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Definition of the Discrete Fourier Transform (DFT)

• We have discussed the discrete-time Fourier transform (DTFT), which enables the transition from the

time domain to the frequency domain.

• The primary drawback of the DTFT is that its inverse transform necessitates the evaluation of an integral,

making it unsuitable for computer implementation.

• In contrast, the direct discrete-time Fourier transform does not require integral evaluation but involves

only the computation of multiplications and additions.

• This is because the DTFT is a periodic function in ω and can be expanded in the Fourier series as the

sum of an infinite number of generalized sinusoids, represented by e−jωn.

• Now, we will consider another transform applicable to periodic sequences (and later, as we will see, to

finite-duration sequences) – the Discrete Fourier Transform (DFT).

• Due to the periodicity of the sequences being transformed, both the direct DFT transform and the inverse

DFT (IDFT) transform only require the sum of complex numbers and do not involve any integration.
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Definition of the Discrete Fourier Transform (DFT)

• Considering a periodic sequence xp(n) with a period of N (where xp(n) = xp(n + N) for all n), we define

the Discrete Fourier Transform (DFT) of xp(n) as follows

Xp(k) =
N−1∑
n=0

xp(n)e
−j 2π

N
nk .

• It is easy to verify that XP(k) is a complex periodic sequence with a period of N:

Xp(k) = Xp(k + N) ∀k.

• The Inverse Discrete Fourier Transform (IDFT) is expressed as:

xp(n) =
1

N

N−1∑
k=0

Xp(k)e
j 2π
N

nk .
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Definition of the Discrete Fourier Transform (DFT)

• Let’s demonstrate that these relations can be derived from one another, indicating that they are reciprocal

transforms.

• We take the expression of the IDFT and multiply it by e−j 2π
N

nl :

xp(n) e
−j 2π

N
nl =

1

N

N−1∑
k=0

Xp(k)e
j 2π
N

nk e−j 2π
N

nl

N−1∑
n=0

xp(n)e
−j 2π

N
nl =

N−1∑
n=0

1

N

N−1∑
k=0

Xp(k)e
j 2π
N

nk e−j 2π
N

nl =
N−1∑
k=0

Xp(k)
1

N

N−1∑
n=0

e j
2π
N

n(k−l)

• For k = l :

1

N

N−1∑
n=0

e j
2π
N

n(k−l) =
1

N

N−1∑
n=0

1 = 1

• For k ̸= l :

1

N

N−1∑
n=0

e j
2π
N

n(k−l) =
1

N

1− e j
2π
N

N(k−l)

1− e j
2π
N

(k−l)
= 0.
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Definition of the Discrete Fourier Transform (DFT)

• Thus, for all k and l (with 0 ≤ k ≤ N − 1 and 0 ≤ l ≤ N − 1):

1

N

N−1∑
n=0

e j
2π
N

n(k−l) = δ(k − l).

• Substituting this expression into the preceding equation:

N−1∑
n=0

xp(n)e
−j 2π

N
nl =

N−1∑
k=0

Xp(k)
1

N

N−1∑
n=0

e j
2π
N

n(k−l) =
N−1∑
k=0

Xp(k)δ(k − l) = Xp(l)

Q.E.D.

• Hence, the two transformations are reciprocal.

• Using the DFT, we can pass from the time domain to the frequency domain, achieving a completely

equivalent representation of our sequence.
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DFT of a finite length sequence

• Considering only periodic sequences may seem like a severe restriction.

• In reality, the Discrete Fourier Transform (DFT) is commonly applied to finite-length sequences.

• Any finite-length sequence of length N can be transformed into a periodic sequence with a period of N by

periodically repeating its samples.

• For any causal finite-length sequence x(n) satisfying

x(n) = 0 ∀n < 0 and n ≥ N

we can associate the periodic sequence:

xp(n) = x(⟨n⟩N)

where ⟨n⟩N indicates the n modulus N (i.e., the remainder of the division of n by N).

• There exists a bijective correspondence between finite-length sequences of length N and periodic

sequences with a period of N. Consequently, we can also apply the DFT to finite-length sequences.
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Relation between DFT, DTFT, and Z Transform

• A finite-length sequence of length N has Z-transform given by

X (z) =
N−1∑
n=0

x(n)z−n.

• Let’s compute this transform at N uniformly spaced points on the unit circle:

X (z)
∣∣∣
z=e

j 2π
N

k
=

N−1∑
n=0

x(n)e−j 2π
N

nk = Xp(k)

• We find the DFT of x(n).
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Relation between DFT, DTFT, and Z Transform

• For finite-length sequences, the DFT can be obtained by evaluating the Z-Transform at N uniformly

spaced points on the unit circle, i.e., for

z = e j
2π
N

k , with k = 0, 1, . . . ,N − 1.

• As the DTFT coincides with the Z-Transform evaluated on the unit circle, the DFT can be obtained by

sampling the DTFT at N points uniformly spaced on the interval [0, 2π]:

Xp(k) = X (e jω)
∣∣∣
ω= 2π

N
k
.
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Relation between DFT, DTFT, and Z Transform

• When dealing with finite-length sequences, it is also possible to express the Z-Transform (and the DTFT)

in terms of the samples of the DFT:

X (z) =
N−1∑
n=0

x(n)z−n =

=
N−1∑
n=0

(
1

N

N−1∑
k=0

Xp(k)e
j 2π
N

nk

)
z−n =

=
N−1∑
k=0

Xp(k)

N

N−1∑
n=0

e j
2π
N

nkz−n =

=
N−1∑
k=0

Xp(k)

N

1− z−N

1− e j
2π
N

kz−1

• This is the interpolation formula of Lagrange. A similar relation also holds for the DTFT.

• For finite-length sequences, the representations through DTFT, Z-Transform, and DFT are equivalent

and interchangeable.

• The DFT serves as a straightforward means for assessing the spectral content of a sequence, making it

well-suited for computer implementation.
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A more detailed evaluation of X (e jω)

• For a sequence x(n) of length N, a more detailed evaluation of the spectrum X (e jω) can be achieved by

employing a DFT on L samples, where L > N.

• In other words, it suffices to periodically extend the sequence x(n) with a period L > N and then apply

the DFT to this extended periodic sequence.

• This property proves valuable when considering fast convolution algorithms, which apply the DFT to

finite-length sequences of L samples, where L is a power of 2, i.e., L = 2k .
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What if ...

• What happens when we consider an infinite-length sequence x(n) with a DTFT and we sample its DTFT

at N uniformly spaced points on the unit circle, and then invert these samples using the IDFT?

• When we sample a continuous-time signal at uniformly spaced intervals, in the frequency domain, we

obtain the periodic repetition of the continuous-time spectrum, leading to the problem of aliasing.

• The coefficients of the DFT can be considered as samples of a continuous function in ω, representing the

DTFT X (e jω).

• This frequency-domain sampling operation results in the periodic repetition of the signal x(n) in the time

domain, leading to aliasing in the time domain if x(n) has infinite length.

A. Carini Digital Signal and Image Processing 11 / 116



What if ...

• Let’s consider X (e jω) and take N uniformly spaced samples in the interval [0, 2π].

• We interpret these samples as the samples of the DFT:

Xp(k) = X (e jω)
∣∣∣
ω= 2π

N
k
=

+∞∑
n=−∞

x(n)e−j 2π
N

nk with 0 ≤ k ≤ N − 1

• Let’s apply the IDFT:

xp(n) =
1

N

N−1∑
k=0

Xp(k)e
j 2π
N

kn =

=
1

N

N−1∑
k=0

+∞∑
m=−∞

x(m)e−j 2π
N

mke j
2π
N

kn =

=
+∞∑

m=−∞

x(m)
1

N

N−1∑
k=0

e−j 2π
N

(m−n)k

We know that:

1

N

N−1∑
k=0

e−j 2π
N

(m−n)k =

{
1 when m − n = lN, with l ∈ Z
0 otherwise

=
+∞∑

l=−∞

δ(n −m − lN).
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What if ...

