jQ)edQ.

— o0
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The Continuous-Time Fourier Transform

e Note the bijective mapping between the signal x,(t) and its transform:
() 5T x,(j0)
e () is a real variable representing the continuous-time angular frequency, measured in rad/s.

e The inverse transform can be interpreted as the linear combination of infinitesimally small complex

exponential signals of the form L &/“*dQ.

We can also express the transform in polar form:
Xa(jQ) _ |Xa(JQ)| i e’jea(Q)7

where 0,(Q) = arg {X.(jQ2)}.
‘Xa(jQ)| is referred to as the magnitude spectrum, and 6,(Q2) is called the phase spectrum.

Both | X,(j§2)| and 6,(€) are real functions of the angular frequency Q.
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The Continuous-Time Fourier Transform — existence

e Note that not all signals admit the CTFT. The integral f+°° -dt may not converge.
— 0o
e The CTFT exists if the continuous-time signal x,(t) satisfies the Dirichlet conditions:

1. The signal has a finite number of discontinuities and a finite number of maxima and minima in any
finite interval.
2. The signal is absolutely integrable, i.e.,

/+OO |xa(t)| < 400

—o0

o If these conditions are satisfied, [ x,(t)e/?dt converges and x,(t) = 5= [1°° X.(jQ)e/*dQ apart
from the discontinuity points.

A. Carini Digital Signal and Image Processing 7 /49



UNIVERSITA

DITRIESTE

CTFT Example DEGLI STUDI

e ™ t>0
Xa(t) = s
0 t<O0

with 0 < o < +00.

e This signal satisfies the Dirichlet conditions: it has a unique discontinuity and
+oco +o0 —at |Too
o 1 1
/ \Xa(t)|=/ eMdt=—S | —o-— (_7) _ 1
—oo 0 a g [e% [e%
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CTFT Example
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TFT =X,(jQ) = T et giorgy 17 ey, _ @ —J9
C [Xa(t)] = a(J ) = . @ €] dt = ; E] dt = m
1
X0 = VRe{}2 + Im{}2 = ——
|X.09)] P rim{P = s
| Q
02(Q2) = arctan F;T;H = —arctana
2 15—
1
15 4
,ﬁ %‘ 0.5
:%n 1 .E_ 0
= é 0.5
0.5 e
I il
9% 2 0 2 i 2 0 > 3
W, in radians/sec Q, in radians/sec
(a) (b)

Figure 3.2: (a) Magnitude and (b) phase of X, (j$2) = 1/(0.5/sec + j£2).
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CTFT of a Dirac delta function

e The Dirac delta function §(t) is a function of the continuous-time variable t with notable properties.
o |t is defined as:

t
(1) = { 0 #0
400 t=0
with
+oo
/ o(t)dt = 1.
e |t is the limit, as T approaches 0, of the rectangular pulse
1 T T
- = L L
Ar()={ T 7 St213
0 elsewhere
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Properties of Dirac delta function

/ " F() s(e)de = £(0)

—0o0

/Mo f(t)o(t — to)dt = f(to)

- +oo .
CTFT{5(t)} = A(RQ) :/ S(t)e M Mdt =1

—00

+oo . i
CTFT{6(t— 1)} = / 5(t — to)e M Hdt = e /M0
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Properties of CTFT o EGLI STUDI

e Linearity of the CTFT: If F,(jQ2) is the CTFT of £;(t) and G,(j2) is the CTFT of g(t), the CTFT of

xa(t) = afy(t) + Bga(t), with a and 3 constants, is

Xa(j2) = aFs(jQ) + BGa(jQ).
e Time-shift property: If G,(jQ2) is the CTFT of g,(t), the CTFT of x,(t) = ga(t — to), with to constant, is
G.(jQ)e .
e Symmetry property of the CTFT: The CTFT of a real signal x,(t) € R satisfies the property
Xa(—=j) = X; (/)

where x* is the conjugate of x.

e Energy density spectrum: The total energy E, of a continuous-time signal x,(t) is given by

+oo 2
Ex :/ |Xa(t)’ dt.

—o0o
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Energy density spectrum

e The total energy E; of a continuous-time signal x,(t) is given by

+oo 2
E. :/ |x.(t)|"dt.

