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Definition of the Z-Transform

• The Z-Transform is a generalization of the discrete-time Fourier transform. It exists for many sequences

for which the DTFT does not exist. It is a function of the complex variable z .

• Given a sequence g(n), the Z-Transform is expressed as

G(z) =
+∞∑

n=−∞

g(n)z−n,

where z = Re (z) + j Im (z) represents a continuous complex variable.

• We will denote the Z-Transform of g(n) also as:

Z{g(n)} = G(z) =
+∞∑

n=−∞

g(n)z−n.
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Z-Transform and DTFT

• If we consider z = r · e jω,

G(z) =
+∞∑

n=−∞

g(n)r−ne−jωn.

This expression can be interpreted as the Discrete-Time Fourier Transform (DTFT) of the modified

sequence {g(n)r−n}.

• When we compare the definition of G(z) with the DTFT of g(n):

G(e jω) =
+∞∑

n=−∞

g(n)e−jωn

we observe that

G(e jω) = G(z)
∣∣∣
z=ejω

,

assuming these transforms exist.
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Z-Transform and DTFT

• We can provide a geometrical interpretation to the Z-Transform by considering a point z in the complex

plane.

• Assigned r and ω, the point z = re jω in the complex plane lies at the end of a vector with a magnitude of

r and an angle of ω radians with respect to the real axis.

• The set of points with |z | = 1 and consequently with z = e jω, forms a circle with radius one (unit circle)

in the z plane.

• The Z-Transform G(z) evaluated on the unit circle yields the DTFT of g(n), assuming it exists.
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Z-Transform and DTFT

• For z = 1, G(z) = G(e j0), i.e., the value G(e jω) for ω = 0.

• For z = j , G(z) = G(e j
π
2 ), i.e., the value G(e jω) for ω = π

2
.

• For z = −1, G(z) = G(e jπ), i.e., the value G(e jω) for ω = π.

• For z = −j , G(z) = G(e j
3π
2 ), i.e., the value G(e jω) for ω = 3π

2
.

• By moving along the unit circle from z = 1, till z = −1, till z = 1 again, we obtain all values of G(e jω)

for 0 ≤ ω ≤ 2π.

• As observed earlier, the DTFT is periodic with a period of 2π. Thus, by moving along the unit circle in

either a clockwise or anti-clockwise direction, we can compute G(e jω) for all values of ω within the range

−∞ < ω < +∞.
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The Region of Convergence

• As with the DTFT, the Z-Transform converges only when specific conditions are met, and typically, it

converges within a specific region of the complex z plane.

• For a given sequence, the set R of z values for which the Z-Transform converges is referred to as the

Region of Convergence (ROC).

• It can be proven that the Z-Transform converges for all values of z for which the sequence g(n)r−n is

absolutely summable (with r = |z |):
+∞∑
n=∞

∣∣g(n)r−n
∣∣ < +∞.

• Even if the sequence g(n) is not absolutely summable, g(n)r−n could still be absolutely summable.

In other words, even if the sequence g(n) does not have a DTFT, it may have a Z-Transform within a

certain region of the complex z plane.
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The Region of Convergence

• The condition of absolute summability indicates that if there exists a specific z = re jω for which the

Z-Transform exists (i.e., for which
∑+∞

n=∞

∣∣g(n)r−n
∣∣ < +∞), then the Z-Transform exists throughout the

entire circle with a radius of r .

• In general, the Region of Convergence R forms an annular region in the complex z plane:

Rg− < |z | < Rg+, with 0 ≤ Rg− ≤ Rg+ ≤ +∞.

• We will observe that different sequences can share the same Z-Transform; however, in such cases, they

may have distinct regions of convergence. Therefore, it is crucial to explicitly specify the region of

convergence for the Z-Transform.
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Examples

• Let’s compute the Z-Transform of the causal sequence x(n) = αnµ(n):

X (z) =
+∞∑

n=−∞

αnµ(n)z−n =
+∞∑
n=0

αnz−n.

• This series converges if and only if |αz−1| < 1, and it converges to

X (z) =
1

1− αz−1
.

• The region of convergence is |z | > α.

• For α = 1, x(n) = µ(n), thus µ(z) =
1

1− z−1
with a region of

convergence |z | > 1.

