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06 The Discrete Fourier Transform

06.01 Definition of the Discrete Fourier Transform (DFT)

We have discussed the discrete-time Fourier transform, which enables the transition from the time
domain to the frequency domain. The primary drawback of the DTFT is that its inverse transform
necessitates the evaluation of an integral, making it unsuitable for computer implementation.

In contrast, the direct discrete-time Fourier transform does not require integral evaluation but involves
only the computation of multiplications and additions. This is because the DTFT is a periodic function in
w and can be expanded in the Fourier series as the sum of an infinite number of generalized sinusoids,
represented by e=7«",

Now, we will consider another transform applicable to periodic sequences (and later, as we will see,
to finite-duration sequences) — the Discrete Fourier Transform (DFT). Due to the periodicity of the se-
quences being transformed, both the direct DFT transform and the inverse DFT (IDFT) transform only
require the sum of complex numbers and do not involve any integration. Therefore, they are suitable for
computer implementation.

Considering a periodic sequence z,(n) with a period of N (where z,(n) = z,(n+ N) for all n), we define
the Discrete Fourier Transform (DFT) of z,(n) as follows

N-1
Xp(k) =Y wp(n)e ¥k,
n=0

It is easy to verify that Xp(k) is a complex periodic sequence with a period of N:
X, (k) = X, (k + N) VE.
The Inverse Discrete Fourier Transform (IDFT) is expressed as:

1 2m g
zp(n) = N X, (k)ed Nk,
k=0
Let's demonstrate that these relations can be derived from one another, indicating that they are recip-
rocal transforms.

We take the expression of the IDFT and multiply it by e =35 "l

| V-1
- 27 - 27 - 27T
—ienl — Jarnk ,—j3rnl
zp(n)e N = N X,(k)e? mr eI N
k=0
N-1 N—1 , N—-1
( —j2Enl _ 1 X (Ek)ed Fnk o—iFFnl
ey () = 37 LS (ke o
n=0 n=0 k=0
N—1 | Nl
2270
_ j=En(k—1
= Xp(k)ﬁ el Rk
k=0 n=0
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Fork =1:
1N ey _ L Ni:l -1
N n=0 N n=0
For k # I:
1N ey _ L1 FNGD
e N 1— % k-0
Thus, forall kandl (with0 < k< N-1and0<I[I< N —1):
1 Nz_:l iR k=) _ 5
N 2 e =6(k —1).
Substituting this expression into the preceding equation:
Nz_:l e N-1 1 Nl e N-1 -
2 mp(me i = kZ:O X (k)5 ;) e N = kZ:O X, (R)O(k — 1) = X, (1)

Q.E.D.
Hence, the two transformations are reciprocal. Using the DFT, we can pass from the time domain to the
frequency domain, achieving a completely equivalent representation of our sequence.

Considering only periodic sequences may seem like a severe restriction. However, in reality, the Dis-
crete Fourier Transform (DFT) is commonly applied to finite-length sequences. Any finite-length se-
quence of length N can be transformed into a periodic sequence with a period of N by periodically
repeating its samples. For any causal finite-length sequence z(n) satisfying

xz(n) =0 Yn<Oandn >N

we can associate the periodic sequence:

where (n)y indicates the n modulus N (i.e., the remainder of the division of n by N). There exists a
bijective correspondence between finite-length sequences of length N and periodic sequences with a
period of N. Consequently, we can also apply the DFT to finite-length sequences.

06.02 The relation between DFT, DTFT, and Z Transform

A finite-length sequence of length N has Z-transform given by
N-1

X(z) = Z z(n)z™".
n=0

Let’'s compute this transform at N uniformly spaced points on the unit circle:
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X(2)

2

2y

z=e’

N—-1
L= D a(n)e TR = X, (k)
n=0

Thus, we find the DFT of z(n).
For finite-length sequences, the DFT can be obtained by evaluating the Z-Transform at N uniformly
spaced points on the unit circle, i.e., for

z=el ¥k withk=0,1,...,N — 1.

As the DTFT coincides with the Z-Transform evaluated on the unit circle, the DFT can be obtained by
sampling the DTFT at N points uniformly spaced on the interval [0, 27]:

Xp(k) = X (e7)

_2rg’
w=xk

When dealing with finite-length sequences, it is also possible to express the Z-Transform (and the DTFT)
in terms of the samples of the DFT:

p(k) 1—27V
N 1—eiFhky-1

This is the interpolation formula of Lagrange. A similar relation also holds for the DTFT.

