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03 Discrete-time signals in the frequency domain

We have observed that each sequence can be expressed in the time domain as the weighted sum of
infinite impulse sequences shifted in time:

+00

xz(n) = Z x(m)d(n —m).
In this chapter, we will explore an alternative representation of sequences through the weighted sum
of infinite complex exponential sequences of the form e=7“", where w represents the normalized an-
gular frequency. This approach allows us to achieve a meaningful representation of sequences in the
frequency domain and introduces the concept of signal spectrum.
We will initially explore continuous-time signals and introduce the Continuous-Time Fourier Transform
(CTFT). Subsequently, we will transition to the discrete-time domain and introduce the Discrete-Time
Fourier Transform (DTFT). Finally, we will examine the relationship between these transforms, particu-
larly in the case of sampled signals.
Jean Baptiste Joseph Fourier, a French mathematician born in 1768, was the first to comprehend (in
the early 1800s) that every periodic function can be represented as the sum of an infinite series of
appropriately weighted sine and cosine functions at different frequencies.

03.01 The Fourier series

Let us assume that z,(¢) is a complex function (z,(¢) € C), periodic with period T, continuous in ¢ (with
t € R). Then,

+00 ,
zp(t) = Y cp-d T

n=—oo

where

For the Euler’s formula

e’? = cosb + j sinb,

and z,(n) is the sum of infinite sine and cosine functions at different frequencies, with each sine/cosine
function multiplied by an appropriate weight coefficient. )
Note that we can represent the function z,,(¢) in the angular frequency domain %n = () by associating

. 2 . .
to every discrete frequency %n the corresponding coefficient c,,:
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The periodic signal is represented in the frequency domain by an infinite number of discrete “lines”,
corresponding to the coefficients of the Fourier series expansion of the signal. These lines are uniformly
spaced and separated by 2%

Note that by increasing the period of the periodic function, the lines tend to become narrower (more
frequent). Thus, we can understand that aperiodic functions (satisfying certain conditions we will see
later) can also be expressed as the sum of sine and cosine functions, or, more precisely, as the sum
of complex exponential functions ¢7** (whose frequency varies continuously) multiplied by a frequency-
varying weight function.

Thus, we arrive at the Continuous-Time Fourier Transform (CTFT).

03.02 The Continuous-Time Fourier Transform

The frequency domain representation of a continuous-time signal =, (t) is given by the Continuous-Time
Fourier Transform (CTFT), defined as'

—+o0
X.(jQ) = / Zo(t) eIt

— 00

The CTFT is also referred to as the Fourier spectrum, or simply spectrum, of the continuous-time signal.
The continuous-time signal x,(¢) can be reconstructed from its CTFT by means of the inverse continuous-
time Fourier transform (ICTFT), defined as

+oo
Zo(t) = — X, (59)edQ.

Note the bijective mapping between the signal z,(¢) and its transform:

GTET x

xa(t) a(JQ)

Q is a real variable representing the continuous-time angular frequency, measured in rad/s.
The inverse transform can be interpreted as the linear combination of infinitesimally small complex
exponential signals of the form 2L e79dQ.

T"Why X, (59) and not X,(92)? It is simply a convention. Another transform, the Laplace transform X, (s), is defined on the
entire complex plane, and when evaluated on the imaginary axis (i.e., for s = j€), it yields the CTFT.
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We can also express the transform in polar form:
Xa(jQ) = | Xa(jO)| - %),

where 6,(2) = arg { X, () }.

\Xa(jQ)| is referred to as the magnitude spectrum, and 6,(Q) is called the phase spectrum. Both
| X4 ()| and 6,(€2) are real functions of the angular frequency .

Note that not all signals admit the CTFT. The integral f_Jr;O -dt may not converge. The CTFT exists if the
continuous-time signal z,(t) satisfies the Dirichlet conditions:

1. The signal has a finite number of discontinuities and a finite number of maxima and minima in any
finite interval.

2. The signal is absolutely integrable, i.e.,

/%O |24 (t)] < +o0

— 00

If these conditions are satisfied, [*>° z,(t)e~7%dt converges and z,(t) = 5= [7>° X,(jQ)e’**dQ apart

21 J—o0

from the discontinuity points.