• Whenever the sequence is causal, the region of convergence lies outside a circle centered at the

origin of the z plane.
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Examples

• Let us compute the Z-Transform of the exponential acausal sequence

x(n) = −αnµ(−n − 1)

X (z) =
+∞∑

n=−∞

x(n)z−n =
−1∑

n=−∞

−αnz−n =

=
∞∑
m=1

−α−mzm = −α−1z
+∞∑
m=0

α−mzm =

=
−α−1z

1− α−1z
=

1

1− αz−1

provided |α−1z | < 1.

• We have obtained the same Z-Transform of the previous causal

sequence, but now the region of convergence is |z | < α.

• Note that acausal sequences always have a region of convergence that is a circle centered at the

origin of the z plane.
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Two-sided sequences

• Two-sided sequences consist of a causal part and an acausal part, and their Z-Transform, if it converges

at all, has an annular region of convergence.

• This can be easily explained, as the causal part has a region of convergence |z | > R1, and the acausal part

has a region of convergence |z | < R2.

• If R1 < R2, the two-sided sequence has a region of convergence R1 < |z | < R2.

• On the contrary, if R2 > R1 the Z-Transform does not converge.
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Examples

• Let’s compute the Z-Transform of the finite length sequence

x(n) =

{
αn M ≤ n ≤ N − 1,

0 elsewhere.

X (z) =
N−1∑
n=M

αnz−n =

= αMz−M + αM+1z−M−1 + . . .+ αN−1z−N+1 =

= αMz−M
N−M−1∑

m=0

αmz−m = αMz−M 1− αN−Mz−(N−M)

1− αz−1
=

αMz−M − αNz−N

1− αz−1

• Since the series is composed of a finite number of terms, the region of convergence coincides with the

entire z plane, except possibly from z = 0 or z =∞.

• In particular, for N − 1 ≥ M ≥ 0, the region of convergence is the entire z plane except at z = 0.

• If N − 1 > 0, M < 0, the region of convergence is the entire z plane except at z = 0 and z =∞.

• If M ≤ N − 1 < 0, the region of convergence is the entire z plane except at z =∞.
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More on the Z-Transform

• If the region of convergence comprises the unit circle, the sequence admits the DTFT.

• Nevertheless, even if a sequence has DTFT, there is no guarantee that the sequence also has a

Z-Transform.

• For example, the ideal low-pass sequence hLP(n), defined as

H(e jω) =

{
1 |ω| < ωc ,

0 otherwise
,

admits DTFT, but it does not have a Z-Transform. Indeed, hLP(n)r
−n, for any r , is not absolutely

summable.
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Rational Z-Transforms

• All the Z-Transforms we will consider in this course will always be rational functions of z−1, i.e., the ratio

of two polynomials:

H(z) =
P(z)

Q(z)
=

p0 + p1z
−1 + . . .+ pMz−M

d0 + d1z−1 + . . .+ dNz−N

• An alternative form represents H(z) as the ratio of two polynomials in z :

H(z) = zN−M p0z
M + p1z

M−1 + . . .+ pM
d0zN + d1zN−1 + . . .+ dN

• Both relations can be written in a factorized form as

H(z) =
p0
d0

M∏
l=1

(
1− ξlz

−1
)

N∏
l=1

(
1− λlz

−1
) =

p0
d0

zN−M

M∏
l=1

(z − ξl)

N∏
l=1

(z − λl)

where ξl and λl are the roots of the numerator and denominator polynomials in z .

• When z = ξl , we have H(ξl) = 0. Thus, the roots of the numerator ξl are referred to as the zeros of H(z).

• When z = λl , we have H(λl) =∞. Thus, the roots of the denominator λl are referred to as the poles of

H(z).
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Rational Z-Transforms

H(z) = zN−M p0z
M + p1z

M−1 + . . .+ pM
d0zN + d1zN−1 + . . .+ dN

• Note that in our Z-Transform H(z) we have M zeros and N poles.

• If N > M we have additional (N −M) zeros in the origin; if M > N we have additional (M − N) poles in

the origin.

• A rational Z-Transform can be fully characterized by the positions of its poles λl and zeros ξl , along with

the constant term
p0
d0

.

• It is interesting to observe that the region of convergence of a rational Z-Transform is delimited by the

location of poles.

• If H(z) has N poles, each with a different magnitude, we will have N + 1 possible regions of convergence.

For each of these regions of convergence, we have a different sequence h(n) that shares the same

Z-Transform H(z).
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The inverse Z-Transform

• Let us denote C a closed contour in the region of convergence that encloses the origin

(for example, C could be a circle centered in the origin within the region of convergence).