• Hence,

xp(n) =
+∞∑

m=−∞

x(m)
+∞∑

l=−∞

δ(n −m − lN) =

=
+∞∑

l=−∞

+∞∑
m=−∞

x(m)δ(n −m − lN) =

=
+∞∑

l=−∞

x(n − lN).

• The signal xp(n) is obtained as the sum of the signal x(n) and its periodic repetitions, each time-shifted

by a multiple of N.

• If the length of the signal x(n) exceeds N, xp(n) is subject to aliasing errors in the time domain.

• Only signals x(n) with a length less than or equal to N remain unaffected by aliasing.
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DFT in matrix form

• The DFT can be represented in matrix form through the following relation:

X = DN · x.

Here, X is a column vector consisting of the first N samples of the DFT Xp(k), and x is a column vector

composed of the first N samples of xp(n).

X =


Xp(0)

Xp(1)
...

Xp(N − 1)

 x =


xp(0)

xp(1)
...

xp(N − 1)


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DFT in matrix form

• The matrix DN , known as the DFT matrix, is defined as follows:

DN =



1 1 1 1 . . . 1

1 W 1
N W 2

N W 3
N . . . W N−1

N

1 W 2
N W 4

N W 6
N . . . W

2(N−1)
N

...
...

...
...

...

1 W N−1
N W

2(N−1)
N W

3(N−1)
N . . . W

(N−1)2

N


where Wn = e−j 2π

N .

• The validity of this relation can be easily confirmed using the definition of the DFT:

X (k) =
N−1∑
n=0

x(n)e−j 2π
N

nk =
N−1∑
n=0

x(n)W nk
N .
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DFT in matrix form

• The matrix DN , known as the DFT matrix, is defined as follows:

DN =



1 1 1 1 . . . 1

1 W 1
N W 2

N W 3
N . . . W N−1

N

1 W 2
N W 4

N W 6
N . . . W

2(N−1)
N

...
...

...
...

...

1 W N−1
N W

2(N−1)
N W

3(N−1)
N . . . W

(N−1)2

N


where Wn = e−j 2π

N .

• The validity of this relation can be easily confirmed using the definition of the DFT:

X (k) =
N−1∑
n=0

x(n)e−j 2π
N

nk =
N−1∑
n=0

x(n)W nk
N .
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DFT in matrix form

• Similarly, the IDFT can be expressed as:

x = D−1
N ·X

where the expression for the IDFT matrix D−1
N is given by

D−1
N =

1

N



1 1 1 1 . . . 1

1 W−1
N W−2

N W−3
N . . . W

−(N−1)
N

1 W−2
N W−4

N W−6
N . . . W

−2(N−1)
N

...
...

...
...

...

1 W
−(N−1)
N W

−2(N−1)
N W

−3(N−1)
N . . . W

−(N−1)2

N


.

• It can be verified that D−1
N =

1

N
D∗

N .
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Properties of the DFT

• Linearity: If x1(n)
DFT←→ X1(k) and x2(n)

DFT←→ X2(k), then

a1x1(n) + a2x2(n)
DFT←→ a1X1(k) + a2X2(k).

• Circular time-shift: If xp(n)
DFT←→ Xp(k) then, for n0 ∈ Z,

xp(n − n0)
DFT←→ Xp(k)e

−j 2π
N

n0k .

• Note the distinction from the case of the discrete-time Fourier transform: xp(n) represents a periodic

sequence or the periodic repetition of a finite-length sequence.
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Properties of the DFT

• When considering the window from time 0 to N − 1, it becomes apparent that the samples that ’exit’

from one side ’enter’ from the other side. For this reason, we talk about a circular time-shift.

• If ⟨m⟩N denotes the modulus of m with respect to N, and xp(n) represents the periodic repetition of a

finite-length sequence x(n), then we have:

xp(n − n0) = xp(⟨n − n0⟩N) = x(⟨n − n0⟩N).

xp(⟨n − n0⟩N)
DFT←→ Xp(k)e

−j 2π
N

n0k .
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Properties of the DFT

• Circular frequency shift: If xp(n)
DFT←→ Xp(k) then, for k0 ∈ Z,

xp(n)e
j 2π
N

nk0 DFT←→ Xp(k − k0) = Xp(⟨k − k0⟩N).

• Conjugation: If xp(n)
DFT←→ Xp(k) then

x∗
p (n)

DFT←→ X ∗
p (−k) = X ∗

p (⟨−k⟩N).

• If xp(n) is real, then x∗
p (n) = xp(n) and

Xp(k) = X ∗
p (−k) = X ∗

p (⟨−k⟩N) = X ∗
p (⟨N − k⟩N) = X ∗

p (N − k).

We term the DFT of a real sequence xp(n) as circular conjugate-symmetric.
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Properties of the DFT

• If xp(n) is real, x
∗
p (n) = xp(n) and

Xp(k) = X ∗
p (N − k).

• If xp(n) is real, then:

• Re{Xp(k)} = Re{Xp(N − k)} is circular symmetric;

• Im{Xp(k)} = −Im{Xp(N − k)} is circular anti-symmetric;

• |Xp(k)| = |Xp(N − k)| is circular symmetric;

• arg{Xp(k)} = −arg{Xp(N − k)} is circular anti-symmetric.
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Properties of the DFT

• If xp(n) is real and symmetric, i.e., if xp(n) = xp(−n) = xp(⟨−n⟩N) = xp(N − n), then Xp(k) is also real

and symmetric.

• If xp(n) is real and anti-symmetric, i.e., if xp(n) = −xp(−n) = −xp(⟨−n⟩N) = −xp(N − n), then Xp(k) is

imaginary and anti-symmetric.
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Properties of the DFT

• In general, the DFT transforms complex sequences into complex sequences. However, we can efficiently

use a single DFT transformation to compute the DFT of two real sequences.

• Consider two real sequences, x(n) and y(n),

x(n)
DFT←→ X (k)

y(n)
DFT←→ Y (k)

• Now, let’s form the sequence

z(n) = x(n) + jy(n).

• By leveraging the linearity property of the DFT:

Z(k) = X (k) + jY (k)

Z∗(N − k) = X ∗(N − k)− jY ∗(N − k)
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Properties of the DFT

• Given that x(n) and y(n) are real sequences:

X ∗(N − k) = X (k)

Y ∗(N − k) = Y (k)

Z∗(N − k) = X (k)− jY (k)

• Consequently, we obtain the following expressions:

X (k) =
Z(k) + Z∗(N − k)

2

Y (k) =
Z(k)− Z∗(N − k)

2j
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Properties of the DFT

• Parseval Theorem:
N−1∑
n=0

|g(n)|2 = 1

N

N−1∑
k=0

|G(k)|2

• Given a finite length sequence g(n) of length N, we can evaluate its energy from the DFT G(k).

• Proof:

N−1∑
n=0

|g(n)|2 =
N−1∑
n=0

g(n)g∗(n) =

=
N−1∑
n=0

g(n)
1

N

N−1∑
k=0

G∗(k)e−j 2π
N

nk =

=
1

N

N−1∑
k=0

G∗(k)
N−1∑
n=0

g(n)e−j 2π
N

nk =

=
1

N

N−1∑
k=0

|G(k)|2.

Q.E.D.
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The Fast Fourier Transform (FFT)

• The Fast Fourier Transform (FFT) algorithms are efficient methods for computing the Discrete Fourier

Transform (DFT). In particular, we will explore the original algorithms proposed by Cooley and Tukey in

1965, which specifically address sequences of length N = 2L, i.e., of a power of 2 length.

• The fundamental strategy of the FFT lies in computing the Discrete Fourier Transform (DFT) of a

sequence by leveraging the DFTs of some reduced-length sequences.

• The computation of X (k) =
N−1∑
k=0

x(n)e−j 2π
N

nk requires N complex multiplications and N − 1 complex

additions. If we aim to compute the values of X (k) for k = 0, 1, . . . ,N − 1, the overall computational
cost includes:

• N2 complex multiplications,

• N(N − 1) complex additions.