Thus, we observe that for finite-length sequences, the representations through DTFT, Z-Transform, and
DFT are equivalent and interchangeable. The DFT serves as a straightforward means for assessing the
spectral content of a sequence, making it well-suited for computer implementation.

For a sequence z(n) of length IV, a more detailed evaluation of the spectrum X (e/*) can be achieved
by employing a DFT on L samples, where . > N. In other words, it suffices to periodically extend
the sequence x(n) with a period L > N and then apply the DFT to this extended periodic sequence.
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This property proves valuable when considering fast convolution algorithms, which apply the DFT to
finite-length sequences of L samples, where L is a power of 2, i.e., L = 2*.

What happens when we consider an infinite-length sequence z(n) with a DTFT and we sample its DTFT
at NV uniformly spaced points on the unit circle, and then invert these samples using the IDFT?
Remember that, when we sample a continuous-time signal at uniformly spaced intervals, in the fre-
quency domain, we obtain the periodic repetition of the continuous-time spectrum, leading to the prob-
lem of aliasing. The coefficients of the DFT can be considered as samples of a continuous function in
w, representing the DTFT X (e/¢).

This frequency-domain sampling operation results in the periodic repetition of the signal z(n) in the time
domain, leading to aliasing in the time domain if z(n) has infinite length.

Let’'s consider X (e/*) and take N uniformly spaced samples in the interval [0, 27]. We interpret these
samples as the samples of the DFT:

with0 <k <N -1

w-%"k
+o0o ,
= Z x(n)e Ik
Let’'s apply the IDFT:
]. plte - 270
zp(n) = = D X,p(k)e/ ¥ =
k=0
1 N—1 +H4oco y
=~ Z z(m)e I NI NN —
k=0 m=—o0
+o0 1 N-1 o
= 3 g X e
m=—00 k=0

We know that:

1 X~ _jzmemi J 1 whenm—n=IN, withl e Z
0 otherwise

“+o0o
= Z 0(n—m —1IN).

l=—00
Hence,
+oo +oo
zp(n) = Z x(m) Z d(n—m—IN)=
m=—oo l=—00
+oo —+oo

= Z Z z(m)d(n —m —IN) =

l=—00 m=—00

—+oo

= Z xz(n —IN).

l=—00
The signal z,(n) is obtained as the sum of the signal z(n) and its periodic repetitions, each time-shifted
by a multiple of N. If the length of the signal z(n) exceeds N, z,(n) is subject to aliasing errors in the
time domain. Only signals z(n) with a length less than or equal to N remain unaffected by aliasing.
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DFT in matrix form
The DFT can be represented in matrix form through the following relation:

XZDN-X.

Here, X is a column vector consisting of the first N samples of the DFT X, (k), and x is a column vector
composed of the first N samples of x,(n).

X,(0) 2p(0)
X — Xp(1) o zp(1)
Xp(N -1 z:p(N -1

The matrix Dy, known as the DFT matrix, is defined as follows:

11 1 1 1
1 W w3 wi oo Wy
Dy=|1 W3 wh ws L wav
1wt WD D (VDT

where W,, = e 7% .
The validity of this relation can be easily confirmed using the definition of the DFT:

N-1 N-1
X(k) =" a(n)e ¥ = 3" a(n)Wik.
n=0 n=0

Similarly, the IDFT can be expressed as:
x=Dy' X

where the expression for the IDFT matrix Dj\,l is given by

1 1 1 1 1
1 Wyt Wi Wyt o wyy
1 _ — — —2(N-1
Dy =+ | 1 W2 Wyt Wyt WY
1 W[;(N—l) W];2(N—1) W];3(N—1) W];(N—l)z |

It can be verified that D' = £ D%

06.03 Properties of the DFT

Linearity
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If 21 (n) 255 X1 (k) and 25 (n) 255 X, (k), then

alxl(n) + CLQJ?Q(’I?,) D(ﬂ; a1 X1 (kﬁ) + ang(k).

Circular time-shift

If 2, (n) 255 X, (k) then, for ng € Z,

zp(n —ng) 2% Xp(k)e_j%ﬂ”“k.

