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Discrete-time systems

• The function of a discrete-time system is to process one or more sequences, referred to as input

sequences, with the aim of generating one or more sequences, known as output sequences.

• These output sequences are expected to exhibit certain desired properties or emphasize specific

information from the input signals.

• In most cases, our systems have a single input and a single output.
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Signals and signal processing

• In discrete-time systems of practical interest, all signals are digital signals (with discrete-time and discrete

amplitude), and the operations on these signals also result in digital signals.

• Such systems are commonly referred to as digital filters. Throughout this discussion, we will

interchangeably use the terms discrete-time system, discrete system, and digital filter.

• The term ’filter’ originates from these systems’ initial application in filtering the spectrum of a signal. The

system was designed to leave certain frequency components of the signal unaltered while removing, or

’filtering,’ other undesired frequencies—similarly to a mechanical filter.
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Examples of simple systems: Constant multiplier and unit delay

• Constant multiplier:

• Unit delay:
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Examples of simple systems: accumulator

y(n) =
n∑

l=−∞

x(l)

The input-output relationship can also be expressed alternatively as:

y(n) =
n−1∑

l=−∞

x(l) + x(n) = y(n − 1) + x(n).

Another alternative form is the following:

y(n) =
−1∑

l=−∞

x(l) +
n∑

l=0

x(l) = y(−1) +
n∑

l=0

x(l).

This form is used when the input signal x(n) is a causal signal (i.e., defined only for n ≥ 0) and y(−1) is called
initial condition.
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Examples of simple systems: moving average

y(n) =
1

M

M−1∑
l=0

x(n − l)

It’s worth noting that the expression for the moving average can be expressed in recursive form as follows:

y(n) =
1

M

(
M−1∑
l=0

x(n − l) + x(n −M)− x(n −M)

)
=

=
1

M

(
M∑
l=1

x(n − l) + x(n)− x(n −M)

)
=

= y(n − 1) +
1

M
(x(n)− x(n −M)) .

It’s possible to describe the same system in different ways, corresponding to various implementations.

Further, we will observe that the moving average filter behaves like a low-pass filter, with a passband inversely

proportional to M (larger M results in a lower passband).
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Examples of simple systems: exponentially weighted running average filter

y(n) = αy(n − 1) + x(n)

with 0 < α < 1.

This filter calculates the mean of past signal samples, with a greater emphasis on the most recent samples of

x(n).

Through successive substitutions, we find that

y(n) =
+∞∑
l=0

αn−lx(n − l).

Here, the samples are multiplied by an exponential weight that gradually diminishes as we move away from

x(n).
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Examples of simple systems: Interpolation filter

Suppose we have a signal sampled at a frequency of fc .

To obtain the samples of the same signal at a sampling frequency of 2fc , we can

• take the sequence sampled at fc ,

• insert a zero between each pair of samples, and then

• filter the resulting sequence with an interpolation filter.

The interpolation filter replaces all zero samples with the mean value of the preceding and succeeding samples:

y(n) = xu(n) +
1

2
(xu(n − 1) + xu(n + 1))
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Examples of simple systems: Interpolation filter

The technique can be easily extended for interpolation factors of 3, 4, or even higher.

For an interpolation factor of 3, the formula becomes:

y(n) = xu(n) +
2

3
(xu(n − 1) + xu(n + 1)) +

1

3
(xu(n − 2) + xu(n + 2))

These filters find applications in image processing, particularly for enlarging images. For example, they are

used to transition from an image with N × N pixels to an enlarged image with 2N × 2N pixels.
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Examples of simple systems: Median filter

Consider a set of 2K + 1 numbers. Ordering these numbers by their values, the median is the number at the

central position, precisely at position K when counted from 0.

Therefore, there are K numbers lower than or equal to the median and K numbers greater than or equal to the

median.

The median filter is created by sliding a window of length 2K + 1 over the signal x(n) and selecting the

median value within this window:

y(n) = med {x(n − K), x(n − K + 1), . . . , x(n − 1), x(n), x(n + 1), . . . , x(n + K)} .
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Examples of simple systems: Median filter

If the signal has a finite length, it is extended with zeros in both directions.