Example:

with 0 < o < 4o00.

=

This signal satisfies the Dirichlet conditions. Indeed, it has a unique discontinuity and

+oo +o00 —at |0 1 1
[l [een £ o (1) 21
-0 0 (e 0 « [0

+oo +o0
CTFTra(0] = Xa(i0) = [ ete®ar= [ emtotimray
0 0

L e oo
a+ 5 o a+ jQ a—j9
a—39Q
- 042 +Q2
X, = VRe[Z rIm{J2= L
Vot
Im Q
0.(Q2) = arctan il = —arctan—
Re{} «@
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Figure 3.2: (a) Magnitude and (b) phase of X, (j$2) = 1/(0.5/sec + j£2).

(From S. K. Mitra, “Digital signal processing: a computer based approach”, McGraw Hill, 2011)

CTFT of a Dirac delta function
The Dirac delta function §(t) is a function of the continuous-time variable ¢ with notable properties,

defined as:
5(6) = { 0 t#£0
+00 t=20
with oo
/ S(t)dt = 1

It is the limit, as T" approaches 0, of the rectangular pulse

1 Lot
AT(t) = T 27 = 2
0 elsewhere

/ 0 8t - to)t = Fto)

CTFT{6(t)} = A(jQ) = / - S(t)e=1%dt = 1

—0o0

+o00
CTFT{é(t — to)} = / 6(t _ tO)e_thdt _ e_thO
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Linearity of the CTFT
If F,(5Q) is the CTFT of f,(t) and G, (j2) is the CTFT of g,(t), the CTFT of z,(t) = af.(t) + Bga(t),
with o and g constants, is

Xa(jQ) = aF,(jQ) + BGa(j).

Proof: N
X, (jQ) = / Tq(t) e It =

— 00

“+oo
- / [fu(t) + Bga(t)] e dt =

— 00

+o0 +o0
- a/ fa(t) eIt 4+ B/ gal(t) e IUq —

—00

= aF,(jQ) + G, ()

Q.E.D.

Time-shift property

If G,(§9) is the CTFT of g.(t), the CTFT of z,(t) = ga(t — to), with ¢o constant, is

Ga(jQ)e= 70,
Proof:
+oo )
X, (jQ) = / ga(t —to) eI ¥dt =
Let us introduce the change of variables t' =t — ¢y, i.e., t =t + to:
—+oo
- / ga(t') eI T4t =
+o00
:/ ga(t/) e—th/dt/e—tho _
= G (jQ)e 70,

Q.E.D.

Symmetry property of the CTFT
The CTFT of a real signal z,(t) € R satisfies the property

Xa(=j9) = X5 (59)

where z* is the conjugate of x.
Proof:
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+o0 ]
= / Zq(t)e 7Dt
= Xo(—jQ).
Q.E.D.

Energy density spectrum
The total energy E, of a continuous-time signal z,(t) is given by

E, = /_+OO ARG

An absolutely integrable signal, i.e., a signal for which / \xa \dt < 400, has finite energy, but

there exist signals with finite energy which are not absolutely integrable. Moreover, there are signals
with infinite energy (for example, periodic signals).
Consider a finite energy signal that admits CTFT. We can express the energy as a function of X, (j):

+oo +oo
E, = 1 |z (8)[*dt = / 2o (t)z(t)dt =

+oo 1 +oo )
/ Ta(t) [2 X;(jﬂ)e—ﬂﬂtdg] dt
— oo m

— 00

where we have replaced z7 (¢) with the ICTFT. Let us exchange the two integrations:

1 —+o0 —+o0 )
X () / Tq(t)e M dtdQ

— 00

The inner integral is the CTFT of z,(t). Thus
1 +oo +oo
By = XN X,(j = 7/ X, (i) a0
The integral from —oo to +oo of the squared magnitude spectrum equals the signal energy. Thus, the
following theorem is proved.

+oo +oo
Ex:/ |xa(t)]2dt:%/ X, (2240

Sez () = |Xa(j§2)|2 is also called Energy density spectrum of the signal z,(t), and it provides the
energy content of the signal at angular frequency €.