Proof:
N—-1
DFT[z,(n — no)] E xpn—noeJN”k
n=0
(consider m = n — ng)
N—1—ng
_ N 7=Fmk 7] nok
= E xzp(m)e” ®
m=—no
1 N—1—ng
_i2m _j2m _i2m _j2m
= g zp(m)e™ N mke—i N nok 4 E zp(m)e N mk o= T ok —
m=—ng m=0
N—1 N—1—ng
_j2m _i2m, _i2m _j2m
_ § :cp(m)e ]Nmke ]Nn0k+ E xp(m)e JNmke ]Nnok:

m=N—ng

(because eI F Mk = ¢=i % (m+N)k and x,(m) = x,(m + N))

6 ]Nmk 7] 7 ok _

|
M1
,BH

m=0
= X, (k)e 7 R ok

Q.E.D.
Note the distinction from the case of the discrete-time Fourier transform: x,(n) represents a periodic
sequence or the periodic repetition of a finite-length sequence.

When considering the window from time 0 to V — 1, it becomes apparent that the samples that ’exit’
from one side ’enter’ from the other side. For this reason we talk about a circular time-shift.

If (m) N denotes the modulus of m with respect to N, and z,(n) represents the periodic repetition of a
finite-length sequence z(n), then we have:

zp(n —no) = zp((n — no)n) = x((n — no)N)-

© 2024 Alberto Carini 83/600



Digital Signal and Image Processing Computer Engineering
06.03 Properties of the DFT University of Trieste

2p((n = no)n) &5 X, (k)e 7 Fnok,

Circular frequency shift

If 2, (n) &5 X, (k) then, for k € Z,

2y (n)ed ¥k 28 X (k — ko) = X, ((k — ko) n).

Proof:

N-1 N-1

wp(n)e? Fhoe IRk = N " g (n)e I TR = X, (I — ko)

n=0 n=0
Conjugation
If 2, (n) €55 X, (k) then

* DFT <« *
zp,(n) &= X, (k) = X ((—k)n)

Proof:

Xp(k) = Xp(=k) = X, ((=k)n) = X, ((N = k)n) = X, (N — k).

p

We term the DFT of a real sequence x,(n) as circular conjugate-symmettric.

{

If z,(n) is real, then:

Re{X,(k)} = Re{X,(N — k)}, i.e., itis circular symmetric;
Im{X,(k)} = —Im{X,(N — k)}, i.e., itis circular anti-symmetric;

| X, (k)| = |X,(N — k)|, i.e., itis circular symmetric;

arg{X,(k)} = —arg{X,(N — k)}, i.e., it is circular anti-symmetric.

© 2024 Alberto Carini

84/600



Digital Signal and Image Processing
06.03 Properties of the DFT

Computer Engineering
University of Trieste

If z,(n) is real and symmetric, i.e., if z,(n) = z,(—n) = 2,((—n)n) = z,(N —n), then X, (k) is also real

and symmetric.

Proof:
N-—1
Xp(k) = DFT{z,(n)} = Y ap(n)e ¥
n=0
N—-1 ,
DFT{z,(N —n)} = 2, (N —n)e I =
n=0

N_lx eI Rk | eI T mk
= p(m 5 =
= 2
= 2 xp(m)cos {Nmk} eR
Q.E.D.
If z,(n) is real and anti-symmetric, i.e., if z,(n) = —z,(—n) = —z,((—n)n) = —z,(N — n), then X, (k)

is imaginary and anti-symmetric.

In general, the DFT transforms complex sequences into complex sequences. However, we can effi-
ciently use a single DFT transformation to compute the DFT of two real sequences.

Consider two real sequences, z(n) and y(n),

Now, let’s form the sequence
z(n) = z(n) + jy(n).

By leveraging the linearity property of the DFT:
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Z*(N —k) = X*(N — k) — jY*(N — k)
Given that z(n) and y(n) are real sequences:
X*(N — k) = X(k)

Y*(N —k)=Y(k)
Z*(N — k) = X(k) — jY (k)
Consequently, we obtain the following expressions:

Z(k) + Z*(N — k)

X(k) = 5

Re(x (1)) = o2 +RelZ(N )
im{ix(ag) = MR~ ImiZN — )
Ro(y () = A+ Im(Z(V k)

m{y ()} — —RelZ()} +2Re{Z(N !