{. . . , 0, 1, 2, 1, 0, . . .} med3←→ {. . . , 0, 1, 1, 1, 0, . . .}

The median filter is widely employed in image processing to eliminate impulsive noises.

Notably, it possesses the property of preserving edges, a characteristic that contrasts with the smoothing effect

on borders when using low-pass filters like the moving average.
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Classification of discrete-time systems

• A discrete-time system is termed static or without memory if, for every input sequence {x(n)} and at

every time instant n, the output y(n) depends solely on the input sample at that time, x(n). It does not

depend on past or future output samples.

An example of a static system is the multiplier for a constant.

• In contrast, a discrete-time system, where the output signal depends on both past and future input

samples, is termed dynamic.

• A discrete-time system is termed linear if it satisfies the superposition principle:

for any pair of input signals x1(n) and x2(n), and for any arbitrary constants a1 and a2, if y1(n) and y2(n)

are the responses to x1(n) and x2(n), then the response to the input signal x(n) = a1x1(n) + a2x2(n) is

a1y1(n) + a2y2(n).

x1(n) −→ y1(n)

x2(n) −→ y2(n)

a1x1(n) + a2x2(n) −→ a1y1(n) + a2y2(n)
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Classification of discrete-time systems

• The superposition principle can be separated into two parts:

• Multiplicative property: It the response to x(n) is y(n), then for all constants K the response to

Kx(n) is Ky(n):

x(n) −→ y(n)

Kx(n) −→ Ky(n)

• Additive property: If the responses to x1(n) and x2(n) are y1(n) and y2(n), respectively, then the

response to x1(n) + x2(n) is y1(n) + y2(n):

x1(n) −→ y1(n)

x2(n) −→ y2(n)

x1(n) + x2(n) −→ y1(n) + y2(n)

• Every system that does not satisfy the superposition principle is called nonlinear.
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Examples

• Let us first consider the accumulator:

y1(n) =
n∑

m=−∞

x1(m)

y2(n) =
n∑

m=−∞

x2(m)

The response to a1x1(n) + a2x2(n) is

y(n) =
n∑

m=−∞

(a1x1(m) + a2x2(m)) =

= a1

n∑
m=−∞

x1(m) + a2

n∑
m=−∞

x2(m) =

= a1y1(n) + a2y2(n)

Thus, the accumulator in this form is linear.
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Examples

• Let us now consider the alternative form of the accumulator:

y1(n) = y1(−1) +
n∑

m=0

x1(m)

y2(n) = y2(−1) +
n∑

m=0

x2(m)

The response to a1x1(n) + a2x2(n) is

y(n) = y(−1) +
n∑

m=0

(a1x1(m) + a2x2(m)) = y(−1) + a1

n∑
m=0

x1(m) + a2

n∑
m=0

x2(m)

On the contrary, we have

a1y1(n) + a2y2(n) = a1y1(−1) + a2y2(−1) + a1

n∑
m=0

x1(m) + a2

n∑
m=0

x2(m)

The two expressions are equal if and only if:

a1y1(−1) + a2y2(−1) = y(−1).
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Examples

• The two expressions are equal if and only if:

a1y1(−1) + a2y2(−1) = y(−1).

• The condition must be satisfied for all a1, a2, x1(n), x2(n), and for all y1(−1), y2(−1), y(−1).

• Since y1(−1), y2(−1), y(−1) are initialization constants, this condition is not generally satisfied unless we

assume the system to be initially at rest, i.e., with y1(−1) = y2(−1) = y(−1) = 0.

• If the system has zero initial conditions, it is linear.

• Conversely, if it has an initial condition different from zero, it is a nonlinear system.
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Examples

• Another example of nonlinear system is the median filter.

• Let us consider a median filter of length 3.