The energy of the signal z,(¢) in a frequency range Q, < Q < Q, can be computed by integrating
Sz (€2) over the interval [Q,, ):

Parseval’s Theorem:

1 2

E,,=— Sz (£2)dS2.
=g |, Seel®)

Band limited signals
A full-band continuous-time signal x,(¢) has a spectrum occupying the entire frequency range. A signal
is called band-limited if its spectrum occupies only a portion of the frequency range —co < Q < +o0.
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An ideal band-limited signal has spectrum that is zero outside a certain range Q, < |Q\ < Qp, with
0 < Qg, 2 < 400, ie.,
0 0<19] <Q,

Xa(jQ) =
0 Qp < |Q] < 400

[Why do we consider || instead of 2? Because if the signal z,(t) is real, X,(—jQ) = X} (j9), i.e., the
spectrum has conjugate symmetry. If X, (jQ) # 0in arange [Qq, Q], then X, () # 0in [—Qp, —Q]. ]
It is not possible to generate an ideal band-limited signal, but in most applications, it suffices to ensure
that the signal has sufficiently low energy outside the interval [(2,, ;] of interest.

A signal is called low-pass if its spectrum occupies the frequency range 0 < || < €, where Q, is
called the signal bandwidth.

A signal is called high-pass if its spectrum occupies the frequency range €, < |©2| < +o0, and the signal
bandwidth extends from €2, to co.

Eventually, a signal is called passband if its spectrum occupies the frequency range 0 < Qp < || <
Qg < 400, Wwhere Qg — Qp is the signal bandwidth.

03.03 The Discrete-Time Fourier Transform

The frequency domain representation of a discrete-time signal is given by the Discrete-Time Fourier
Transform (DTFT). This transform expresses a sequence as a weighted combination of complex expo-
nential sequences of the form e/“", where w is the normalized angular frequency, and w € R.

If it exists, the DTFT of a sequence is unique and the original sequence can be recovered from its
transform with an inverse transform operation.

The DTFT X (e?“) of a sequence x(n) is defined by:

—+o0

X(ed¥) = Z x(n)e Im,

n=—oo

Example:
Let us compute the DTFT of the unit impulse sequence 4(n),

1 n=>0
5(n)_{0 n+#0

—+oo
Ale®)= 3" b(n)e i =170 =1

n=—oo

Example:
Let us compute the DTFT of the causal exponential sequence z(n) = a™u(n), where |a] < 1 and p(n)
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is the unit step sequence.

n=0

1— e iw

since |ael?| = |a] < 1.

To derive this result, we have used the following identity:

1
"= if |[¢] < 1.
> g T lq]

We will encounter this exponential series frequently. The sum can be easily computed using the follow-
ing steps:
M-1
S=> q"=l+q++...+¢""
n=0
S-q=q+¢+...+¢"
S—8-q=51-q =1-¢"

1— M

[Cp—

l—gq

1
If|q\<1andM—>+oo,theon—>0andS—>1—.

Q.E.D.

From the definition of the DTFT of a sequence z(n), we can notice that it is a continuous function of the
normalized angular frequency w. Unlike the CTFT, the DTFT is a periodic function of w with a period of

27. Indeed,
+oo

X(ej(w+27rk)) — Z $<n)€—j(w+27rk)n _
+oo
_ Z x(n)e—jwn . e—d2mkn _
n=-—oo
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+oo

= Y w(m)en = X (),

n—=——oo

where we used the fact that e=727%" = 1 for k and n integers.
“+oo
Note that Z x(n)e7“™ is the Fourier series expansion of the periodic function X (e7*).
Thus, the coefficients of the Fourier series, x(n), can be computed from X (e’“) using the Fourier
integral:
1 [t

z(n) X (e?¥)ed“ndw,

= % .
which is the Inverse Discrete-Time Fourier Transform (IDTFT).

The IDTFT can be ilnterpreted as the linear combination of infinitesimally small complex exponential
signals of the form %ej“”dw weighted by the complex function X (e/).