• The expression for the Inverse Z-Transform is given by:

g(n) =
1

2πj

∮
C
G(z)zn−1dz ,

where
∮
C indicates the integration performed on the closed contour C.

• In general, it is challenging to directly evaluate the integral along a closed contour. Additionally, the

integral needs to be computed for every time value n.

• Fortunately, we will only consider rational Z-Transforms and causal sequences. Under these conditions,

there are simple methods that allow us to compute the Z-Transform.
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The tabular method

• A first method for computing the Z-Transform is the tabular method.

• Very often, the Z-Transform has a simple expression or can be decomposed into the sum of simple

expressions.

• Many books provide tables that offer inverses for these elementary transforms.

Z{x(n)} x(n) R.O.C.

1 δ(n) z-plane

z−N δ(n − N) z-plane - {z = 0}
1

1− z−1
µ(n) |z | > 1

1

1− αz−1
αnµ(n) |z | > |α|

αz−1

(1− αz−1)2
nαnµ(n) |z | > |α|

1

(1− αz−1)2
(n + 1)αnµ(n) |z | > |α|
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The tabular method – example

• If we have

H(z) =
0.5z

z2 − z + 0.25
R.O.C. |z | > 0.5

Then,

H(z) =
0.5z

(z − 0.5)2
=

0.5z−1

(1− 0.5z−1)2
.

• From the table, we can deduce that h(n) = n 0.5nµ(n).

A. Carini Digital Signal and Image Processing 17 / 38



Inversion by partial fraction expansion

• A second method for the Z-Transform inversion is that of the partial fraction expansion.

• If a sequence is causal, the region of convergence is external to a circle centered in the origin.

• We can compute the inverse Z-Transform of a rational function G(z) by decomposing it into partial

fractions, inverting each of the partial fractions, and summing up all the resulting sequences.

• We exploit the linearity property of the Z-Transform, which we will study later:

“Let g(n) and h(n) be two sequences with Z-Transform G(z) and H(z), respectively. For any constant α

and β, the Z-Transform of αg(n) + βh(n) is αG(z) + βH(z) with the region of convergence being the

intersection of the regions of convergence of G(z) and H(z).”
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Inversion by partial fraction expansion

• We consider G(z) =
P(z)

D(z)
, where P(z) and D(z) are polynomials of degree M and N, respectively.

• If M ≥ N, the rational function
P(z)

D(z)
is called an improper fraction.

• If M < N, the rational function is called a proper fraction.

• If the fraction is improper, we can decompose it as the sum of a polynomial in z−1 plus a proper fraction:

G(z) =
M−N∑
l=0

ηlz
−l +

P1(n)

D(n)
,

where the degree of P1(n) is lower than N. To obtain this expression, it suffices to divide P(z) by D(z) .

• The inverse-transform of
M−N∑
l=0

ηlz
−l is known, as it is

M−N∑
l=0

ηlδ(n − l).

• We concentrate our attention only on the inversion of a proper rational function.

• We will distinguish two cases:

• simple poles,

• multiple poles.
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Simple poles

• In most cases, G(z) is a proper rational function with simple poles, i.e., with all distinct poles.

• Let us denote λk , 1 ≤ k ≤ N, the N poles of G(z). Then, G(z) can be rewritten in the following form:

G(z) =
N∑
l=1

ρl
1− λz−1

,

where the ρl constants are called residuals and can be easily computed using:

ρl = (1− λlz
−1)G(z)

∣∣∣
z=λl

(i.e., by removing the factor (1− λlz
−1) from the denominator and computing the resulting value for

z = λl).

• Each term
ρl

1− λlz−1
has a simple inverse: ρl λ

n µ(n).

• Thus, by exploiting the linearity of the Z-Transform, we get

g(n) =
N∑
l=1

ρl λ
n
l µ(n).
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Example

H(z) =
1 + 2.0z−1

(1− 0.2z−1) · (1 + 0.6z−1)

H(z) =
ρ1

1− 0.2z−1
+

ρ2
1 + 0.6z−1

λ1 = 0.2 and λ2 = −0.6.