{x1(n)} = {3, 4, 5} −→ {y1(n)} = {3, 4, 4}

{x2(n)} = {2,−1,−1} −→ {y2(n)} = {0,−1,−1}

{x1(n)}+ {x2(n)} = {5, 3, 4} −→ {y1(n)} = {3, 4, 3}

But {3, 4, 3} ≠ {y1(n)}+ {y2(n)} = {3, 3, 3}.
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Time-invariance

• A system is termed time-invariant or shift-invariant if, for any input x(n) with a response y(n) and for

any constant k ∈ Z, the response to x(n − k) is y(n − k):

x(n) −→ y(n)

x(n − k) −→ y(n − k)

Note that this property must hold for every possible choice of x(n) and k.
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Linear Time-Invariant (LTI) discrete-time systems

• In the following, we will particularly focus on Linear Time-Invariant (LTI) discrete-time systems.

• LTI systems exhibit both linearity and time-invariance properties.

• These characteristics make them straightforward to analyze and characterize, facilitating easy design.

Consequently, LTI systems find widespread use in processing digital signals.

• For these systems, we can explicitly express the rule H( · ) that maps the input signal to the output signal.

• In other words, for LTI systems, we can formulate a mathematical rule that computes the output signal

samples based on the knowledge of the input signal samples.

• The concepts of impulse response and convolution sum play a crucial role in this context.
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Impulse response and convolution sum

• The impulse response of a LTI system is defined as the system’s response to the unit impulse input signal:

x(n) = δ(n) −→ y(n) = h(n)

• We have observed that every sequence x(n) can be represented as the sum of an infinite number of

impulses, appropriately scaled:

x(n) =
+∞∑

m=−∞

x(m)δ(n −m)

But

δ(n) −→ h(n)

δ(n −m) −→ h(n −m)

x(m)δ(n −m) −→ x(m)h(n −m)

+∞∑
m=−∞

x(m)δ(n −m) −→
+∞∑

m=−∞

x(m)h(n −m)
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Impulse response and convolution sum

• In an LTI system, the output sequence can be calculated from the input sequence using the following

relation:

y(n) =
+∞∑

m=−∞

x(m)h(n −m) = x(n)⊛ h(n)

This sum is known as the convolution sum. We also say that the signal x(n) is convolved with h(n).

• The impulse response is sufficient to completely describe LTI systems. Knowing h(n) allows us to

determine y(n) for any input x(n).
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Properties of the convolution sum

• Commutative property:

x(n)⊛ h(n) = h(n)⊛ x(n)

• Proof:

y(n) =
+∞∑

m=−∞

x(m)h(n −m)

Let us consider the change of variable m′ = n −m, i.e., m = n −m′

y(n) =
+∞∑

m′=−∞

x(n −m′)h(m′) = h(n)⊛ x(n)

• Physical interpretation:

The system with input x(n) and impulse response h(n) has the same response y(n) as the system with

input h(n) and impulse response x(n):
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Properties of the convolution sum

• Associative property:

[x(n)⊛ h1(n)]⊛ h2(n) = x(n)⊛ [h1(n)⊛ h2(n)]

• Physical interpretation:

If we consider the cascade of two systems with impulse responses h1(n) and h2(n), respectively, the

resulting system has an impulse response given by h1(n)⊛ h2(n):
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Properties of the convolution sum

• Distributive property:

[x1(n) + x2(n)]⊛ h(n) = x1(n)⊛ h(n) + x2(n)⊛ h(n)

and also

x(n)⊛ [h1(n) + h2(n)] = x(n)⊛ h1(n) + x(n)⊛ h2(n)

• Physical interpretation of the last relation:

If we consider the parallel connection of two systems with impulse responses h1(n) and h2(n), respectively,

the resulting system has an impulse response given by h1(n) + h2(n):
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Computation of the convolution sum

y(n) =
+∞∑

m=−∞

x(m)h(n −m)

• We can compute y(n0) = y(n)
∣∣∣
n=n0

by means of the following operations:

• Fold the sequences h(m) to obtain h(−m).

• Time-shift h(−m) of n0 samples to the right for n0 > 0 (time delay), or to the left by |n0| samples for

n0 < 0 (time advancement), resulting in h(n0 −m).