Let us verify that

1 [T7 o
z(n) = ) X(e*)e?“"dw.
By replacing the definition of X (/) with
X () = Z z(l)e 7!
l=—o0
we have
1t I L
- —jwl jwn —
z(n) o /_Tr l:z;oox(l)e e’ dw
by interchanging [ and }:
1 +oo +r
—— x(l)/ e? =Dy
2 = o

For computing this integral, we will consider two cases.
If n #£1,
+T +m +7
/ 7Dy = / cos [w(n —1)]dw +j/ sin [w(n —1)]dw =

—r —7 -

sin [w(n —1)] o

(n=1)

_ 2sin [7(n—1)] B
h (n—1) =0

Here, we have first exploited the fact that sin [w(n — I)] is an odd function and has [*” dw = 0. Finally,
we have used the fact that sin [7(n — )] = 0.

Ifn=1,
+T +T
/ eIn=Dqy = / 70w = 2.

+T
/ e Vdw = 276(n — 1)

—T

Thus, in general, it is
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where 4(n) is the unit impulse sequence.
Eventually, we have

1 +oo +r +oo
o x(l)/ 00dy = 3 ()d(n— 1) = 2(n)
v
l=—0c0 - l=—00

Q.E.D.

In general, the DTFT of a sequence is a complex function of the real variable w:
X(e7°) = Xpo(e7°) + § Xim (e?)

with X, (e?“) and Xin, (e?“) € R.

Xo(€99) = = [X (%) + X*(e7¥)],

8‘._. M| =

Xim(e7) = — [X(e?¥) — X*(e?)] .

The DTFT can be expressed in polar form as
X (&%) = |X (%) )

where | X (e7)| is called magnitude spectrum, and §(w) is called the phase spectrum:

N Xim(ej“’)

Note that there is an indetermination of 27k, with k& € Z, in the knowledge of 6(w). Indeed, §(w) is an
angle measured in radians.

Like X(e/*), also Xie(e7*), Xim(e?*), | X (e7*)], and 6(w) are periodic functions of w with period 2.
Thus, it suffices to know these functions for —m < w < 7 to know them everywhere.

Symmetry properties of the DTFT of a real sequence

If z(n) € R:
X(e %) = X*(e7*).
In fact:
X*(e]w) — Z x*(n)ejwn
+o0 ]
= Z z(n)e I (zwn
n=-—oo
= X(e™¥).
For this relation, if 2(n) € R we have that
Xio(e799) = Xyo(e?) is an even function,
Xim(e799) = = Xijm(e7*) is an odd function,
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| X (e77)| = | X (/)] is an even function,
0(—w) = —0(w) is an odd function.

If z(n) is real and even (z(n) = z(—n)),

X(e7%) = Xyo(e?®) is an real function.
Indeed:
X(e)= > az(n)e*" +2(0) + > x(n)e’"
n=—oo n=1
(Change the variable of the first sum as follows n’ = —n)

+o0 . +oo )
= Z z(—n")e 7" +z(0) + Z x(n)e?¥™
=1 n=1

+o0
= xz(0) + Z z(n) [e77" + 747

“+oo

=z(0) + Z x(n)2 cos(wn)

n=1
Q.E.D.
If z(n) is real and odd (z(—n) = —x(n)),

X (/) = j Xim (') is an imaginary function.

Convergence conditions

The series that defines the Fourier transform could or could not converge. We say that the DTFT exists
if its series converges according to some criteria.

Sufficient conditions for the existence of the DTFT of a sequence z(n) are the following:

+ z(n) is absolutely summable, i.e.,
+oo
Z |z(n)| < 400
— 00
In this case, we talk about uniform convergence.
« z(n) is a finite energy signal
+oo
D Jaz(n)? < 400
—0o0
In this case, we talk about mean square convergence.

These two conditions are quite restrictive. Note that the first condition is stronger than the second. An
absolutely summable signal is always a finite energy signal because:

+oo +o0 2
> lem) < (ZI@"(H)) :
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Example
An absolutely summable signal is the following causal exponential sequence

2(n) = a" u(n)

for || < 1.
Indeed,

+oo +oo 1
S ) = Y Ja" = 1= < oo,
n=0

1= |o
n=-—o00

We have already seen that its DTFT is 1

—qe—iw’

Example

A signal that is not absolutely summable (but has a DTFT) is the signal with the following ideal low-pass
DTFT:

1 0 < |w| < we

0 we < |lw| <7

HLP(ejw) = {

- + ) ; =l (() . (&
ool VC< t {: k‘!‘ 1” Lj

1 !
—

Let us compute the corresponding signal, which we will encounter frequently.