• But if we break the computation of the length N DFT into the computation of two DFTs of length N/2,
we have a total of

• 2 ·
(
N

2

)2

complex multiplications,

• 2 ·
(
N

2

)
·
(
N

2
− 1

)
complex additions.

Thus, we halve the operations.
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The Fast Fourier Transform (FFT)

• Considering N = 2L, the sequence of length N/2 can itself be split into two sequences, and each of these

sequences can further be split into two, and so on, until we have sequences of only two samples.

• In the following, we denote WN = e−j 2π
N , such that

X (k) =
N−1∑
n=0

x(n)W nk
N .

• We will consider two algorithms:

• Decimation-in-time FFT.

• Decimation in frequency FFT.
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Decimation-in-time FFT

• This algorithm is derived by splitting the sequence x(n) into two subsequences:

• The sequence of elements with even indices, denoted as x1(n) = x(2n), where n = 0, 1, . . . , N
2
− 1.

• The sequence of elements with odd indices, denoted as x2(n) = x(2n+1), where n = 0, 1, . . . , N
2
− 1.

• We have,

X (k) =
N−1∑
m=0

x(m)Wmk
N =

=

N/2−1∑
n=0

x(2n)W 2nk
N +

N/2−1∑
n=0

x(2n + 1)W
(2n+1)k
N =

=

N/2−1∑
n=0

x1(n)W
2nk
N +

N/2−1∑
n=0

x2(n)W
(2n+1)k
N

• Since

W 2nk
N = e−j 2π

N
2nk = e

−j 2πN
2

nk

= W nk
N
2

it is

X (k) =

N/2−1∑
n=0

x1(n)W
nk
N
2
+W k

N

N/2−1∑
n=0

x2(n)W
nk
N
2
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Decimation-in-time FFT

•
N/2−1∑
n=0

x1(n)W
nk
N
2

and

N/2−1∑
n=0

x2(n)W
nk
N
2

represent the DFTs computed on N
2
samples of x1(n) and x2(n),

respectively. Thus,

X (k) = X1(k) +W k
NX2(k).

• The DFT X (k) is the sum of two DFTs of length N
2
, where the second DFT is multiplied by W k

N .

• Note that X1(k) and X2(k) are periodic sequences of period N
2
.

• Thus, if we consider 0 ≤ k ≤ N
2
− 1,

X (k) = X1(k) +W k
NX2(k),

X (k +
N

2
) = X1(k +

N

2
) +W

(k+ N
2
)

N X2(k +
N

2
) =

= X1(k) +W
(k+ N

2
)

N X2(k).

and

W
(k+ N

2
)

N = e j
2π
N (k+ N

2 ) = e j
2π
N

k · e j
2π
N

· N
2 = −W k

N
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Decimation-in-time FFT

• To summarize, the DFT of N samples can be computed using two DFTs on N
2
samples with the following

equations:

X (k) = X1(k) +W k
NX2(k),

X (k +
N

2
) = X1(k)−W k

NX2(k),

where k = 0, 1, . . . , N
2
− 1.

• These operations form the fundamental steps of the FFT, and they are visually represented through the

following butterfly diagram:
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Decimation-in-time FFT

• For an 8-sample DFT, the following operations take place:
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Decimation-in-time FFT
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Decimation-in-time FFT

• We use the term ’decimation in time’ for this algorithm because the length-N sequence is successively

decimated into sequences of length N
2
, N

4
, N

8
, . . ., 2.

• The 2 samples DFT can be computed with a single butterfly. Indeed, given the sequence of two samples

{a0, a1},

A(k) =
1∑

n=0

a(n)W nk
2 =

1∑
n=0

a(n)e−j 2π
2

nk = a(0) + e−jπka(1)

A(0) = a(0) + a(1) = a(0) +W 0
2 a(1)

A(1) = a(0)− a(1) = a(0)−W 0
2 a(1)
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Decimation-in-time FFT
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Decimation-in-time FFT

• To compute a DFT of length N (where N is a power of 2), we have log2(N) butterfly stages, each

composed of N
2
butterflies. Each stage involves N

2
complex multiplications and N complex

additions/subtractions (neglecting the zero cost of multiplications by W 0
N).

• In total, the FFT computation requires:

•
N

2
log2(N) complex multiplications,

• N log2(N) complex additions.

• When compared to the direct computation of the DFT, even for small N, this method yields significant

computational savings.

• Computational cost of the FFT:

N 4 8 16 32 64 128 256 512 1.024

FFT × 4 12 32 80 192 448 1.024 2.392 5.120

+ 8 24 64 160 384 896 2.048 4.696 10.240

DFT × 12 72 240 992 4.032 16.256 65.280 261.632 1.047.532

+ 16 64 256 1.024 4.096 16.384 65.536 262.144 1.048.576
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Decimation-in-time FFT

• Take note of the specific sample order at the input of the FFT. By decimating the sequence x(n) log2(N)

times, we obtain a permuted sequence that serves as the input for the decimation-in-time FFT.

• For an 8-sample FFT, starting with

x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)

we rearrange it to:

x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7).

• The permuted sequence can be easily constructed using the bit-reversal rule.

• Let’s denote the permuted sequence, which serves as the input of the FFT, as y(n). Here, y(n) = x(m),

where the index m is obtained by representing n in binary form and inverting the bits of the representation:

0 000 −→ 000 0

1 001 −→ 100 4

2 010 −→ 010 2

3 011 −→ 110 6

4 100 −→ 001 1

5 101 −→ 101 5

6 110 −→ 011 3

7 111 −→ 111 7
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Decimation-in-frequency FFT

• It is the dual algorithm to the decimation-in-time FFT.

• It can be obtained by splitting the sequence x(n) into two adjacent sequences:

• x1(n) = x(n) with n = 0, 1, . . . , N
2
− 1,

• x2(n) = x(n + N
2
) with n = 0, 1, . . . , N

2
− 1.

X (k) =
N−1∑
n=0

x(n)W nk
N =

N/2−1∑
n=0

x(n)W nk
N +

N−1∑
m=N/2

x(m)Wmk
N =

=

N/2−1∑
n=0

x1(n)W
nk
N +

N/2−1∑
n=0

x2(n)W
(n+ N

2 )k
N =

=

N/2−1∑
n=0

[
x1(n) +W

N
2
k

N x2(n)

]
W nk

N

• But W
N
2
k

N = e−j 2π
N

N
2
k = e−jπk .

• Thus, we consider two cases: when k is even and when k is odd.
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Decimation-in-frequency FFT

• For k even:

X (2k) =

N/2−1∑
n=0

[x1(n) + x2(n)]W
n2k
N =

=

N/2−1∑
n=0

[x1(n) + x2(n)]W
nk
N
2

The even terms of X (k) are determined by the N
2
points DFT of x1(n) + x2(n).

• For k odd:

X (2k + 1) =

N/2−1∑
n=0

[x1(n)− x2(n)]W
n(2k+1)
N =

=

N/2−1∑
n=0

[x1(n)− x2(n)]W
n
NW

nk
N
2

The odd terms of X (k) are determined by the N
2
points DFT of (x1(n)− x2(n)) ·W n

N .
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Decimation-in-frequency FFT

• The procedure for computing the N-sample DFT consists of constructing two sequences of N
2
samples:

f (n) = x1(n) + x2(n)

g(n) = (x1(n)− x2(n))W
n
N

with n = 0, 1, . . . ,N/2− 1, and then computing their N
2
samples DFT.

• The DFT of f (n) provides the even terms of X (k), and the DFT of g(n) provides the odd terms of X (k).

• The procedure can be repeated to transition from the N
2
-sample DFT to the N

4
-sample DFT, and so on,

until reaching DFTs of only 2 samples, which can be computed directly.