• Perform element-wise multiplication between x(m) and h(n0 −m) to get Vn0(m) = x(m)h(n0 −m).

• Sum of all the terms of Vn0(m).

• Conceptually, this method can be applied to any pair of sequences x(n) and h(n). However, in practice,

this approach is feasible only when at least one of the two sequences has a finite length.
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Computation of the convolution sum
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Causal linear time-invariant systems

• A discrete-time system is termed causal if, at every time instant n, the output y(n) depends solely on the

present and past samples of x(n) (i.e., x(n), x(n− 1), x(n− 2), etc.), while it remains independent of the

future samples of the signal (x(n + 1), x(n + 2), x(n + 3), etc.).

• Systems that are not causal are referred to as noncausal.

• In real-time digital signal processing systems, the observation of future samples of the signal is not

possible, rendering noncausal systems unrealizable. Hence, the property of causality is also known as the

realizability property.
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Causal linear time-invariant systems

• Property: An LTI system is causal if and only if its impulse response is zero for n < 0:

causality⇐⇒ h(n) = 0 ∀n < 0.

• Proof:

y(n) =
+∞∑

m=−∞

h(m) · x(n −m) =

=
−1∑

m=−∞

h(m) · x(n −m) +
+∞∑
m=0

h(m) · x(n −m)

The first term depends on the future samples of x(n), while the second term depends only on the present

and past samples of x(n). Thus, the system is causal if and only if h(n) = 0 ∀n < 0.

Q.E.D.

• An example of a noncausal system is the linear interpolator.
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Causal linear time-invariant systems

• In a causal system, the convolution sum is given by

y(n) =
+∞∑
m=0

h(m)x(n −m)

=
n∑

m=−∞

x(m)h(n −m)

• In analogy to the causality property of LTI systems, sequences that are zero for all n < 0 are referred to as

causal.

• If the input of a causal LTI system is a causal sequence, the boundaries of the convolution sum are further

reduced since we have:

y(n) =
n∑

m=0

h(m)x(n −m)

=
n∑

m=0

x(m)h(n −m)
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Stability of LTI discrete-time systems

• A discrete-time system is defined BIBO stable (Bounded Input Bounded Output stable) if, for every

bounded input signal x(n), the output signal y(n) is bounded.

• If the input signal is bounded, there exists a constant Mx such that

|x(n)| ≤ Mx < +∞ ∀n.

If the system is BIBO stable, there must exist a constant My such that, for any |x(n)| ≤ Mx ,

|y(n)| ≤ My < +∞ ∀n.

• Property: A LTI discrete-time system is BIBO stable if and only if

+∞∑
n=−∞

|h(n)| < +∞,

i.e., if and only if the impulse response is absolutely summable.
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Stability of LTI discrete-time systems

• Proof: First, let’s prove that this condition is sufficient for BIBO stability.

If x(n) is bounded, there exists Mx such that

|x(n)| ≤ Mx < +∞ ∀n.

Thus,

|y(n)| =

∣∣∣∣∣
+∞∑

m=−∞

h(m)x(n −m)

∣∣∣∣∣ ≤
≤

+∞∑
m=−∞

|h(m)x(n −m)| ≤

≤
+∞∑

m=−∞

|h(m)|Mx

If we define My = Mx

+∞∑
m=−∞

|h(m)|, it is proved that, if h(n) is absolutely summable, there exists a

constant My such that

|y(n)| ≤ My < +∞ ∀n.
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Stability of LTI discrete-time systems

• Proof:

First, let’s prove that this condition is sufficient for BIBO stability.

If x(n) is bounded, there exists Mx such that

|x(n)| ≤ Mx < +∞ ∀n.

Thus,

|y(n)| =

∣∣∣∣∣
+∞∑

m=−∞

h(m)x(n −m)

∣∣∣∣∣ ≤
≤

+∞∑
m=−∞

|h(m)x(n −m)| ≤

≤
+∞∑

m=−∞

|h(m)|Mx

If we define My = Mx

+∞∑
m=−∞

|h(m)|, it is proved that, if h(n) is absolutely summable, there exists a

constant My such that

|y(n)| ≤ My < +∞ ∀n.
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Signals and signal processing

• Now, let’s prove that it is also a necessary condition.