Let us compute the IDTFT:
1 [tr

th (n) HLP (ej“’)ej“’"dw,

:% .

for —oo < n < 400 and n # 0:

1 Fwe
hLP(n) = %/ JRELE T

—Wwe

1 [eiwen e Jwen
T or Jn B n

sin(w.n)

)
™™

forn=0

Thus,

— n=>0
hip(n) = sqn(wcn)

™

Since
sinwen  we sin(wen)
- )

™ T Wwen
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and since for the LHopital’s rule 1ir% % = 1, assuming by convention that SIHCE%O) =1, we can write
r—r c
for all n _
sin(w.n
th (n) = ( ) .
™

+oo
Note that Z |hip(n)| = +o0, i.e., the sequence is not absolutely summable, but it admits DTFT be-

cause it is a finite energy sequence.

The DTFT can be defined also for a certain class of sequences that are not absolutely summable, nor
have finite energy, e.g., the unit step sequence, the sinusoidal sequence, or the complex exponential
sequence. In these cases the expression of the DTFT involves Dirac delta functions.

Example
The DTFT of the complex exponential sequence z(n) = e/«0" is
X(e) = Y 2md(w — wo + 27k)
k=—o00
The DTFT X (e*) is a periodic function in w with period 27 and it is called a periodic pulse train.
A

- / .., Al ] S [ ! ) /
1 X - y 2 i o) 28 Ll )
&) +—4 4 )2 g s \’Llfe .2/ Cog o by & L
2 o

Let us prove this relation by computing the IDTFT:

1 ,
z(n) = o / Z 210 (w — wo + 27k’ dw

T k=—00

If —7 < w, < 7, the only non-null function in the interval [—, +] is §(w — wy), thus

1 t : :
z(n) = %27{/ 0(w — wp)e?"dw = 70"

—T

for the properties of §(w).
Q.ED

03.04 Properties of DTFT

Let us assume that G(e?) is the DTFT of a sequence g(n) and that H(e’) is the DTFT of a sequence
h(n). The following properties hold.
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Linearity property
If z(n) = ag(n) + Bh(n), with o and 3 constants, the DTFT of z(n) is X (¢/*) = aG(e’*) + BH (7).

ag(n) + Bh(n) FE" aG (M) + BH ()

Proof:
+oo

X(e)= " (ag(n)+ Bh(n)) e 7"

n=—oo

+oo +oo
=« Z g(n)e_j“’"—i—ﬁ Z h(n)e_j“”

n=-—oo n=-—oo

= aG(e’) + BH ()

Q.E.D.

Time reversal

The DTFT of g(—n) is G(e=7).

g(—n) ki G(e 1)
Proof:
00 . 00 . ,
D2 glome = 37 gln)e ) =
(where we have considered the following change of variables n’ = —n)
+o00 . ,
= > gln)e I

Q.E.D.

Time-shifting

The DTFT of g(n — ng) is e 7«0 G (eI¥).

g(n —ngp) Iy e I G el
Proof:
400 , +00 ] ,
3" gln—mg)emim = N g(n))emIeEno) —
(where we have considered the following change of variables n’ = n — ny)
-‘r(X) . 7 .
— Z g(n/)e—jwn e~ Jwno

Q.E.D.

Frequency-shifting
The DTFT of e7“omg(n) is G(el(w=w0)),

eI g () RTEr G(ej(wf“’“))
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Proof:
400 , ] +00 ]
Z g(n)ejwone—]wn — Z g(n)e—](w—wo)n
Q.E.D.

Frequency differentiation

Jw
The DTFT of ng(n) is jdGée ).
w

Proof: Omitted.

Modulation o
The DTFT of g(n) - h(n) is Qi G(e*)H (/@ ~)do.
i

+m
G(e?YH (@ =9)dg
Proof:
y(n) =g(n) - h(n)

+oo

Y = 3 gmhm)e

n=—oo

Z / eg@ e]@nde h( ) —jwn
o

n=—oo

(where we have replaced g(n) with its IDTFT. By exchanging Y~ and | ...)