Parseval Theorem

S loml = S G
n=0 k=0

Given a finite length sequence g(n) of length N, we can evaluate its energy from the DFT G (k).
Proof:

Q.E.D.
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06.04 The Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) algorithms are efficient methods for computing the Discrete Fourier
Transform (DFT). In particular, we will explore the original algorithms proposed by Cooley and Tukey in
1965, which specifically address sequences of length N = 2~ i.e., of a power of 2 length.

The fundamental strategy of the FFT lies in computing the Discrete Fourier Transform (DFT) of a se-

quence by leveraging the DFTs of some reduced-length sequences.
N—-1

The computation of X (k) = Z x(n)e‘j%”’“ requires N complex multiplications and N — 1 complex
k=0
additions. If we aim to compute the values of X (k) for k = 0,1,..., N — 1, the overall computational

cost includes:
« N2 complex multiplications,
* N(N — 1) complex additions.

But if we break the computation of the length N DFT into the computation of two DFTs of length N/2,
we have a total of

N 2
2. <2) complex multiplications,

N N "
2. <2) . <2 — 1> complex additions.

Thus, we halve the operations.

Considering N = 2%, the sequence of length /2 can itself be split into two sequences, and each of
these sequences can further be split into two, and so on, until we have sequences of only two samples.
In the following, we denote Wy = ¢~/ %, such that

N-1

X (k)= a(n)Wg".

n=0

We will consider two algorithms:
» Decimation-in-time FFT.

» Decimation in frequency FFT.

© 2024 Alberto Carini 87/600



Digital Signal and Image Processing Computer Engineering
06.04 The Fast Fourier Transform (FFT) University of Trieste

Decimation-in-time FFT
This algorithm is derived by splitting the sequence x(n) into two subsequences:

« The sequence of elements with even indices, denoted as z; (n) = z(2n), wheren = 0,1,..., 5 —1.
« The sequence of elements with odd indices, denoted as z5(n) = z(2n+1), wheren = 0,1,..., 5 —
1.
We have,
N-1
X(k) = Z z(m)Wak =
m=0
N/2—1 N/2—-1
= Z z(2n) W3 4 z(2n + 1)WJ(V2n+1)k =
n=0 n=0
N/2—1 N/2—-1
— Z an Z W(2n+l)k
n=0
2nk _ ,— 2nk —j%"nk nk it ;
Since Wy ifFmk — o7 % =WZi"itis
2
N/2-1 N/2—1
X(k)y= Y a(n) MW Z 22 (n)WH
n=0

N/2—1 N/2—-1

But Z z1(n k¥ and Z xa(n represent the DFTs computed on % samples of z1(n) and

xa(n ) respectlvely Thus,
X(k) = X1 (k) + Wr X (k).

The DFT X (k) is the sum of two DFTs of length &, where the second DFT is multiplied by W¥k. Note
that X; (k) and X, (k) are periodic sequences of period &. Thus, if we consider 0 < k < § — 1,

X (k) = X1(k) + Wy Xa(k),

N N ¥ al
X(k+5) :X1(k+?)+W1(\;€+2)X2(k+§) =
N
= Xa (k) + Wy " Xa(h).
WS _ iR (4 F) — ¥k I F = Wk

N
X(k+ ) = Xa(k) - Wk Xy (k).
To summarize, the DFT of NV samples can be computed using two DFTs on % samples with the following
equations:
X (k) = X1(k) + Wy Xa(k),
N
X(k+ 5) = X1(k) — Wy Xa(k),
where k =0,1,..., 5 — 1.
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These operations form the fundamental steps of the FFT, and they are visually represented through the

following butterfly diagram:

For an 8-sample DFT, the following operations take place:

Now, the %-sample length sequences can be further divided into sequences of % samples, and so on,
until we have sequences with only two samples.
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We use the term "decimation in time’ for this algorithm because the length-N sequence is successively
decimated into sequences of length £, &£, &, .. 2.
The 2 samples DFT can be computed with a single butterfly. Indeed, given the sequence of two samples

{a07a1}s
1 1

A(k) = Z a(n)Wak = Z a(n)e 7 F ™ = a(0) + e a(1)

n=0 n=0

Eventually, the computation of the 8-sample DFT involves the following operations:
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To compute a DFT of length N (where N is a power of 2), we have log,(N) butterfly stages, each com-
posed of % butterflies. Consequently, each stage involves % complex multiplications and N complex
additions/subtractions (neglecting the zero cost of multiplications by WY,). In total, the FFT computation
requires:

N T
i log,(N') complex multiplications,
* Nlog,(N) complex additions.