+0oo
e An absolutely integrable signal, i.e., a signal for which / |x:(t)|dt < +o0, has finite energy, but

— 00
there exist signals with finite energy which are not absolutely integrable. Moreover, there are signals with
infinite energy (for example, periodic signals).
o If x,(t) admits X,(j2), then Parseval’s Theorem holds:

oo 2 1 [T i |2
E. :/ |x:(t)|"dt = %[ |Xa(jQ)|"dQ

e 54(Q) = |X () | is also called Energy density spectrum of the signal x,(t), and it provides the energy
content of the signal at angular frequency €.
e The energy of the signal x,(t) in a frequency range Q. < Q < Q, can be computed by integrating S« (2)

over the interval [Q,, Q]

1
E.r= o SXX(Q)dQ
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Band limited signals i EGLI STUDI
DITRIESTE

A. Carini

A full-band continuous-time signal x,(t) has a spectrum occupying the entire frequency range.
A signal is called band-limited if its spectrum occupies only a portion of the frequency range
—00 < Q < 4o0.
An ideal band-limited signal has spectrum that is zero outside a certain range 2, < |Q| < Qp, with
0< Qaqu < 4o, e,
0 0< Q< Q

X(j9) = s

0 Q < Q| < 400

It is not possible to generate an ideal band-limited signal, but in most applications, it suffices to ensure
that the signal has sufficiently low energy outside the interval [Q2,, Q5] of interest.

A signal is called low-pass if its spectrum occupies the frequency range 0 < |Q| < Q,, where €, is called
the signal bandwidth.

A signal is called high-pass if its spectrum occupies the frequency range Q, < |Q| < +o00, and the signal
bandwidth extends from €, to oc.

Eventually, a signal is called passband if its spectrum occupies the frequency range
0<Q <9 <Qy < 400, where Qp — Q; is the signal bandwidth.
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The Discrete-Time Fourier Transform DEGLI STUDI

e The frequency domain representation of a discrete-time signal is given by the Discrete-Time Fourier
Transform (DTFT).

e This transform expresses a sequence as a weighted combination of complex exponential sequences of the
form €“", where w is the normalized angular frequency, and w € R.
o If it exists, the DTFT of a sequence is unique and the original sequence can be recovered from its

transform with an inverse transform operation.

e The DTFT X(€&*) of a sequence x(n) is defined by:

+o0

X(€)= > x(n)e "

n=—o00
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DTFT of a unit impulse sequence DEGLI STUDI
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e Let us compute the DTFT of the unit impulse sequence d(n),

1 n=20
0 n#0

+o00
A(e)= D d(ne =17 =1
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DTFT of a causal exponential sequence

e Let us compute the DTFT of the causal exponential sequence x(n) = a"u(n), where |a| < 1 and p(n) is
the unit step sequence.

(%)X )
|
1 %
BUSTNE RS = SNaN
o A
|
. TED TED . n 1
wy 71wn n_—jwn __ —Jjw _
X(€ )fn;ooau Za 7;_0(0[6 ) S
since |ae™| = |a| < 1.
e To derive this result, we have used the following identity:
+oo
1 .
z:q":1 if |q| < 1.
n=0 —4q
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Inverse DTFT

A. Carini

The DTFT is a periodic function of w with a period of 27:

+o00 +o0 +oo
X(ej(w+27rk)) _ Z X(n)e*j(w+27rk)n _ Z X(n)e*jwn_eijﬂ'kn: Z X(n)e*jwn :X(ejW)’

—j2mkn

where we used the fact that e =1 for k and n integers.

+oo
Note that Z x(n)e 7" is the Fourier series expansion of the periodic function X(e/*).

n=—o00

The coefficients of the Fourier series, x(n), can be computed from X(e/*) using the Fourier integral:

1 +m

:g -

x(n) X(&“)e dw,

which is the Inverse Discrete-Time Fourier Transform (IDTFT).
The IDTFT can be interpreted as the linear combination of infinitesimally small complex exponential

1 )
signals of the form 2—e’w"dw weighted by the complex function X(&/“).
™
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IDTFT proof

e Let us verify that

x(n) = S +ﬂX(ejw)ejw"dw.
2 J_
e By replacing the definition of X(e/*) with
+oo
X)) =" x(e ™!
I=—oc0

we have

+m too i i
x(n) = %/ Z x(le ' & "dw =

T |=—o0

and by interchanging [ and >_:

1 too +
== > x( [ & Ndw
™
I=—o0 =w

e For computing this integral, we will consider two cases.
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IDTFT proof o EGLI STUDI
o Ifn#1,
+7
+T +7 +m i — 1 2si —1
& Nqy = / cos [w(nf/)]derj/ sin [w(n—/)]dw = w = w =0.
o Ifn=1

+ +
0 Ndw = / ¢“dw = 27.