To this purpose, let us assume
+∞∑

m=−∞

|h(m)| = +∞

and let us demonstrate that it is always possible to find a bounded input whose output is not bounded.

• If h(n) ∈ R, one of such signals is

x(n) = sign[h(−n)] =

{
+1 h(−n) ≥ 0

−1 h(−n) < 0

Surely, x(n) is bounded since |x(n)| = 1. If we consider the output of our system for n = 0:

y(0) =
+∞∑

m=−∞

h(m)x(0−m) =
+∞∑

m=−∞

h(m)sign[h(m)] =
+∞∑

m=−∞

|h(m)| = +∞

• Here, for simplicity, we have considered a real h(n). However, everything holds true for a complex h(n) as

well. It is sufficient to consider

x(n) =
h∗(−n)
|h(−n)| .
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FIR and IIR LTI systems

• An LTI discrete-time system is termed a Finite Impulse Response (FIR) system if its impulse response

has a finite length, i.e.

h(n) = 0 ∀n < N1 or n > N2,

with N1 ≤ N2. h(n) has only N = N2 − N1 + 1 elements different from 0.

• In this case, the convolution sum simplifies to

y(n) =

N2∑
m=N1

h(m)x(n −m).

• As this sum is finite, it can be directly used to compute y(n).

• For a causal FIR system of length N:

h(n) = 0 ∀n < 0 or n ≥ N,

and the output is given by

y(n) =
N−1∑
m=0

h(m)x(n −m).
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FIR and IIR LTI systems

• A system whose impulse response has infinite length is referred to as an Infinite Impulse Response (IIR)

system.

• In the case of a causal IIR system, the output is given by

y(n) =
+∞∑
m=0

h(m)x(n −m).

• While FIR systems can be directly implemented using the convolution sum, IIR systems cannot be realized

through the convolution sum due to the requirement of an infinite number of additions, multiplications,

and memory elements.

• In practice, in digital signal processing, we often focus on a subclass of LTI and causal discrete-time

systems.

• This subclass comprises all systems that can be represented by a finite difference equation with

constant coefficients, i.e., they can be expressed in the following form:

y(n) =
M∑
i=0

bix(n − i)−
N∑
i=1

aiy(n − i)

for all n ≥ 0.
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FIR and IIR LTI systems

y(n) =
M∑
i=0

bix(n − i)−
N∑
i=1

aiy(n − i)

• For this class of systems, the output can be computed directly from some past samples of the input and

output signals.

• These systems are causal, as they involve only the past samples and the present sample of the input signal.

• To compute y(n) from the input signal x(n), knowledge of the N initial conditions, y(−1), y(−2), . . .,
y(−N), is required.

• If these N initial conditions are all zero,

y(−1) = y(−2) = . . . = y(−N) = 0,

the system is termed initially at rest.

• The class of systems that can be described by a finite difference equation with constant coefficients

includes all causal FIR systems and a subset of causal LTI IIR systems.
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FIR and IIR LTI systems

• There are causal IIR systems that cannot be described by a finite difference equation.

• For instance, the system with impulse response:

h(n) =


1

n2
n > 0

0 n ≤ 0

is a causal, BIBO-stable system, but it lacks a representation in terms of a finite difference equation.
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Frequency response

• We have seen that every sequence can be represented in the time domain as the weighted sum of an

infinite number of unit pulses, shifted in time:

x(n) =
+∞∑

m=−∞

x(m)δ(n −m).

• This representation leads to an important consequence – the characterization of LTI systems using the

impulse response and the convolution sum.

• We have also seen that sequences can be represented by means of a weighted sum of an infinite number

of complex exponential sequences {e jωn}.

• This representation leads to another description of LTI systems through the so-called Frequency

Response.