When compared to the direct computation of the DFT, even for small N, this method yields significant
computational savings.
Computational cost of the FFT

N| 4| 8] 16 32 64 128 256 512 1.024
FFT x| 4 |12 | 32 80 192 448 1.024 2.392 5.120
+| 8 |24 64 160 384 896 2.048 4.696 10.240
DFT x |12 |72 | 240 | 992 | 4.032 | 16.256 | 65.280 | 261.632 | 1.047.532
_|_

16 | 64 | 256 | 1.024 | 4.096 | 16.384 | 65.536 | 262.144 | 1.048.576

Take note of the specific sample order at the input of the FFT. By decimating the sequence x(n) log,(N)
times, we obtain a permuted sequence that serves as the input for the decimation-in-time FFT. For an
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Figure 06.01: Decimation-in-time FFT
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8-sample FFT, starting with
2(0), (1), 2(2), 2(3), z(4), 2(5), 2(6), x(7)

we rearrange it to:
x(0), 2(4), z(2), 2(6), z(1), 2(5), 2(3), z(7).

The permuted sequence can be easily constructed using the bit-reversal rule.

Let's denote the permuted sequence, which serves as the input of the FFT, as y(n). Here, y(n) =
xz(m), where the index m is obtained by representing » in binary form and inverting the bits of the
representation:

0 000 — 000 O
1 001 — 100 4
2 010 — 010 2
3 011 — 110 6
4 100 — 001 1
5 101 — 101 5
6 110 — 011 3
7 111 — 111 7

Applying the decimation-in-time FFT algorithm to the sequence permuted according to the bit-reversal
rule, we obtain the DFT samples in their natural order.

Decimation-in-frequency FFT
It is the dual algorithm to the decimation-in-time FFT.
It can be obtained by splitting the sequence z(n) into two adjacent sequences:

e 21(n) = z(n)with n =0,1,..., % — 1,
« 2o(n) =z(n+ Y)withn=0,1,..., 5 - 1.
= N/21 N-1
X(h) = Y am Wit = 3 amWRE+ Y almWgt =
=0 n=0 m=N/2

(considering m = n + % in the second summation)

N/2-1 N/2-1

=3 nmEE+ Y mmw =
n=0

n=0

N/2—1 N
= 3 [t + W ()] Wik

n=0

2

N
N P . . . .
But W2 " = e 7% 2k = ¢~i7% Thus, we consider two cases: when k is even and when F is odd.

For k even:
N/2—-1

X(2k) = > [wi(n) + aa(n)] WE =

n=0
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The even terms of X (k) are determined by the & points DFT of z; (n) + z2(n).

For k£ odd:
N/2—1
X@k+1)= Y [11(n) — za(n)] WA =
n=0
N/2—1
= > [21(n) — 22(n)] WJTGW%’C
n=0

The odd terms of X (k) are determined by the £ points DFT of (z1(n) — z2(n)) - W&.

Thus, the procedure for computing the N-sample DFT consists of constructing two sequences of %
samples:

f(n) = @1(n) + x2(n)

g9(n) = (z1(n) — z2(n)) W

with n = 0,1,...,N/2 — 1, and then computing their £ samples DFT. The DFT of f(n) provides the
even terms of X (k), and the DFT of g(n) provides the odd terms of X (k).

The procedure can be repeated to transition from the %-sample DFT to the %-sample DFT, and so on,
until reaching DFTs of only 2 samples, which can be computed directly.

Again, the fundamental operations of the FFT can be illustrated using a butterfly diagram, albeit different
from the previous one:

For an 8-samples DFT, we obtain the following scheme
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In this case, while the input sequence follows the natural order, the FFT output samples are ordered
according to the bit-reversal rule.

This is called the decimation-in-frequency algorithm because it involves decimating the DFT into se-
quences of odd and even terms.

The computational cost of this algorithm is identical to that of the decimation-in-time algorithm.