- ™

e Thus, in general, it is
+

&Ny = 276(n — 1)

—T
where §(n) is the unit impulse sequence.

e Eventually, we have

= > () /: &0 Ndy = 3 x()(n— 1) = x(n)

Q.E.D.
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More on DTFT

e In general, the DTFT of a sequence is a complex function of the real variable w:
X () = Xee(€*) + jXim(e™)
with Xio(e/*) and Xim(€/*) € R.
Xee(&) = 5 [X(&) + X" ()],

Xim (&) = [X(ef”) - x*(aw)] .

‘|—A N+~

&

e The DTFT can be expressed in polar form as
X(e*) = ’X(ej“)‘ o)

where |X(€/*)| is called magnitude spectrum, and 0(w) is called the phase spectrum:
Xim ejw
f(w) = arctanﬁ
e Note that there is an indetermination of 27k, with k € Z, in the knowledge of (w).
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Symmetry properties of the DTFT of a real sequence

e If x(n) € R:
X(e™¥) = X*(e¥).
In fact:
. +oo . ~+o00 ) )
X'(€9) = > x (e = 3 x(n)e 7T = X(e7).
e For this relation, if x(n) € R we have that
Xee(e7¥) = Xee(€/) is an even function,
Xim(€77%) = —Xim(€/¥) is an odd function,
’X(eﬂ'“)‘ = ‘X(ej‘”)‘ is an even function,
0(—w) = —0(w) is an odd function.

e If x(n) is real and even (x(n) = x(—n)),
X(e) = Xee() is an real function.

e If x(n) is real and odd (x(—n) = —x(n)),
X(€) = jXim () is an imaginary function.
22/49
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Convergence conditions DEGLI STUDI
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e The series that defines the Fourier transform could or could not converge.

e We say that the DTFT exists if its series converges according to some criteria.
e Sufficient conditions for the existence of the DTFT of a sequence x(n) are the following:

e x(n) is absolutely summable, i.e.,
+oo
Z |x(n)] < +o0

In this case, we talk about uniform convergence.
e x(n) is a finite energy signal

+oo
> Ix(m)? < +o0

In this case, we talk about mean square convergence.

e These two conditions are quite restrictive. Note that the first condition is stronger than the second. An
absolutely summable signal is always a finite energy signal because:

Do X< {7 Ix(n)]
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Example of uniform convergence i #7 DEGLI STUDI
DITRIESTE

e An absolutely summable signal is the following causal exponential sequence

x(n) = a"u(n)

for |a| < 1.
e Indeed,
+oo +oo 1
3 o)l = 3 1e’) = gy < oo
1

We have already seen that its DTFT is ————.
1—aqe v
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Example of mean square convergence

e A signal that is not absolutely summable (but has a DTFT) is the signal with the following ideal low-pass

DTFT:
1 0 < |w| < we
0 we < ‘w‘ S iy

HLp(ej“’) = {

P

Gy Ccé I ov}

- Y
— ) JC

e Let us compute the corresponding signal, which we will encounter frequently.
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Example of mean square convergence DEGLI STUDI
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e Let us compute the IDTFT:
1 e jw jwn
th(n) = 771-/ HLp(e/ )e’ dw,

™

e For —oo < n < 400 and n # 0:
Fwe | jwen —jwen H
hip(n) = i/ ¢ dw L {ej _ € ] = sm(wcn),

27 J_ . “or jn jn m™n
e Forn=0 N
1 = We
h = — dw = —
Le(n) 2m /,wc ——
e Thus,
w
= n=20
th(n) = T
sin(wcn) n#0
m™n
e Since . .
sinwen &sm(wcn)
™™ 7 wen
. . sin(wc0) .
and assuming by convention that oo = 1, we can write for all n
We
sin(wen
th(n) = 7( < )
m™n
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Further of DTFT convergence G i 82 DEGLI STUDI
| & DITRIESTE

e The DTFT can be defined also for a certain class of sequences that are not absolutely summable, nor have
finite energy, e.g., the unit step sequence, the sinusoidal sequence, or the complex exponential sequence.