• Again, the fundamental operations of the FFT can be illustrated using a butterfly diagram, albeit different

from the previous one:
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Decimation-in-frequency FFT
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Decimation-in-frequency FFT

• In this case, while the input sequence follows the natural order, the FFT output samples are ordered

according to the bit-reversal rule.

• This is called the decimation-in-frequency algorithm because it involves decimating the DFT into

sequences of odd and even terms.

• The computational cost of this algorithm is identical to that of the decimation-in-time algorithm.
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IDFT computed with the FFT

• If we compare the expression of the IDFT with that of the DFT:

x(n) =
1

N

N−1∑
k=0

X (k)W−nk
N ,

X (k) =
N−1∑
n=0

x(n)W nk ,

we observe that, apart from the constant factor 1
N
, the expressions of the direct transform and the inverse

transform are almost identical.

• The fast algorithms for computing the DFT can also be applied for computing the IDFT, with the only

modification being to replace W2,W4, . . . ,WN with W−1
2 ,W−1

4 ,W−1
N , respectively, and to divide the

result by N.

• Alternatively, we can directly apply the FFT algorithm to compute the IDFT. In this case,

x(n) =
1

N

N−1∑
k=0

X (k)W−nk
N =

1

N

[
N−1∑
k=0

X ∗(k)W nk
N

]∗
• The IDFT can be computed by transforming the conjugate of X (k) using the FFT, conjugating the

resulting sequence, and dividing it by N.
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FFT of real sequences

• When dealing with real sequences, it is possible to achieve additional computational savings by exploiting

the symmetry properties of these sequences.

• For example, in the context of the decimation-in-time FFT, the two DFTs on N
2
real samples can be

computed with a single FFT on N
2
complex samples. This FFT involves the transformation of the

sequence z(n) defined as

z(0) = x(0) + jx(1) = x1(0) + jx2(0)

z(1) = x(2) + jx(3) = x1(1) + jx2(1)

z(2) = x(4) + jx(5) = x1(2) + jx2(2)

...

z(N/2− 1) = x(N − 2) + jx(N − 1) = x1(N/2− 1) + jx2(N/2− 1)
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FFT of real sequences

• We have:

Z(0) = X1(0) + jX2(0)

Z(1) = X1(1) + jX2(1)

...

Z(N/2− 1) = X1(N/2− 1) + jX2(N/2− 1)

• Utilizing the symmetry properties of real sequences, we derive the following relations:

X1(k) =
Z(k) + Z∗(N/2− k)

2

X2(k) =
Z(k)− Z∗(N/2− k)

2j

• Thus, the computation of X1(k) and X2(k) from Z(k) requires only additions, subtractions, and division

by 2.

• Then, we can apply the last butterfly stage to X1(k) and X2(k) to compute X (0),X (1), . . . ,X (N/2).

The terms X (N/2 + 1), . . . ,X (N − 1) can be computed without any additional operations by exploiting

the conjugate symmetry property of X (k).
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FFT of real sequences

• If, as is often the case in practice, we need to compute the N-sample DFT of two real sequences x(n) and

y(n), we can efficiently apply a single FFT to the sequence z(n) = x(n) + jy(n).

• The DFTs of x(n) and y(n), denoted as X (k) and Y (k), can then be computed using the following

formulas:

X (k) =
Z(k) + Z∗(N − k)

2
.

Y (k) =
Z(k)− Z∗(N − k)

2j
.
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Linear convolution and circular convolution

• We defined the convolution between two infinite-length sequences, x(n) and h(n), as

y(n) =
+∞∑

m=−∞

x(m)h(n −m) =
+∞∑

m=−∞

h(m)x(n −m) = x(n)⊛ h(n).

• This convolution is also called linear convolution.

• When the two sequences have finite lengths N, i.e., x(n) = 0 ∀n < 0 and ∀n ≥ N, and h(n) = 0

∀n < 0 and ∀n ≥ N, the convolution is given by

y(n) =
N−1∑
m=0

x(m)h(n −m) =
N−1∑
m=0

h(m)x(n −m).

• In this case, the resulting sequence y(n) also has a finite length equal to 2N − 1, i.e. x(n) = 0 ∀n < 0 and

∀n ≥ 2N − 1. Indeed,

y(0) = x(0)h(0)

y(1) = x(0)h(1) + x(1)h(0)

y(2) = x(0)h(2) + x(1)h(1) + x(2)h(0)

...

y(2N − 2) = x(N − 1)h(N − 1)
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Linear convolution and circular convolution
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Linear convolution and circular convolution

• We have seen that an important property of DTFT and Z-Transform is the transformation of linear

convolution into the product of the transforms of the two sequences:

x(n)⊛ h(n)
DTFT←→ X (e jω)H(e jω)

x(n)⊛ h(n)
Z←→ X (z)H(z)

• It is possible to evaluate the convolution by computing the transform of x(n) and of h(n), multiplying

these transforms, and then taking the inverse transform of the product:
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Linear convolution and circular convolution

• A similar property holds for the DFT, but it involves a modified definition of convolution. The DFT

applies to periodic sequences or sequences that are the periodic extension of finite-length sequences.

• Given two periodic sequences with the same period N, we define the circular convolution of the two

sequences as the sequence yp(n) given by

yp(n) = xp(n) N○hp(n) =
N−1∑
m=0

xp(m)hp(n −m) =
N−1∑
m=0

hp(m)xp(n −m) =
N−1∑
m=0

hp(m)xp(⟨n −m⟩N),

which is a periodic sequence of period N.

• The circular convolution satisfies the commutative property and the distributive property:

x(n) N○h(n) = h(n) N○x(n)

(x1(n) + x2(n)) N○h(n) = x1(n) N○h(n) + x2(n) N○h(n)
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Circular convolution

• The evaluation of the circular convolution involves the same operations we have seen for the linear

convolution.

• If we want to compute
N−1∑
m=0

xp(m)hp(n −m)

we need to:

1. Fold hp(n) to get hp(−m),

2. Delay hp(−m) by n samples to get hp(n −m),

3. Compute the sample-by-sample product between xp(m) and hp(n −m),

4. Sum all terms for m = 0 till m = N − 1.

• The main difference with the linear case comes from the fact that the sequences xp(n) and hp(n) are

periodic with a period of N and that the sum is performed only over one period (from 0 to N − 1).
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Circular convolution
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Circular convolution

• For computing the circular convolution, we can apply the tabular method we have seen for the linear

convolution, with the only difference that we have to wrap around in the window [0,N − 1] the partial

products of the second, third, ..., N-th row, that fall outside this window.

• Let us consider the period from 0 to N − 1 of yp(n) = xp(n) N○hp(n):
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Circular convolution
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Circular convolution – example
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Circular convolution

• Property: The DFT transforms the circular convolution into the product of the transforms of the two

sequences:

xp(n) N○hp(n)
DFT←→ Xp(k)Hp(k)

• Proof:

xp(n) N○hp(n) =
N−1∑
m=0

xp(m)hp(n −m)

DFT {xp(n) N○hp(n)} =
N−1∑
n=0

(
N−1∑
m=0

xp(m)hp(n −m)

)
e−j 2π

N
nk =

=
N−1∑
m=0

xp(m)

(
N−1∑
n=0

hp(n −m)e−j 2π
N

(n−m)k

)
e−j 2π

N
mk =

=
N−1∑
m=0

xp(m)Hp(k)e
−j 2π

N
mk = Hp(k)

N−1∑
m=0

xp(m)e−j 2π
N

mk = Hp(k)Xp(k).

• This property is used for computing the fast convolution of two sequences.
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Fast convolution of two finite-length sequences

• Let us call x(n) a sequence of length N, x(n) = 0 ∀n < 0 and ∀n ≥ N, and let us call h(n) a sequence of

length M, x(n) = 0 ∀n < 0 and ∀n ≥ M.