ρ1 =
1 + 2.0z−1

1 + 0.6z−1

∣∣∣
z=0.2

=
1 + 2 · (0.2)−1

1 + 0.6 · (0.2)−1
=

11

4
= 2.75

ρ2 =
1 + 2.0z−1

1− 0.2z−1

∣∣∣
z=−0.6

=
1 + 2 · (−0.6)−1

1− 0.2 · (−0.6)−1
=

0.6− 2.0

0.6 + 0.2
= −1.75

Thus, we obtain

h(n) = 2.75 (0.2)n µ(m)− 1.75 (−0.6)n µ(n)
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Inversion by partial fraction expansion

• When the rational function has real coefficients, the complex poles always appear in complex-conjugate

pairs, and the corresponding residues are also complex-conjugate.

• Thus, they can be combined into a single fraction of the second order:

ρl
1− λlz−1

+
ρ∗l

1− λ∗
l z

−1
=

p0,l + p1,lz
−1

1 + d1,lz−1 + d2,lz−2
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Multiple poles

• If G(z) is a rational function with multiple poles (double poles, triple poles, or even of higher order), the

partial fraction expansion takes on a different form.

• Suppose z = ν is a pole of multiplicity L (i.e., in the denominator there are L roots equal to ν), and that

the other poles are simple. We have

G(z) =
N−L∑
l=1

ρl
1− λlz−1

+
L∑

i=1

γi
(1− νz−1)i

where the constants γi (which are no longer called residues) are computed with the formula:

γi =
1

(L− i)!(−ν)L−i

dL−i

d(z−1)L−i

[
(1− νz−1)LG(z)

] ∣∣∣
z=ν

, for 1 ≤ i ≤ L.

• The computation of γi requires eliminating the factor (1− νz−1)L from the denominator of G(z) and

computing the derivatives with respect to z−1 from the first to the (L− 1)-th.

• The values of these derivatives and of (1− νz−1)LG(z) computed for z = ν provide the γi values.

• The other residues are computed as before.

• Eventually, from the tables reported in many books, it is easy to find the inverse transform of
γi

(1− νz−1)i
.
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Inverse Z-Transform via long division method

• The objective is to obtain the expansion of G(z) in the form of a power series in z−1.

• If we possess such a series, we immediately know the inverse transform: the coefficient that multiplies z−n

is the term g(n) of the inverse transform.

• If G(z) is rational, we can express the numerator and denominator as polynomial in z−1.

• Then, we can derive the power series expansion by means of the (long) division of the numerator by the

denominator.

• The division of polynomials applies the same methodology as the divisions you have studied in elementary

school.

A. Carini Digital Signal and Image Processing 24 / 38



Division for partial fraction expansion

• The division between polynomials is also used in the case of the partial fraction expansion for passing

from an improper G(z) to an expression composed by a polynomial in z−1 plus a proper rational function.

• For example, consider:

G(z) =
2 + 0.8z−1 + 0.5z−2 + 0.3z−3

1 + 0.8z−1 + 0.2z−2
.

• We must divide the two polynomials till we get a remainder of degree lower than the denominator.

• Since we only want to reduce the order in z−1 of the numerator,we apply the same division method we

have seen but, compared with the long division, we must reverse the order of the two polynomials:

G(z) = −3.5 + 1.5z−1 +
5.5 + 2.1z−1

1 + 0.8z−1 + 0.2z−2
,
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Properties of the Z-Transform

• In the following we will consider

g(n)
Z←→ G(z) with ROC Rg

h(n)
Z←→ H(z) with ROC Rh

where Rg is the annular region Rg− < |z | < Rg+, and Rh is the annular region Rh− < |z | < Rh+.

• Conjugation theorem: The Z-Transform of g∗(n) is G∗(z∗) with ROC Rg .

g∗(n)
Z←→ G∗(z∗) with ROC Rg

• Time-reversal: The Z-Transform of x(n) = g(−n) is X (z) = G(1/z) with ROC: R−1
g+ < |z | < R−1

g−.

x(n) = g(−n) Z←→ X (z) = G(1/z) with ROC R−1
g+ < |z | < R−1

g−

• Linearity: The Z-Transform of the sequence αg(n) + βh(n) is αG(z) + βH(z), with a region of

convergence that is the intersection between the two ROCs Rg and Rh, i.e., Rg ∩Rh.

αg(n) + βh(n)
Z←→ αG(z) + βH(z) with ROC Rg ∩Rh
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Exercise

• Let’s compute the Z-Transform of

x(n) = rn cos(ω0n)µ(n),

r ∈ R.