1 [T LI S
=50 G(el?) Z h(n)e~9<mei®dg
1 [t ;
=5- | G Z h(n)e @~ dg
s
1 [t :
=5/ G(eﬁ) (7=

Q.E.D.
The last integral is called convolution integral. We will introduce the concept of convolution in one of the
following lessons.

Parseval theorem

= 1 [t . .
> gk (n) = o— | G(e)H™(e™)dw

Proof: (Similar to the previous one)

00 +o0o 1 +r ' '
Z g(n)h*(n)z Z g(n) (27-( 3 H*(ejw)e—]wndw>

n=—oo n=—oo
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e =3 i
=5 B H*(e?¥) n;oog(n)e J dw
1 [t~ . .
=— G(e’)H*(/¥)dw
2 J_,
Q.E.D.

The linearity property, the time-shift property, the frequency shift property, the modulation property and
the Parseval theorem find similar formulations also with the CTFT.

Examples using these theorems:
Let us compute the DTFT of the finite length exponential sequence:

a” 0<n<M-1
0 otherwise

with |a < 1.

We already know that:
a”u(n) RIEr _
1— e v
For the linearity and the time shift properties we have

‘ —jwM
Y(e!¥) = ! —aM_©

1— aqe v 1— e iv

1— a]\le—jwM

1—aqe v

Let us compute the DTFT of the causal sequence v(n) defined by the finite difference equation:
dov(n) + div(n — 1) = ped(n) + p1é(n — 1)

with dg # 0, and d; # 0.
Let us apply the DTFT to both terms of the finite difference equation. By exploiting the linearity and
time-shit properties and remembering that DTFT{é(n)} = 1, we have

doV (€7) + d1e 7°V () = po + pre 7*

Thus,
_ po+pie?¥

V(e = .
(e7) =

Let us compute the DTFT of y(n) = (—1)"a"u(n) with |a| < 1.
Itis also y(n) = /™ (a"u(n)) = e/™x(n), where we considered x(n) = a"u(n).
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We can apply the frequency-shifting property:

1 o
1—aqe=iw=m 14 ae i’

Y (e¥) = X (/W) =

Energy density spectrum
The total energy of a sequence g(n) is given by

+o00
Ey= > lgn)*.
By applying the Parseval theorem with 4(n) = g(n) we have

—+m
E, ! / |G(ej°’)‘2dw.

"o

Sgq(e?v) = \G(ej“)|2 is called energy density spectrum, and it defines how the energy of the sequence
is distributed over the frequency spectrum.

Example:
Let us compute the energy of the low-pass ideal signal

+oo 4 iy
1 ) 1 c .

2 : ‘hLP(n)|2 — */ |HLP(er)‘2dw — 7/ dw = wf < 400
-7 2T T

n=-—oo 271— —We

Band-limited signals

In general, the spectrum of a discrete-time signal is defined on the entire frequency range — 7 < w < +.
A band-limited signal has a spectrum that is limited to part of this range.

An ideal low-pass signal has

X (&) 0 O lul<w
=0 wp < lw| <7
w,, is called signal bandwidith.
An ideal high-pass signal has
X(e7) =0 0 < |w| < wp
#0 wp <w| <7

The signal bandwidth is given by 7 — w,,.
An ideal passband signal has

=0 0 < |w| < wq
X() 3 #0 wa < |w] < wyp
=0 wp < |w| <7

The signal bandwidth is given by w, — w,.
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03.05 The sampling theorem

Most of the signals we encounter in the real world are continuous-time signals (e.g. voice, music, im-
ages). Digital signal processing algorithms are often applied to process these continuous-time signals.
To do that, signals are first sampled and coded with an A/D converter, then they are digitally processed,
and finally, they are converted back to the analog form with a D/A converter.

We want to study the relations that link the continuous-time signals with the corresponding discrete-time
signals.