• The linear convolution of x(n) and h(n),

y(n) =
N−1∑
m=0

x(m)h(n −m)

has length L = N +M − 1. Indeed,

y(0) = x(0)h(0)

y(L− 1) = x(N)h(M) = y(N +M − 2)

• Let us consider the two sequences xp(n) and hp(n) obtained from the periodic repetition of x(n) and h(n),

respectively, with period L.
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Fast convolution of two finite-length sequences
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Fast convolution of two finite-length sequences

• On the fundamental period:

yp(n) = xp(n) L○hp(n) =
L−1∑
m=0

xp(m)hp(n −m) =
N−1∑
m=0

x(n)h(n −m) = x(n)⊛ h(n)

• yp(n) = xp(n) L○hp(n) coincides with the periodic repetition with period L of the sequence

y(n) = x(n)⊛ h(n):

y(n) = x(n)⊛ h(n) = yp(n) = xp(n) L○hp(n) for 0 ≤ n < L.
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Theorem

• Let x(n) be a sequence of length N, x(n) = 0 ∀n < 0 and ∀n ≥ N, and let h(n) be a sequence of length

M, h(n) = 0 ∀n < 0 and ∀n ≥ M.

Let us consider the two sequences xp(n) and hp(n) obtained from the periodic repetition of x(n) and h(n),

respectively, with period L = M + N − 1.

Then, for 0 ≤ n ≤ L− 1, it holds that

xp(n) L○hp(n) = x(n)⊛ h(n).
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Proof

• By construction, it is:

• xp(n) = x(n) for 0 ≤ n ≤ L− 1.

• xp(n) = 0 for N ≤ n ≤ L− 1.

• hp(n) = h(n) for −(N − 1) ≤ n ≤ L− 1. (hp(n) = 0 for −(N − 1) ≤ n < 0).

• Thus, for 0 ≤ n ≤ L− 1,

xp(n) L○hp(n) =
L−1∑
m=0

xp(m)hp(n −m) =
N−1∑
m=0

xp(m)hp(n −m) =
N−1∑
m=0

x(m)hp(n −m)

• For 0 ≤ n ≤ L− 1 and 0 ≤ m ≤ N − 1

−(N − 1) ≤ n −m ≤ L− 1 =⇒ hp(n −m) = h(n −m)

xp(n) L○hp(n) =
N−1∑
m=0

x(m)h(n −m) = x(n)⊛ h(n).

Q.E.D.
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Fast convolution of two finite-length sequences

• We can compute the linear convolution of two finite-length sequences by means of the following
operations:

1. Compute the FFT on L points of x(n) and h(n).

2. Multiply X (k) and H(k) for 0 ≤ k < L.

3. Compute the inverse FFT transform on L points of X (k)H(k).

• The fast convolution technique with the FFT is efficient when the two sequences x(n) and h(n) have

similar lengths (N ≃ M).

• If this is not true, we have to add a large number of zeros to the shortest sequence, increasing the

computational cost considerably.
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Fast convolution of two finite-length sequences

• If we assume to know a priori H(k), since the computational cost of the FFT is L
2
log2(L) complex

multiplications and L log2(L) complex additions, the total cost of the fast convolution algorithm is

2 ·
(
L

2
log2(L)

)
+ L = L (log2(L) + 1) complex multiplications,

2 · (L log2(L)) complex additions.

• This computational cost must be compared with that of the direct computation of the convolution on L

output samples which is:

L ·M complex multiplications,

L · (M − 1) complex additions.

• In general, log2(L) + 1≪ M and we have a significant computational saving.

• Note that to apply this technique, we must process the entire input sequence before applying the fast

convolution algorithm.

• Thus, there is a delay introduced, which is equal to the length of the input sequence
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Fast convolution of a finite length sequence with an infinite length sequence

• The fast convolution method for finite-length sequences can be extended to compute the convolution

between a finite-length sequence h(n) and an infinite-length sequence x(n).

• This is a very common situation: the FIR filtering of an infinite-length signal or a finite-length signal with

very long duration.

• The trick used is to split the sequence x(n) into many segments of finite length.

• For each of these segments, we can evaluate the linear convolution with a technique similar to that we

have seen for finite-length sequences.

• There are two possible approaches:

• Overlap-add method

• Overlap-save method
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Overlap-add method

• In this method, the input sequence x(n) is split into the sum of adjacent non-overlapping sequences of

finite length N.

• Assuming the sequence x(n) to be causal,

x(n) =
+∞∑
m=0

xm(n −mN)

with

xm(n) =

{
x(n +mN) 0 ≤ n ≤ N − 1

0 otherwise.
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Overlap-add method

• But, we have:

y(n) =
M−1∑
l=0

h(l)x(n − l) =
M−1∑
l=0

h(l)
+∞∑
m=0

xm(n − l −mN) =

=
+∞∑
m=0

[
M−1∑
l=0

h(l)xm(n −mN − l)

]
=

+∞∑
m=0

ym(n −mN)

where

ym(n) =
M−1∑
l=0

h(l)xm(n − l) = h(n)⊛ xm(n)

• ym(n) is the convolution of two finite-length sequences.

• It can be computed by means of the FFT of the two sequences, the product of the FFTs, and an inverse

FFT.

• If h(n) has length M and xm(n) has length N, ym(n) has length L = M + N − 1 > N.

• Thus, the sequences ym(n) overlap with the adjacent ones over M − 1 samples.
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Overlap-add method

• Since y(n) =
+∞∑
m=0

ym(n −mN), the tails that temporally overlap are added together.
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Overlap-add method

• The overlap-add method is applied with the following procedure:

1. Split x(n) in adjacent segments of length N.

2. Add M − 1 zeros to each segment in order to obtain the sequences xm(n) of length L = M + N − 1

(typically, L is a power of 2).

3. Compute Xm(k) with FFT.

4. Compute Ym(k) = H(k)Xm(k) (with H(k) computed once and a priori).

5. Compute the inverse FFT of Ym(k): ym(n) = IFFT {Ym(k)} .

6. Add (on M − 1 points) the overlapping tails to get y(n) =
+∞∑
m=0

ym(n −mN).

• Using Cooley and Tukey algorithms for computing the FFT and IFFT, it is convenient to use the

decimation-in-frequency algorithm for the FFT and the decimation-in-time algorithm for the IFFT.

• In this way, we can avoid permutations with the bit-reversal rule.
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Overlap-add method
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Overlap-save method

• Consider h(n) of length M, h(n) = 0 ∀n < 0 and ∀n ≥ M, and g(n) of length L = M + N − 1, g(n) = 0

∀n < 0 and ∀n ≥ L.

• Let hp(n) and gp(n) be obtained from the periodic repetition of h(n) and g(n) with period L.

• The circular convolution hp(n) L○gp(n) = yp(n) is given by:

yp(n) =
L−1∑
m=0

gp(m)hp(n −m)

for M − 1 ≤ n ≤ L− 1: =
L−1∑
m=0

g(m)h(n −m) = y(n)

for 0 ≤ n < M − 1: ̸=
L−1∑
m=0

g(m)h(n −m) = y(n)

• For M − 1 ≤ n ≤ L− 1, yp(n) coincides with the linear convolution, while for the first M − 1 samples,

yp(n) differs from the linear convolution.

• These first M − 1 samples are ”affected” by the periodic repetition of the signals.
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Overlap-save method
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Theorem

• Let x(n) be a sequence of length L, x(n) = 0 ∀n < 0 and ∀n ≥ L. Similarly, let h(n) be a sequence of

length M, where h(n) = 0 for all n < 0 and n ≥ M.

• Consider the sequences xp(n) and hp(n) obtained by the periodic repetition of x(n) and h(n), respectively,

with a period of L.

• For M − 1 ≤ n ≤ L− 1, we have:

xp(n) L○hp(n) = x(n)⊛ h(n).
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Proof

• Define N = L−M + 1 (i.e., L = M + N − 1).

• By construction it is

• xp(n) = x(n) for 0 ≤ n ≤ L− 1.

• hp(n) = h(n) for −(N − 1) ≤ n ≤ L− 1.