IDFT computed with the FFT
If we compare the expression of the IDFT with that of the DFT:

N-1

rln) = 1 > X0y,
N—

-~ o

X (k)

z(n)Wnk,
n=0
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we observe that, apart from the constant factor <., the expressions of the direct transform and the
inverse transform are almost identical. The fast algorithms for computing the DFT can also be applied for
computing the IDFT, with the only modification being to replace Wy, Wy, ..., Wy with Wy ' W, 1 Wi,
respectively, and to divide the result by N.

Alternatively, we can directly apply the FFT algorithm to compute the IDFT. In this case,

*

1 N—-1 . 1 N—-1 i} .
z(n) = ;;) X(RWx™ = & LZ_O X*(k)Wy 1

The IDFT can be computed by transforming the conjugate of X (k) using the FFT, conjugating the
resulting sequence, and dividing it by V.

FFT of real sequences
Up to now, we have considered the DFT of complex sequences. When dealing with real sequences, it
is possible to achieve additional computational savings by exploiting the symmetry properties of these
sequences.
For example, in the context of the decimation-in-time FFT, the two DFTs on & real samples can be com-
puted with a single FFT on % complex samples. This FFT involves the transformation of the sequence
z(n) defined as

z(0) = z(0) + jx(1)

21(0) + j22(0)
2(1) = x(2) + jz(3) = z1(1) + jaz(1)

2(2) = 2(4) + jz(5) = 21(2) + j2(2)

2(N/2=1) = 2(N —2) + ja(N — 1) = 21 (N/2 — 1) + jao(N/2 — 1)

We have:
Z(0) = X1(0) + jX2(0)

Z(1) = X1 (1) + jX2(1)

Z(N/2 —1) = X1(N/2 — 1) + jX2(N/2 — 1)
Utilizing the symmetry properties of real sequences, we derive the following relations:

Z(k) + Z*(N/2 — k)

Xi(k) = 5
o - 2= Z;](,N/Q )

Thus, the computation of X; (k) and X5 (k) from Z(k) requires only additions, subtractions, and division
by 2.

Then, we can apply the last butterfly stage to X;(k) and X3 (k) to compute X (0), X (1),...,X(N/2).
The terms X(N/2+1),..., X (NN — 1) can be computed without any additional operations by exploiting
the conjugate symmetry property of X (k).
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If, as is often the case in practice, we need to compute the N-sample DFT of two real sequences x(n)
and y(n), we can efficiently apply a single FFT to the sequence z(n) = z(n) + jy(n). The DFTs of z(n)
and y(n), denoted as X (k) and Y (k), can then be computed using the following formulas:
Z(k)+ Z*(N — k)

5 .
Z(k) — Z*(N — k)

23 '

X(k) =

Y (k) =
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06.05 Linear convolution and circular convolution

We defined the convolution between two infinite-length sequences, z(n) and h(n), as

+o0 foo
y(n) = Z z(m)h(n —m) = Z h(m)x(n —m) = z(n) ® h(n).

This convolution is also called linear convolution. When the two sequences have finite lengths N, i.e.,
z(n)=0 VYn<O0andVn > N,and h(n) =0 Vn < 0andVn > N, the convolution is given by

N-1 N-1
y(n) = Z x(m)h(n —m) = Z h(m)x(n —m).

In this case, the resulting sequence y(n) also has a finite length equal to 2N — 1, i.e. z(n) =0V¥n < 0
and vn > 2N — 1. Indeed,

Example:

4 a2

4

We have seen that an important property of DTFT and Z-Transform is the transformation of linear
convolution into the product of the transforms of the two sequences:

(n) B8 X (e7) H(e/)

x(n)®h
2(n) ® h(n) «2 X (2)H(2)

Thus, it is possible to evaluate the convolution by computing the transform of z(n) and of h(n), multiply-
ing these transforms, and then taking the inverse transform of the product:
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A similar property holds for the DFT, but it involves a modified definition of convolution. The DFT applies
to periodic sequences or sequences that are the periodic extension of finite-length sequences.