• Note that

x(n) = rn
e jω0n + e−jω0n

2
µ(n) =

1

2
rne jω0nµ(n) +

1

2
rne−jω0nµ(n).

• Since αnµ(n) has Z-Transform
1

1− αz−1
with ROC |z | > α,

X (z) =
1/2

1− re jω0z−1
+

1/2

1− re−jω0z−1
=

=
1

2

1− re−jω0z−1 + 1− re jω0z−1

(1− re jω0z−1) · (1− re−jω0z−1)
=

=
1− r cos(ω0)z

−1

1− re jω0z−1 − re−jω0z−1 + r 2z−2
=

=
1− r cos(ω0)z

−1

1− 2r cos(ω0)z−1 + r 2z−2

with ROC |z | > r .
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Properties of the Z-Transform

• Time-shifting: The Z-Transform of the delayed sequence x(n) = g(n − n0) (with n0 integer) is

X (z) = z−n0G(z). The region of convergence of X (z) is the same as G(z) apart from z = 0 for n0 > 0 or

z =∞ for n0 < 0.

x(n) = g(n − n0)
Z←→ X (z) = z−n0G(z) with ROC Rg − z = 0|z =∞

• Multiplication for an exponential sequence: The Z-Transform of the sequence x(n) = αng(n) is

X (Z) = G
( z

α

)
. The region of convergence is |α|Rg .

x(n) = αng(n)
Z←→ X (Z) = G

( z

α

)
with ROC |α|Rg
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Convolution Theorem

• The Z-Transform of the convolution sum between two sequences g(n)⊛ h(n) is G(z) ·H(z) with a region

of convergence that is the intersection between the ROCs of G(z) and H(z), i.e., Rg ∩Rh.

g(n)⊛ h(n)
Z←→ G(z) ·H(z) with ROC Rg ∩Rh

• Proof:

X (z) =
+∞∑

n=−∞

x(n)z−n =
+∞∑

n=−∞

+∞∑
k=−∞

g(k)h(n − k)z−n =

=
+∞∑

k=−∞

g(k)
+∞∑

n=−∞

h(n − k)z−n =
+∞∑

k=−∞

g(k)
+∞∑

m=−∞

h(m)z−(m+k) =

=
+∞∑

k=−∞

g(k)z−kH(z) = G(z)H(z).

Moreover, X (z) converges for any value z for which
+∞∑

m=−∞

h(m)z−m and
+∞∑

k=−∞

g(k)z−k converge.

Thus, the ROC of X (z) is Rg ∩Rh.

A. Carini Digital Signal and Image Processing 29 / 38



The Transfer Function

• Let us consider an LTI system with impulse response h(n). The input-output relation of the system is

y(n) = h(n)⊛ x(n) =
+∞∑

k=−∞

h(k)x(n − k)

with x(n) and y(n) the input and output of the LTI system, respectively.

• Let us indicate with X (z), Y (z), and H(z) the Z-transform of x(n), y(n), and h(n), respectively.

• According to the convolution theorem, the input-output relation in the Z-Transform domain becomes:

Y (z) = H(z)X (z),

with H(z) =
+∞∑

n=−∞

h(n)z−n.
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The Transfer Function

• The Z-Transform of the impulse response, H(z), is commonly called Transfer Function.

• Similar to the impulse response, it completely characterizes the LTI system.

H(z) =
Y (z)

X (z)
.

• The transfer function can be seen as a generalization of the frequency response concept.

• If the region of convergence of H(z) comprises the unit circle:

H(e jω) = H(z)
∣∣∣
z=ejω

.

• The transfer function can be obtained from the frequency response by analytic continuation:

H(z) = H(e jω)
∣∣∣
ω= 1

j
ln(z)

.

• We are particularly interested in two types of discrete-time LTI systems:

• FIR filters,

• IIR filters (described by a finite difference equation).
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FIR filters

• FIR filters have a finite impulse response:

y(n) =

N2∑
m=−N1

h(m)x(n −m)

with h(n) = 0 ∀n < N1, and ∀n > N2.

• h(n) has length N1 + N2 + 1.

H(z) =

N2∑
n=N1

h(n)z−n =

= h(−N1)z
+N1 + h(−N1 + 1)z+N1−1 + . . .+ h(0) + h(1)z−1 + . . .+ h(N2 − 1)z−N2+1 + h(N2)z

−N2 .
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Properties of FIR filters

• The region of convergence of H(z) coincides with the entire complex plane, possibly excluding 0 and ∞.