• Let us consider an LTI system with impulse response h(n) and let us excite the system with a complex

exponential sequence e jωn with −∞ < n < +∞.
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Frequency response

y(n) =
+∞∑

m=−∞

h(m)e jω(n−m) =
+∞∑

m=−∞

h(m)e−jωme jωn = H(e jω) · e jωn.

• If we apply a complex exponential sequence e jωn to the input of our system, the output is the same

exponential sequence multiplied by the complex constant H(e jω).

• H(e jω) is the Discrete-Time Fourier Transform (DTFT) of the impulse response h(n) and is referred to as

the Frequency Response of the LTI system.

• |H(e jω)| is termed the amplitude response (or magnitude response), and arg{H(e jω)} is termed the

phase response of the LTI system.

A. Carini Digital Signal and Image Processing 39 / 44



Frequency response

• The frequency response completely characterizes the response of an LTI system in the frequency domain.

• Indeed,

y(n) = x(n)⊛ h(n)
DTFT←→ Y (e jω) = H(e jω)X (e jω)

• Proof:

Y (e jω) =
+∞∑

n=−∞

y(n)e−jωn =

=
+∞∑

n=−∞

(
+∞∑

m=−∞

h(m)x(n −m)

)
e−jωn =

=
+∞∑

m=−∞

h(m)
+∞∑

n=−∞

x(n −m)e−jω(n−m)e−jωm =

=
+∞∑

m=−∞

h(m)X (e jω)e−jωm =

= X (e jω)
+∞∑

m=−∞

h(m)e−jωm =

= X (e jω)H(e jω)

Q.E.D.
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Frequency response

• The Discrete-Time Fourier Transform (DTFT) transforms the convolution sum of two sequences into the

product of their respective DTFTs.

• If we know the frequency response of an LTI system, we can calculate the output sequence, denoted as
y(n) and representing the response to the input sequence x(n), through the following steps:

1. X (e jω) = DTFT {x(n)}
2. Y (e jω) = X (e jω)H(e jω)

3. y(n) = IDTFT {Y (e jω)}

• The main inconvenience is represented by the fact that the IDTFT requires the computation of the

integral of a continuous function.

• We will address this inconvenience later by introducing the Discrete Fourier Transform (DFT).
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The concept of digital filter

• An application of LTI systems is to allow certain frequency components of a sequence to pass without

distortions while blocking any other frequency component.

• Such systems are referred to as digital filters.

• For example, let us consider the low pass filter with frequency response:

H(e jω) ≃

{
1 0 ≤ |ω| ≤ ωc

0 ωc ≤ |ω| ≤ π

Let the system input be

x(n) = A cos(ω1n) + B cos(ω2n)

with 0 < ω1 < ωc < ω2 < π. Since cos(ωn) = 1
2
[e jωn + e−jωn], it can be easily proved that:

y(n) ≃ A|H(e jω1)|cos
(
ω1n + arg{H(e jω1}

)
≃ Acos(ω1n).

Thus, the output comprises only the first cosine component, which lies within the passband of the filter,

while the second component outside the passband is eliminated.
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Example

• Let us consider the system {
y(n) = ay(n − 1) + x(n)

y(−1) = 0.

We aim to calculate the frequency response of this system.

If x(n) = δ(n) then it is easy to observe through successive substitutions that

y(n) = h(n) = an ∀n ≥ 0.

H(e jω) =
+∞∑
n=0

ane−jωn =
+∞∑
n=0

(
ae−jω

)n
=

1

1− ae−jω
,

provided that |a| < 1.

|H(e jω)| = 1

|1− a cos(ω) + ja sin(ω)| =
1√

(1− a cos(ω))2 + a2 sin2(ω)
=

1√
1− 2a cos(ω) + a2

arg {H(e jω)} = arg

{
e jω

e jω − a

}
= ω − arctan

(
sin(ω)

cos(ω)− a

)
.

When a > 0, the filter exhibits a low-pass behavior, while for a < 0, it demonstrates a high-pass behavior.

This is a first-order system as it involves only one delayed sample of the output.

With first-order systems, we can implement either low-pass or high-pass filters.
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