Let us consider a continuous-time signal g, (t). We assume to uniformly sample it with sampling period
T. We obtain the sequence:

g(n) = go(nT) — 00 < n < +o0.
1

The sampling frequency is Fr = —. The continuous-time Fourier transform, CTFT, of g,(¢) is

“+o0
Ga(j) = / ga(t)e_jgtdta

— 0o

and the DTFT of g(n) is
“+o0

G(e?¥) = Z g(n)e e,

We want to find the relation that exists between G, (j2) and G(e’*).
Mathematically, we can consider the sampling operations as the product of a signal g, (t) and a periodic
pulse train p(t), where

+o0
pit)= Y d(t—nT),

n=—oo

composed of an infinite sequence of Dirac impulses uniformly spaced in time and separated by the

period 7.
The multiplication between g, (t) and p(t) results in a continuous-time function
“+oo
9p(t) = ga(t) - p(t) = Z ga(nT)0(t — nT),

which is also composed of infinite Dirac impulses, placed at time ¢ = nT', and weighted by the sample
value g, (nT).

We will provide two expressions for the CTFT of g,(¢). The first one is derived directly from the last
expression of g,(n) considering that the CTFT of {§(t — nT)} is e=7"T,

For the linearity property of the CTFT:

+oo
G = Y galnT)e 9T,

n=—oo

By comparing this relation with the expression of G(e7“), we see that

Gle™) = Gy
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GP(]Q) = G(eju) ‘w:QT

The DTFT G(e?*) coincides with the CTFT of g,(n), apart from a frequency axis normalization. This
normalization maps the point at w = 27 of G(e’) to the point at Qr = 27 Fr of G, (jQ).

In what follows, we find a second form for G, (;€).

Assume you have two continuous time signals a(t) and b(t) with CTFT A(j2) and B(j<?), respectively.
The CTFT of the product y(t) = a(t) - b(¢) is

v = [ AGE)- B(i© - w)de

Proof:

Y(5Q) = /+oo a(t) - b(t)e I¥dt =

o0

+oo 1 +oo ) )
:/ 2—/ A(G0)edVEAW - b(t)e I dt =
—00 T J -

(obtained by replacing a(t) with its ICTFT)

1 “+o0 +oo )
=— A(j D) / b(t)e 1=t qdw =

2m —0o0 —0o0
1 [T
=5 A(GO)B(j(Q—T))d¥

— 00

Q.E.D.

We can use the property we have just proved to evaluate the CTFT of

9gp(t) = ga(t) - p(1).

We assume knowing the CTFT of ¢,(t). Let us compute the CTFT of the pulse train p(¢). In what follows,
we prove that
Z 5(Q - k—
k=—o0

i.e., the CTFT of p(t) is also a uniformly spaced pulse train.

Proof:
Note that the pulse train p(¢) is a periodic signal with a period of T. Thus, we can expand p(t) with the
Fourier series:

“+o0
p(t) = Z cped TRt
k=—oc0
with
1 [7 .
= — 7jl t =
Ck T/gp(t)e Tt
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(because in the interval [-Z, +Z] only one pulse, §(t), is different from 0)

Thus,

and for the linearity of the CTFT

1 = j 2T ket
= CTFT{eJT }

We can easily verify that
CTFT {eﬂ‘%"kt} —2m5(Q — 2
T

Indeed, the IDFT of the right-hand side is
“+o0
7/ 27‘(‘5 ) thdQ Tkt

(for the properties of the Dirac function).
Replacing CTFT {ej%"’“} in the expression of P(;£2), we have

fé@ k—

k=—o0
We can now compute G, (j2)
1 [t
Gli0 =5 [ Gulj¥)- P(j(Q - w)dw
1 [t 21
=5 _OOG]\I/ 259 U —k=)dw =

+oo +00

*Z/ Ga(jU) - 6(Q — U — k==)d¥ =
k=—o00

k——oo
T Z J(Q — kQr))
k=—oc0

with Qr = 2%
Consequently,
G(e*) = Gp(iD]oey =

=1 3 GG ron)] =

k=—o0
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_ % +§ Ga[j(w JrT27rk>]'

k=—o0

The DTFT is given by the periodic repetition, with a period of 27, of the continuous spectrum G, (y%)

G, (j%) is identical to G, (j?), but the frequency axis has been normalized such that w = 27 corre-
sponds to the angular sampling frequency Qr = 2Z.
In order to avoid any overlap between the repeated spectra, it must be

G, (g%) =0 for |w|>m,

or, equivalently,
. T  Qp
Q) =0 f Q> —=-—-.

If this condition is satisfied, the discrete spectrum reproduces in the band [—=, +7] the continuous
spectrum.