• FIR filters are guaranteed to be stable in the BIBO sense:

+∞∑
n=−∞

|h(n)| =
N2∑

n=−N1

|h(n)| < +∞.

• FIR filters are always realizable. Even if the impulse response has non-null terms for n < 0, introducing a

delay z−N1 ensures realizability.

• For causal filters, the transfer function is given by:

H(z) = h(0) + h(1)z−1 + h(2)z−2 + . . .+ h(N − 1)zN−1.

Thus, the transfer function is a polynomial in z−1, earning them the name filters with only zeros.

• Since the input-output relation is non-recursive, quantization errors propagate only from the input to the

output in FIR filters.

• We will prove that FIR filters can have linear phase response.
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IIR filters

• The IIR filters we are interested in are described by a finite difference equation:

y(n) = b0x(n) + b1x(n − 1) + . . .+ bMx(n −M)− a1y(n − 1)− a2y(n − 2)− . . .− aNx(n − N).

• It is easy to compute the transfer function using the linearity property and the time-shift property of the

Z-Transform. By transforming both members:

Y (z) = b0X (z)+b1z
−1X (z)+b2z

−2X (z)+ . . . bMz−MX (z)−a1z
−1Y (z)−a2z

−2Y (z)− . . .−aNz
−NY (z),(

1 + a1z
−1 + a2z

−2 + . . .+ aNz
−N

)
Y (z) =

(
b0 + b1z

−1 + . . .+ bMz−M
)
X (z)

Thus,

H(z) =
Y (z)

X (z)
=

b0 + b1z
−1 + . . .+ bMz−M

1 + a1z−1 + a2z−2 + . . .+ aNz−N
.

• The transfer function is a rational function in z−1. It is also:

H(z) = zM−N ·
b0z

M + b1z
M−1 + . . .+ bM

zN + a1zN−1 + . . .+ aN
.

• The roots of the numerator polynomial are called zeros of the system. The roots of the denominator

polynomial are called poles.

• The denominator polynomial is also called the characteristic polynomial.
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Properties of IIR filters

• IIR filters or systems can be stable or unstable in BIBO sense. They are BIBO stable if and only if

+∞∑
n=−∞

|h(n)| < +∞.

• IIR systems are stable if and only if the region of convergence of the transfer function includes the

unit circle.

Proof:

|H(z)| =

∣∣∣∣∣
+∞∑

n=−∞

h(n)z−n

∣∣∣∣∣ ≤
+∞∑

n=−∞

∣∣h(n)z−n
∣∣ = +∞∑

n=−∞

|h(n)||z−n|

On the unit circle |z−n| = 1:

|H(z)|
∣∣∣
z=ejω

= |H(e jω)| ≤
+∞∑

n=−∞

|h(n)|.

Thus, if this sum is finite, |H(z)|
∣∣∣
z=ejω

is finite, and the transfer function converges on the unit circle.

Conversely, if H(z) converges for z = e jω, then
+∞∑
n=∞

|h(n)| is finite, and the filter is stable.

A. Carini Digital Signal and Image Processing 35 / 38



Properties of IIR filters

• A causal IIR filter is stable if and only if its poles fall within the unit circle.

Indeed, in case h(n) is causal, the region of convergence of H(z) is external to the circle that encloses all

poles. Since for the BIBO stability, the unit circle must belong to the region of convergence, then the

poles must all fall within the unit circle.

• We can justify this property also from the observation that (in the partial fraction expansion) to any pole

outside the unit circle corresponds an exponentially increasing sequence:

H(z) =
1

1− pz−1
−→ h(n) = pnµ(n),

if |p| > 1 then h(n)→ +∞.

• The input-output relationship of these filters is always recursive. For this reason, we will see that the

quantization errors recirculate.

• We will also see that in causal IIR filters the phase response cannot be linear and that these filters

introduce a phase distortion.
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Properties of IIR filters

• Despite these adverse properties, IIR filters adapt better than FIR filters to the realization of the

specifications imposed on low-pass, high-pass, and pass-band filters.

• IIR filters can implement these specifications with a much lower number of coefficients than FIR filters.

• This property derives from the fact that the transfer function of IIR filters has zeros and poles, while that

of FIR filters has only zeros.
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