• Thus, for M − 1 ≤ n ≤ L− 1

xp(n) L○hp(n) =
L−1∑
m=0

xp(m)hp(n −m) =
L−1∑
m=0

x(m)hp(n −m)

• For M − 1 ≤ n ≤ L− 1 and 0 ≤ m ≤ L− 1,

M − 1− (L− 1) ≤ n −m ≤ L− 1

M − 1− (L− 1) = M − 1− (M + N − 1− 1) = −(N − 1)

• Thus,

−(N − 1) ≤ n −m ≤ L− 1 =⇒ hp(n −m) = h(n −m)

xp(n) L○hp(n) =
L−1∑
m=0

x(m)h(n −m) = x(n)⊛ h(n).

Q.E.D.
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Overlap-save method

• The overlap-save method exploits this property by splitting x(n) into sequences xm(n) of length L, where

the first M − 1 samples of each sequence repeat the last M − 1 samples of the previous sequence xm−1(n).

• By computing the circular convolution on L samples, the first M − 1 samples of yp(n) are affected by

temporal aliasing and are discarded, while the remaining N samples coincide with those of the linear

convolution x(n)⊛ h(n).

A. Carini Digital Signal and Image Processing 73 / 116



Overlap-save method

• Summarizing the overlap-save method is composed of the following operations:

1. Build the sequence xm(n) composed by the last M − 1 samples of xm−1(n) and N new samples of

x(n).

2. Transform with the FFT xm(n) to obtain Xm(k).

3. Multiply Xm(k) ·H(k) = Ym(k).

4. Compute the inverse transform ym(n) = IFFT{Ym(k)}.
5. Discard the first M − 1 samples of ym(n) and keep the last N samples that provide y(n).

• Also in this case, it is convenient to use a decimation-in-frequency FFT for the direct transform and a

decimation-in-time FFT for the inverse transform.
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Overlap-save method
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Computational cost of the overlap-save method

• Since we work with an infinite-length input sequence x(n) (or a very long finite-length input sequence), it

is convenient to refer to the complexity per single output sample.

• By applying the convolution sum directly, the computational cost is equal to M complex multiplications

and M − 1 additions per sample.

• In the case of the overlap-save technique, the computational cost is[
2

(
L

2
log2(L)

)
+ L

]
/N complex multiplications,

[2L log2(L)] /N complex additions.

Indeed, we have two FFTs of length L, L products X (k)H(k), and from these, we obtain N output

samples.

• Also in this case it is convenient to choose N > M and almost equal to M.
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Computational cost example

• Consider h(n) of length M = 128.

• The convolution sum costs 128 multiplications and 127 additions per output sample.

• Assuming L = 256 (N = 129), the overlap-save technique has a cost of 17.86 multiplications and 31.75

additions per output sample.

• With L = 512 (N = 385), the overlap-save technique has a cost of 13.29 multiplications and 23.93

additions per output sample.

• Further increments in L do not lead to any further reduction in computational complexity.
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Convolution of real sequences

• If the FIR filter is real, and the sequence x(n) is also real, it is possible to achieve significant

computational savings by simultaneously computing the convolution of two consecutive segments.

• Indeed, given xm(n) and xm+1(n), we can construct

xm(n) + jxm+1(n)

and apply the fast convolution technique to this sequence.

• The corresponding output signal is

ym(n) + jym+1(n).

By separating the real and the imaginary parts, we can compute the output signal of the two consecutive

sequences.
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Frequency analysis with DTFT and DFTs

• In order to compute the spectrum of a continuous-time or discrete-time signal, we need all the signal

samples from −∞ to +∞.

• In practice, a signal is always observed only within a finite temporal window.

• If the signal is analog, we first filter it with an anti-aliasing (lowpass) filter, and then sample it with a

sampling frequency Fs ≥ 2B, where B is the bandwidth of the signal, to obtain a discrete-time signal.

• The length of the discrete-time signal is then limited (i.e., truncated) to only L samples (i.e., to a window

of TL seconds, with T being the sampling period and T = 1/Fs).

• The finite-length interval limits the frequency resolution, i.e., it restricts our ability to distinguish

between two frequencies with a frequency separation lower than 1
LT

.
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Frequency analysis with DTFT and DFTs

• Let us denote the infinite length sequence we want to analyze as x(n).

• Limiting the sequence duration to L samples, i.e., to the interval 0 ≤ n ≤ L− 1, is equivalent to

multiplying sample by sample x(n) with a rectangular window function w(n) of length L:

x̂(n) = x(n) ·w(n)

w(n) =

{
1 0 ≤ n ≤ L− 1

0 otherwise.

• In this way the signal spectrum to be analyzed, X̂ (e jω) is given by

X̂ (e jω) =
1

2π

∫ +π

−π

X (e jθ)W (e j(ω−θ))dθ
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Frequency analysis with DTFT and DFTs

• The spectrum of the rectangular function W (e jω) is given by

DTFT [w(n)] =
L−1∑
n=0

e−jωn =

=
1− e−jωL

1− e−jω
=
/

·
e jω

L
2 e−jω L

2

e j
ω
2 e−j ω

2

=
e jω

L
2 − e−jω L

2

e j
ω
2 − e j

ω
2

· e−jω L−1
2 =

=
j sin

(
ω L

2

)
j sin

(
ω
2

) · e−jω L−1
2
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Frequency analysis with DTFT and DFTs

• This is a function similar to
sin(x)

x
.

• In the convolution with X (e jω), it has the effect of spreading the spectrum of x(n) over all frequencies.

• This phenomenon is called leakage.
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Frequency analysis with DTFT and DFTs

• Let us consider an example:

x(n) = cos(ω0n) =
1

2

[
e−jω0n + e jω0n

]
.

• For the frequency shift property:

X̂ (e jω) =
1

2

[
W (e j(ω+ω0)) +W (e j(ω−ω0))

]
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Frequency analysis with DTFT and DFTs

• We see that the spectrum, instead of being a line (a Dirac pulse at ±ω0), forms a lobe whose width

depends on the number of samples L that we are observing.

• Generally, the greater the value of L, the better the spectral resolution.

• For instance, consider

x(n) = cos(ω1n) + cos(ω2n)

with ω1 ≃ ω2,

X̂ (e jω) =
1

2

[
W (e j(ω+ω1)) +W (e j(ω+ω2)) +W (e j(ω−ω1)) +W (e j(ω−ω2))

]
• Only when |ω1−ω2| ≥ 2π

L
(which is half of the lobe width), it is possible to distinguish two separate lobes.
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Frequency analysis with DTFT and DFTs

• x(n) = cos(ω0n) + cos(ω1n) + cos(ω2n) with ω0 = 0.2π, ω1 = 0.22π, and ω2 = 0.6π
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Frequency analysis with DTFT and DFTs

• If we increase the observation window, i.e., L, we can reduce the width of the main lobe of W (e jω), but

the secondary lobes are not attenuated; that is, the leakage effect remains.

• To reduce these lobes and minimize leakage, we can use an appropriate window function w(n)

• For example, a commonly used window function is the Hann window (or Hanning window), which is a

raised cosine function:

w(n) =


1

2

[
1− cos

(
2πn

L− 1

)]
for 0 ≤ n ≤ L− 1

0 otherwise,

or the Hamming window:

w(n) =

 0.54− 0.46 cos

(
2πn

L− 1

)
for 0 ≤ n ≤ L− 1

0 otherwise.
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Frequency analysis with DTFT and DFTs

• For these window functions, the secondary lobes are more attenuated than with the rectangular window.

• The reduction of the secondary lobes is obtained at the expense of an enlargement of the main lobe, i.e.,

at the expense of resolution loss (which can be compensated by increasing L). Since

X̂ (e jω) =
1

2π

∫ +π

−π

X (e jθ)W (e j(ω−θ))dθ

if the spectrum of w(n) is narrow compared to that of x(n), the window function leads only to a

negligible lowpass effect (a smoothing effect) on the spectrum X (e jω).