e In these cases the expression of the DTFT involves Dirac delta functions.
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e The DTFT of the complex exponential sequence x(n) = e/“°" is

+o0
X(&¥)= > 2mb(w — wo + 27k)

k=—o00

The DTFT X (/) is a periodic function in w with period 27 and it is called a periodic pulse train.
A '

A+ & 25 9w 4 .\,Ue eZjrl | ) G| o
2 & |

e Let us prove this relation by computing the IDTFT:

it +00 .
x(n) = % / Z 27 (w — wo + 2mk) e’ dw

T k=—o0

o If —m < w, < m, the only non-null function in the interval [—m, +7] is §(w — wp), thus

+m . i
x(n) = 212775/ O(w — wo)e’"dw = 0"
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Properties of DTFT

A. Carini

Let us assume that G(e) is the DTFT of g(n) and that H(e/*) is the DTFT of h(n).
Linearity property: If x(n) = ag(n) + Bh(n), with o and § constants, the DTFT of x(n) is
X(e¥) = aG(e) + BH(Y).
Time reversal: The DTFT of g(—n) is G(e™#*).
Time-shifting: The DTFT of g(n — no) is e 7“™ G (/).
Frequency-shifting: The DTFT of &/“"g(n) is G(&/(*~«)).
dG(e*)
dw

P . .
Modulation: The DTFT of g(n)- h(n) is 2i G(?)VH(E“9)dg.
i

-

Frequency differentiation: The DTFT of ng(n) is j

Parseval theorem:

* 1 t jw * jw
Z g(n)h (n):gﬁﬁ G()VH* (¢*)dw
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Properties of DTFT

A. Carini

ag(n) + Bh(n) T aG () + BH()

g(—n) &5 G(e™)
g(n—np) & e om G ()
e“0"g(n) pALil G(ej(“’_wo))

orrr .dG(e¥)

ng(n) <—>JT

) () P K G(&°)H(“~D)db

+oo 1 e ] )
Z g(n)h*(n) = o | G(e“)H" (¢“)dw
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Proof of Parseval theorem

UNIVERSITA

A. Carini

nﬁig(n)h*(n) - niig(n) (% / H*(e/“)e—f“dw)
- [ e (nfwg(n)e“"> o
= iﬂ /:T G(e*)H*(¢*)dw

Q.E.D.
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Examples of Use of DTFT Theorems DEGLI STUDI
DITRIESTE

e Let us compute the DTFT of the finite length exponential sequence:

a” 0<n<M-1
0 otherwise

with |a| < 1.
y(n) = a"(n) — a"(n — M) = a"pu(n) — a™a"Mu(n — M)

e We already know that:

B DTFT 1
) T e

e For the linearity and the time shift properties we have
1 o e—jwl\/l 1— OJMe_jwM

Y(eiw) = —« =

1— ae v 1— e v 1— e v
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Examples of Use of DTFT Theorems o EGLI STUDI

e Let us compute the DTFT of the causal sequence v(n) defined by the finite difference equation:
dov(n) + div(n — 1) = pod(n) + p16(n — 1)

with do # 0, and di # 0.
e Let us apply the DTFT to both terms of the finite difference equation.
e By exploiting the linearity and time-shit properties and remembering that DTFT{d(n)} = 1, we have

doV(ejw) + dleijw V(e/“’) = po + plei‘iw

Thus, .
jw ilE pleijw
V(ev)=BTPhe
( ) do + die—w
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Examples of Use of DTFT Theorems

o Let us compute the DTFT of y(n) = (—1)"a"u(n) with |of < 1.
e It is also
y(n) = €™ (a"u(n)) = &€™"x(n),
where we considered x(n) = a"u(n).

e We can apply the frequency-shifting property:

Y(€¥) = X() = L L

T 1 _qedw-m 1 + ae—iw’
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Energy density spectrum

A. Carini

e The total energy of a sequence g(n) is given by

+oo
Es= ) le(n)P.

n=—o00

e By applying the Parseval theorem with h(n) = g(n) we have

1 +m

€ on )

. 2
G(e’“’)’ dw |.

o See(e¥) = ‘G(e’“)!2 is called energy density spectrum, and it defines how the energy of the sequence is
distributed over the frequency spectrum.

e Let us compute the energy of the low-pass ideal signal:

TED 1 +m
2
Z |hLp(n)|” = g[ﬁ

n=—oo

+we

.2
HLp(e’w)’ dw = % dw == < 400
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Band-limited signals DEGLI STUDI
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In general, the spectrum of a discrete-time signal is defined on the entire frequency range —m < w < +7r.
A band-limited signal has a spectrum that is limited to part of this range.

e An ideal low-pass signal has
. < <
=0 wp < |w| <7
wp is called signal bandwidth.
e An ideal high-pass signal has
. = <
X() 0 0 < |w| < wp
#0 wp < w| <
The signal bandwidth is given by m — w.
e An ideal passband signal has
X(“)q #0 ws < |w] < wp
=0 wp < |w| <7

The signal bandwidth is given by w, — ws,.
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The sampling theorem DEGLI STUDI

A. Carini

DITRIESTE

We want to study the relations that link the continuous-time signals with the corresponding discrete-time
signals.

Let us consider a continuous-time signal ga(t). We assume to uniformly sample it with sampling period
T. We obtain the sequence:

g(n) =g(nT) — 00 < n < +4o0.

The sampling frequency is Fr =

The CTFT of gu(t) is

7.

+o0o .
G.(jQ) = / g.(t)e ™ dt,

—o0o

and the DTFT of g(n) is

+o00

G(e*)= > gn)e ™"

n=—o0

We want to find the relation that exists between G,(jQ2) and G(e'*).
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The sampling theorem DEGLI STUDI
DITRIESTE

e Mathematically, we can consider the sampling operations as the product of a signal g.(t) and a periodic

pulse train p(t), where

+oo
p(t)= > 6(t—nT),
n=—oo
composed of an infinite sequence of Dirac pulses uniformly spaced in time and separated by the period T.

e The multiplication between g,(t) and p(t) results in a continuous-time function

+o00

go(t) = ga(t) - p(t) = > g(nT)8(t—nT),

n=—oo

which is also composed of infinite Dirac impulses, placed at time t = nT, and weighted by the sample
value g.(nT).
e We will provide two expressions for the CTFT of g,(t).
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The sampling theorem ) EGLI STUDI

e The first one is derived directly from the last expression of g,(n) considering that the CTFT of
{6(t — nT)} is e T
e For the linearity property of the CTFT:

+o0

GoiR) = > g(nT)e ™.

e By comparing this relation with the expression of G(€’*), we see that

G(€) = Gl D)ooy

Go(jQ) = G(&
J(9) = 6(e*)|
e The DTFT G(e*) coincides with the CTFT of g,(n), apart from a frequency axis normalization.

e This normalization maps the point at w = 27 of G(€/*) to the point at Q1 = 27Fr of G,(jQ).
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The sampling theorem ) EGLI STUDI

e In what follows, we find a second form for G,(j<2).

e Assume you have two continuous time signals a(t) and b(t) with CTFT A(jQ2) and B(jQ2), respectively.
The CTFT of the product y(t) = a(t)- b(t) is

Y(jQ) = % /M AGV)-B(j(Q2 - v))dw

—oo

e We can use the property we have just proved to evaluate the CTFT of

&p(t) = &(t) p(t).

e We assume knowing the CTFT of g,(t). Let us compute the CTFT of the pulse train p(t).

e In what follows, we prove that

o1 « 21w
P(iQ) = = > 5(Q ~ k=)

k=—o00

i.e., the CTFT of p(t) is also a uniformly spaced pulse train.
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DEGLI STUDI
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e Note that the pulse train p(t) is a periodic signal with a period of T. Thus, we can expand p(t) with the

Fourier series:

+oo 2
p(t) = Z ced TH
k=—o00
with , .
1 2 7j2—7'kt 1 2 712—7”(1* 1 7j2lk0 1
= — T — T = T = =
Ck T/;p(t)e dt T 7%5(t)e dt e T
e Thus,
1 +oo 2r
p(t) T Z e
k=—o0

and for the linearity of the CTFT

P(jQ) = Z cTrT {7 h}.
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e We can easily verify that

cTFT {4 = ami(a - 27%)

e Indeed, the IDFT of the right-hand side is

1 oo 2m iQt j 25 kt

e Replacing CTFT {ejz%kt} in the expression of P(j2), we have
+oo

P(jQ) = 2X 2 SRR k

k=—o00

Q.E.D.
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The sampling theorem

e We can now compute G,(jQ2)