If this condition is not satisfied, we have a distortion caused by the overlap of the tails of the spectrum.
This distortion is called aliasing.

The frequency % = % is called Nyquist frequency.

Similarly, the angular frequency % is called Nyquist angular frequency.

Let us assume, for example, that our signal occupies the band [—,,,, +Q,»]-

If Qr > 2Q,,, the different repetitions of the spectrum do not overlap.

If Qr < 2Q,,, the repetitions of the spectrum overlap, and we have an aliasing error.

See Figure 03.01.

If the continuous-time signal spectrum is preserved in the discrete domain (i.e., if we do not have
aliasing), we can reconstruct the original signal from the samples g(n) = g,(nT).

For this purpose, let us build the signal:

+oo
g(t) = D g(n)(t —nT) =
+oo
= > ga(nT)8(t — nT)

We know its CTFT: .

i) = 7 Y Guli(@+ kO],

k=—o0

This continuous spectrum is given by the periodic repetition of the spectrum G, (j€2) with period Q7.
If the signal has been sampled with a frequency Qr > 29,,,, where Q,, is the maximum signal frequency
of ¢,(t), we do not have aliasing, and the repetitions of G, (j€2) do not overlap. Thus, we can faithfully
reconstruct the signal g, (t) by passing the signal g,(t) through a filter (i.e., a device, a circuit) that lets
the spectrum in the band [—Q,,, ,,] pass without any alteration, while it stops all signal components
outside that frequency range. We will see that such a filter is an ideal low-pass filter with bandwidth €2,,,.
We have just proved the theorem that is at the basis of all signal processing and modern telecommuni-
cations, the sampling theorem.
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Figure 03.01: lllustration of sampling theorem.

The sampling theorem
(also called Nyquist-Shannon theorem)

Let g.(¢) be a band-limited signal, with G, (;5§?) = 0 for || > ,,,. Then, g,(t) is uniquely de-

termined by its samples ¢, (nT), (i.e., can be faithfully reconstructed by its samples g, (nT),)
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—o0 < n < 400, if the angular sampling frequency

QT > QQm

2

In other words, if we want to be able to recover the band-limited signal g,(¢) from its samples, we must
sample the signal with a frequency at least twice the signal bandwidth.
The signal can be recovered by generating the signal

+00
gp(t) = D g(n)s(t—nT)

and by filtering this signal with an ideal low-pass filter.

In general, real-world signals are not band-limited. They occupy an infinite band, but most of their

energy is concentrated at the low frequencies.

To avoid distortions due to aliasing, the signal is typically filtered with a low-pass filter before sampling.

This filter cuts off high frequencies and generates a band-limited signal. Such a filter is called an anti-

aliasing filter. After filtering, the signal can be safely sampled with a frequency greater than 212,,, and

processed as desired.

Anti- Digital Reconstruction
_"dléﬁfg:g—' SIH ™ AD 1™ processor| 7| PA [ filter _>

Figure 3.12: Block diagram representation of the discrete-time digital processing of a continuous-time signal.

(From S. K. Mitra, “Digital signal processing: a computer based approach”, McGraw Hill, 2011)

Also the signal that comes out of the Digital to Analog (D/A) converter? is filtered with a low-pass filter,
called the reconstruction filter or anti-imaging filter. In this way, all the frequencies (the images) outside
the band of the original signal, [, +£,,] are removed.

For example, to sample the voice in telephone applications, we exploit the fact that most of the voice
energy falls between 300 and 3400 Hz. The voice is then sampled at 8kHz, which is greater than
2 - 3.4kHz.

In audio CDs, the musical signal has a bandwidth ranging from 0 to 20kHz and is sampled at 44.1kHz.
In DAT and DVDs, for the same musical signal, a larger bandwidth has been considered, and it has
been sampled at 48kHz.

For more information study:

S. K. Mitra, "Digital Signal Processing: a computer based approach,” 4th edition, McGraw-Hill, 2011
Chapter 3.1, pp. 89-93

Chapter 3.2-3.5, pp. 94-112

Chapter 3.8, pp. 115-124

2You can think of this signal as being g, (t), even though in reality, the Dirac pulses are replaced by rectangular pulses.
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