• On the contrary, if w(n) has a large main lobe (as in the case of small L), the spectrum of w(n) will mask

the details of X (e jω).
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Frequency analysis with DTFT and DFTs

• Typically, the spectrum is evaluated with the DFT, which, for finite-length sequences of length L,

coincides with the DTFT estimated at L uniformly spaced points on the interval [0, 2π]:

DFT[x̂(n)] = x̂(e jω)
∣∣∣
ω= 2π

L
k

• By extending x̂(n) with N − L zeros (i.e., by computing the DFT on N points), we can increase the

resolution in estimating X̂ (e jω) as much as we desire.

• Nevertheless, it’s important to note that the DFT provides samples of X̂ (e jω), and increasing N does not

result in a better estimation of X (e jω).

• The frequency resolution in the estimation of X (e jω) depends only on the length of the observation

window L.
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Window functions used in practice and their spectra
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Window functions used in practice and their spectra
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Window functions used in practice and their spectra
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Window functions used in practice and their spectra
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The Short-Time Fourier Transform - STFT

• The Short-Time Fourier Transform (STFT) is a commonly used tool for the analysis, modification, and

synthesis of signals with time-varying characteristics.

• It is often employed in speech and audio processing.

• Given an input signal x(n), data segments are extracted at regular intervals using a time-limited window

w(m).

• The signal segments or frames can be expressed as

xl(m) = w(m)x(m + lL); 0 ≤ m ≤ N − 1,

where N is the window length, l is the frame index, L is the hop size, i.e., the spacing in samples between

two consecutive frames, with L ≤ N in general.

• Thus, two consecutive frames may overlap over L− N samples.

• The index m is the local time index, i.e., an index relative to the start of the sliding window, while the

’global’ time index of xl(m) is

n = m + lL.
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The Short-Time Fourier Transform - STFT

• For each signal frame, the discrete Fourier transform is computed as follows:

X (k, l) =
N−1∑
m=0

xl(m)e−j 2π
K

nk =

=
N−1∑
m=0

w(m)x(m + lL)e−j 2π
K

nk ,

where K is the DFT size, with K ≥ N .

• The STFT X (k, l) characterizes the local time-frequency behavior of the signal around time lL and bin k.

• For a continuous sampling rate FS , the discrete indexes correspond to the continuous time lL/FS and

frequency kFS/K .
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The Short-Time Fourier Transform - STFT

• The STFT can be thought of as the spectral representation of a time slice of the input signal.

• By interpreting X (k, l) as a function of the frequency k for each value of the time index l , the STFT

corresponds to a series of time-localized spectra.

• Alternatively, we can view the STFT as a function of time for each frequency.

• Interpreting X (k, l) as a time series that is a function of l for each bin k, the STFT then corresponds to a

filter bank that decomposes the input signal into subbands (with one subband for each bin).

• These two interpretations are depicted with respect to the

time-frequency plane in the following figure.
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The Short-Time Fourier Transform - STFT

• Note that we can increase the spectral resolution by extending the length of the window N, but this leads

to lower resolution in time.

• Conversely, we can enhance time resolution by reducing the length of the window N, but it results in lower

resolution in frequency.

• Therefore, a compromise must be reached between the two requirements of achieving high time resolution

or high frequency resolution.
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The Short-Time Fourier Transform - STFT

• The STFT is an analysis tool: it provides a representation of the signal and can reveal information about

the signal.

• Very often, the squared magnitude of the STFT, |X (k, l)|2 is visually represented using an image called a

spectrogram.

• The X-axis of the spectrogram corresponds to time, and the Y-axis corresponds to frequency, with

|X (k, l)|2 depicted using gray levels or false colors:
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The Short-Time Fourier Transform - STFT
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The Short-Time Fourier Transform - STFT

• The STFT allows for useful modifications of the signal, some guided by the information captured by the

STFT itself.

• This includes techniques such as

speech enhancement: which aims to improve the signal-to-noise ratio or the intelligibility of the speech

signal;

time-scale modification: which can be applied to alter the duration of a speech or audio signal without

changing its character (i.e., the pitch), such as playing the signal faster or slower;

pitch modification: that can be employed to change the pitch without altering the time scale.

• In these scenarios, the STFT of the input signal is modified to achieve the desired effect.

• To generate the modified signal, an appropriate synthesis operation is needed.

• Ideally, such a synthesis operation should perfectly reconstruct the original signal if no STFT-domain

modification is carried out.

• A synthesis procedure based on this perfect reconstruction property is described in the following.
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The Short-Time Fourier Transform - STFT

• The reconstruction operation is essentially the reverse of the analysis operation.

• First, the inverse Discrete Fourier Transform (IDFT) of each local spectrum is computed.

• Then, the resulting signal frames are aggregated to synthesize the signal.

• If the DFT size is sufficiently large (K ≥ N), the IDFT simply returns the windowed signal segment:

x̂l(m) = IDFT{X (k, l)} = w(m)x(m + lL), 0 ≤ m ≤ N − 1

considering the local time m.

• In the global time n, considering m = n − lL we have

x̂l(n − lL) = w(n − lL)x(n) lL ≤ n ≤ lL+ N − 1

• The output signal reconstruction can then be obtained by an overlap-add operation, possibly adopting a

synthesis window.

• Denoting v(n) as the synthesis window, the overlap-add reconstruction is given by

x̂(n) =
∑
l

v(n − lL)x̂l(n − lL) =
∑
l

v(n − lL)w(n − lL)x(n)
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The Short-Time Fourier Transform - STFT

x̂(n) =
∑
l

v(n − lL)x̂l(n − lL) =
∑
l

v(n − lL)w(n − lL)x(n)

• To obtain the output signal x̂(n), each frame generated by the IDFT is weighted by the synthesis window

v(m) and added to the neighboring windows in the parts that overlap in time.

• Since x(n) is not a function of l , we have

x̂(n) = x(n)
∑
l

v(n − lL)w(n − lL).

• Perfect reconstruction is achieved if the analysis and synthesis windows satisfy the constraint∑
l

v(n − lL)w(n − lL) = 1

• In many cases, v(n) is not specified, and the equivalent synthesis window is a rectangular window or

length N. Then, the constraint becomes simply∑
l

w(n − lL) = 1.
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The Short-Time Fourier Transform - STFT

∑
l

w(n − lL) = 1.

• Several perfect reconstruction windows that satisfy this condition have been studied in the literature.

• For example, the rectangular or the triangular windows, and the Blackman-Harris family, which includes

the Hann and Hamming windows.

• These are also referred to as windows with the overlap-add property and will be denoted by wPR(n) in

the following.

• It is worth noting that any window function satisfies the overlap-add property when L = 1.

• For L = N, the only window that has the overlap-add property is a rectangular window of length N.

• For L > N, there are time gaps between successive frames and no window can have the overlap-add

property.
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The Short-Time Fourier Transform - STFT

• There are several methods to design analysis and synthesis windows that satisfy∑
l

v(n − lL)w(n − lL) = 1.

• The simplest and most common approach is that of considering

v(m) = w(m) =
√

wPR(n).

• Another approach involves using a perfect reconstruction window wPR(m) and an arbitrary window b(m),

which is strictly nonzero over the time support of wPR(m). In this case, b(m) is employed as the analysis

window, and

v(n) =
wPR(m)

b(n)

is used as the synthesis window.
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Analysis, processing, and synthesis using STFT and overlap-add
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The Discrete Cosine Transform - DCT

• The DFT is not the only transform that requires only multiplications and additions for its computation.

• Let us consider first the expressions of the direct and inverse DFTs:

X (k) =
N−1∑
n=0

x(n)e−j 2π
N

nk

x(n) =
1

N

N−1∑
k=0

X (k)e j
2π
N

nk

• These expressions can also be written as

X (k) =
N−1∑
n=0

x(n)f (n, k)

x(n) =
N−1∑
k=0

X (k)g(n, k)

where for the DFT it is

f (n, k) = e−j 2π
N

nk

g(n, k) =
e j

2π
N

nk

N
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The Discrete Cosine Transform - DCT

• By choosing different sequences f (n, k) and g(n, k), we obtain different transforms that still require only

additions and multiplications.