. 1 +oo
G = 5= [ Guliw)- P(i(@ ~ W))dv =
1 [t 2 X 2
== Il G(jw k;ooéﬂ—lll—k7)d\ll:

TZ/ G,(jV¥)-3(Q — \Ilfk—)d\llf

k=—o00

-1y al@-«E) =

k=—o00

=2 > G- k)

k=—o0

with Q1 =

|y

A. Carini Digital Signal and Image Processing 43 /49



UNIVERSITA

The sampling theorem

e Consequently,

G(e™) = G,(jQ) o= = T Z G.j +kQT _ Z G.[j w+27rk)]_

k=—o00 k—foo

e The DTFT is given by the periodic repetition, with a period of 27, of the continuous spectrum
w

G (i7)

e G, <J%) is identical to G, (j2), but the frequency axis has been normalized such that w = 27
corresponds to the angular sampling frequency Q1 = 2%

e |n order to avoid any overlap between the repeated spectra, it must be
W
G, (_/?> =0 for |w| >,

or, equivalently,

G.(Q)=0 for |0>T= %

e If this condition is satisfied, the discrete spectrum reproduces in the band [—7, +7] the continuous
spectrum.
e If this condition is not satisfied, we have a distortion caused by the overlap of the tails of the spectrum.
This distortion is called aliasing.
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The sampling theorem

A. Carini

The frequency % = % is called Nyquist frequency.

. Qr . .
Similarly, the angular frequency 77— is called Nyquist
angular frequency.

Let us assume, for example, that our signal occupies the band
[_Qma +Qm]

If Qr > 2Qp, the different repetitions of the spectrum do not
overlap.

If Q7 < 2Q.,, the repetitions of the spectrum overlap, and we
have an aliasing error.
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The sampling theorem DEGLI STUDI

A. Carini

DITRIESTE

If the continuous-time signal spectrum is preserved in the discrete domain (i.e., if we do not have
aliasing), we can reconstruct the original signal from the samples g(n) = g.(nT).

For this purpose, let us build the signal:

+o0 +oo
g(t)= > g(ni(t—nT)= > g(nT)s(t—nT)

We know its CTFT: e

GUR) =2 Y Gli@+kar)].

k=—o00

This continuous spectrum is given by the periodic repetition of the spectrum G,(jQ2) with period Q7.
If the signal has been sampled with a frequency Q1 > 2, we do not have aliasing, and the repetitions of
G5(j2) do not overlap.
Thus, we can faithfully reconstructg.(t) by passing g,(t) through a filter that lets the spectrum in band
[—Q2m, Qm] pass without any alteration, while stopping all signal components outside that frequency range.
We will see that such a filter is an ideal low-pass filter with bandwidth Q,,.
We have just proved the theorem that is at the basis of all signal processing and modern

telecommunications, the sampling theorem.
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The sampling theorem or Nyquist-Shannon theorem

Let ga(t) be a band-limited signal, with G,(jQ2) = 0 for |Q > Qm. Then, ga(t) is
uniquely determined by its samples g,(nT), (i.e., can be faithfully reconstructed
by its samples g,(nT),) —oo < n < 400, if the angular sampling frequency

QT Z 2Qm

. 2
with Q1 = ?ﬁ

e In other words, if we want to be able to recover the band-limited signal g.(t) from its samples, we must

sample the signal with a frequency at least twice the signal bandwidth.
e The signal can be recovered by generating the signal

+o00

g(t)= Y g(n)s(t—nT)

n=—o00

and by filtering this signal with an ideal low-pass filter.
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Sampling real signals

e In general, real-world signals are not band-limited. They occupy an infinite band, but most of their energy
is concentrated at the low frequencies.

e To avoid distortions due to aliasing, the signal is typically filtered with a low-pass filter before sampling.

e This filter cuts off high frequencies and generates a band-limited signal. Such a filter is called an
anti-aliasing filter.

e After filtering, the signal can be safely sampled with a frequency greater than 2Q,, and processed as

desired.
Anti- Digital Reconstruction
—| alf{lal?é?g - S/H I A/D processor 1 D/A filter

Figure 3.12: Block diagram representation of the discrete-time digital processing of a continuous-time signal.

e Also the signal that comes out of the Digital to Analog (D/A) converter is filtered with a low-pass filter,
called the reconstruction filter or anti-imaging filter.

e In this way, all the frequencies (the images) outside the band of the original signal, [—Q, +Qm] are
removed.
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