• Obviously, in order to have a pair of reciprocal transforms, g(n, k) and f (n, k) must be linked in some way.

• We have already discussed the matrix representation of the DFT If we define:

X =


X (0)

X (1)
...

X (N − 1)

 x =


x(0)

x(1)
...

x(N − 1)


• We have

X = F · x and x = G ·X
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The Discrete Cosine Transform - DCT

• We have

X = F · x and x = G ·X

where

F =


f (0, 0) f (1, 0) . . . f (N − 1, 0)

f (0, 1) f (1, 1) . . . f (N − 1, 1)
...

...
...

f (0,N − 1) f (1,N − 1) . . . f (N − 1,N − 1)



G =


g(0, 0) g(0, 1) . . . g(0,N − 1)

g(1, 0) g(1, 1) . . . g(1,N − 1)
...

...
...

g(N − 1, 0) g(N − 1, 1) . . . g(N − 1,N − 1)


• The two transforms are reciprocal if and only if

F−1 = G.
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The Discrete Cosine Transform - DCT

• In the field of data compression, many different transforms of this family are considered.

• All these transforms differ in the choice of the sequences f (n, k) and g(n, k).

• With these transforms, we exploit a property of natural signals (and sequences): natural signals tend to

concentrate most of their energy at low frequencies.

• Given a natural sequence (i.e., a sequence obtained by sampling a natural signal), we can compress this

sequence (i.e., we can code this sequence with a reduced number of bits) by considering the DFT of the

sequence and coding the low frequencies with an adequate number of bits while the other frequencies are

coded with a reduced number of bits.

• The DCT is a real transform for real sequences (i.e., for the DCT f (n, k) and g(n, k) are real) which
offers two significant characteristics:

• it obtains a good compression of the energy in a few terms,

• it has fast computation algorithms (similar to the FFT).

• Here we will study the DCT type 2 transform, which is the most used in practice both for image and

audio compression (it is used in JPEG, MPEG, H.261, in MP3, i.e., in MPEG layer 3 audio coding).

• The DCT is related to the DFT. Indeed, here we derive it from the DFT.

A. Carini Digital Signal and Image Processing 108 / 116



The Discrete Cosine Transform - DCT

• Given a sequence x(n) of finite length N, we have seen that the DFT transform the sequence xp(n),

obtained from the periodic repetition of x(n) with period N.

• Also in the DCT a periodic extension of the sequence x(n) is considered, but it is an even-order periodic

extension. I.e.,
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The Discrete Cosine Transform - DCT

• The sequence transformed by the DCT is more regular: we do not have those relevant steps as in the DFT.

• Thus, this transformation is able to compact the energy towards the low frequencies better than the DFT

and is more suitable for data compression.

• In the DCT (of type 2), the periodic repetition with period 2N of the sequence

y(n) =

{
x(n) for 0 ≤ n ≤ N − 1

x(2N − 1− n) for N ≤ n ≤ 2N − 1

is considered.
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The Discrete Cosine Transform - DCT

• Let us compute the DFT of this sequence:

Y (k) =
2N−1∑
n=0

y(n)W nk
2N =

N−1∑
n=0

x(n)W nk
2N +

2N−1∑
n=N

x(2N − 1− n)W nk
2N

• In the second sum, consider the following variables change m = 2N − 1− n, and thus n = 2N − 1−m.

• For n = N, it is m = N − 1, and for n = 2N − 1, it is m = 0.

Y (k) =
N−1∑
n=0

x(n)W nk
2N +

N−1∑
m=0

x(m)W
(2N−1−m)k
2N =

{m = n} =
N−1∑
n=0

x(n)W nk
2N +

N−1∑
n=0

x(n)W
(−1−n)k
2N =

/
·W k/2

2N
W

−k/2
2N

= W
−k/2
2N

[
N−1∑
n=0

x(n)W
(n+ 1

2
)k

2N +
N−1∑
n=0

x(n)W
−(n+ 1

2
)k

2N

]
=

= W
−k/2
2N

N−1∑
n=0

x(n)

[
W

(n+ 1
2
)k

2N +W
−(n+ 1

2
)k

2N

]
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The Discrete Cosine Transform - DCT

W
(n+ 1

2
)k

2N +W
−(n+ 1

2
)k

2N = e j
2π
2N

(n+ 1
2
k) + e−j 2π

2N
(n+ 1

2
k) = 2 cos

[
2π

2N
(n +

1

2
)k

]
= 2 cos

[
π(2n + 1)k

2N

]
• Thus,

Y (k) = W
−k/2
2N 2

N−1∑
n=0

x(n) cos

[
π(2n + 1)k

2N

]
with 0 ≤ k ≤ 2N − 1.

• By definition, the Type 2 DCT is given by

C(k) = 2
N−1∑
n=0

x(n) cos

[
π(2n + 1)k

2N

]

with 0 ≤ k ≤ N − 1 (for N ≤ k ≤ 2N − 1 we find the same samples).

• Since Y (k) = W
−k/2
2N C(k), we have C(k) = W

k/2
2N Y (k) .

• We can compute the samples C(k) by building the sequence y(n) and by computing its FFT.

• A fast algorithm, but computing a real transform of a real sequence requires complex computations.

• There exist other algorithms for fast computing the DCT that require only real operations.
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The Inverse DCT

• For computing the Inverse DCT (IDCT), we exploit the IDFT of Y (k).

• Let us consider

y(n) =
1

2N

2N−1∑
k=0

Y (k)W−nk
2N =

1

2N

{
Y (0) +

N−1∑
k=1

Y (k)W−nk
2N + Y (N)W−nk

2N +
2N−1∑
k=N+1

Y (k)W−nk
2N

}

• In the last term, let us consider the change of variables l = 2N − k.

• For k = N + 1, it is l = N − 1. For k = 2N − 1, l = 1.

y(n) =
1

2N

{
Y (0) +

N−1∑
k=1

Y (k)W−nk
2N + Y (N)W−nk

2N +
N−1∑
l=1

Y (2N − l)W
−n(2N−l)
2N

}

• Since we assume y(n) to be real, for the properties of conjugate symmetry of Y (k)

Y (2N − k) = Y ∗(k)

and the two sums are not independent.
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The Inverse DCT

• Y (0) =
2N−1∑
n=0

y(n) is the mean value of the real signal.

• Y (N) =
2N−1∑
n=0

y(n)W−Nn
2N = 0 because W Nn

2N = +1 when n is even, and W Nn
2N = −1 when n is odd.

The sequence y(n) is symmetric and for each y(n) with n even, there is an identical term with n odd.

• Thus,

y(n) =
1

2N

{
Y (0) +

N−1∑
k=1

[
Y (k)W−nk

2N + Y ∗(k)(W−nk
2N )∗

]}
=

=
1

2N

{
Y (0) +

N−1∑
k=1

2 Re
[
Y (k)W−nk

2N

]}
• Taking the first N terms we have

x(n) =
1

2N

{
Y (0) +

N−1∑
k=1

2 Re
[
Y (k)W−nk

2N

]}
• But Y (k) = C(k)W

−k/2
2N , thus

x(n) =
1

2N

{
C(0) +

N−1∑
k=1

2C(k) Re

[
W

−(n+ 1
2
)k

2N

]}
and the IDCT is

x(n) =
1

2N

{
C(0) +

N−1∑
k=1

2C(k) cos

[
π(2n + 1)k

2N

]}
.
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The Inverse DCT

• But Y (k) = C(k)W
−k/2
2N , thus

x(n) =
1

2N

{
C(0) +

N−1∑
k=1

2C(k) Re

[
W

−(n+ 1
2
)k

2N

]}

and the IDCT is

x(n) =
1

2N

{
C(0) +

N−1∑
k=1

2C(k) cos

[
π(2n + 1)k

2N

]}
.
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