Given two periodic sequences with the same period N (or given two finite-length sequences with a
duration less than or equal to NV, periodically extended with period N), we define the circular convolution
of the two sequences as the sequence y,(n) given by

Yp(n) = 2p(n)@hy(n) =

2
L

2y (m)hy(n —m) =

I
(]

0

3
I

£
L

(]

hp(m)a,(n —m) =
0

23

-1

(]

hp(m)x,((n —m)N),
m=0

which is a periodic sequence of period N.
The circular convolution satisfies the commutative property and the distributive property:

z(n)®h(n) = h(n)®@z(n)

(x1(n) + 22(n)) @h(n) = 21(n)®h(n) + x2(n)®h(n)

The evaluation of the circular convolution involves the same operations we have seen for the linear
convolution. If we want to compute

—

> @y (m)hy(n —m)

N_
m=0
we need to:

1. Fold h,(n) to get h,(—m),

2. Delay h,(—m) by n samples to get h,(n — m),

3. Compute the sample-by-sample product between z,(m) and h,(n —m),

4. Sum all terms form = 0tillm = N — 1.

The main difference with the linear case comes from the fact that the sequences x,(n) and h,(n) are
periodic with a period of N and that the sum is performed only over one period (from 0 to N — 1).
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Consider the sequences z,(n) and h,(n) which derive from the periodic repetition of
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For computing the circular convolution, we can apply the tabular method we have seen for the linear
convolution, with the only difference that we have to wrap around in the window [0, N — 1] the partial
products of the second, third, ..., N-th row, that fall outside this window.
Let us consider the period from 0 to N — 1 of y,(n) = z,(n)®h,(n):

}

e

In the second row, the partial product x(3)h(1) must be taken back to the first position. In the third
row, the two partial products z(2)2(2) and z(3)h(2) must be taken back to the first and second position,
respectively. In the forth row, the partial products z(1)h(3), (2)h(3), and x(3)h(3) must be taken back
to the first, second and third position, respectively. Thus, we have:

(2) dls)  x[2)4[2)

yp(0) = z(0)R(0) + z(3)h(1) + z(2)h(2) + z(1)R(3)
yp(1) = z(1)R(0) + z(0)h(1) + z(3)h(2) + z(2)h(3)
yp(2) = z(2)h(0) + z(1)h(1) + z(0)h(2) + z(3)h(3)
yp(3) = z(3)h(0) + z(2)h(1) + z(1)h(2) + z(0)A(3)
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Example:

Property: The DFT transforms the circular convolution into the product of the transforms of the two
sequences:

!
~

2 (n)®hy(n) 25 X, (k) Hy (k)

Proof:

Q.E.D.
This property is used for computing the fast convolution of two sequences. The linear convolution
between two sequences can be obtained by means of the circular convolution of suitable periodic se-
quences, with the circular convolution computed in the DFT domain.

Linear convolution of two finite-length sequences
Consider first the computation of the linear convolution between two finite-length sequences.

Let us call z(n) a sequence of length N, z(n) = 0Vn < 0 and ¥n > N, and let us call h(n) a sequence
of length M, x(n) = 0 Vn < 0 and Vn > M. Then, the linear convolution of z(n) and h(n),

N-1

y(n) =Y w(m)h(n —m)

m=0
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has length L = N + M — 1. Indeed,

y(L—1)=2(N)h(M)=y(N+ M —2)

Let us consider the two sequences z,(n) and h,(n) obtained from the periodic repetition of z(n) and
h(n), respectively, with period L.

!

i //_. Z)
i ‘I ; :/
r i
a_‘fﬁ Ks) 1
W6 7
| ;4
e ¥ 9 ¢ = _,‘1/
f r y
On the fundamental period:
L—1 N-1
Yp(n) = 2,(n)Ohy(n) = Y ap(m)hy(n —m) = > z(n)h(n —m) = z(n) ® h(n)
m=0 m=0

yp(n) = z,(n)Oh,(n) coincides with the periodic repetition with period L of the sequence y(n) =
z(n) ® h(n):
y(n) = z(n) ® h(n) = yp(n) = z,(n)Ohy(n) for0<mn < L.

Theorem:
Let 2(n) be a sequence of length N, z(n) = 0Vn < 0and Vn > N, and let h(n) be a sequence of length
M, h(n) =0Vn < 0andVn > M. Let us consider the two sequences z,(n) and h,(n) obtained from the
periodic repetition of z(n) and h(n), respectively, with period L = M + N — 1. Then,for0 <n < L — 1,
it holds that

2p(n)Dhp(n) = £(n) ® h(n).

Proof: By construction, it is:
s zp(n) =z(n)for0 <n<L—1.
¢ zp(n)=0for N<n<L-1.

* hp(n) =h(n)for = (N -1)<n<L-1.
(hp(n) =0for —(N —1) <n <0).
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Thus,for0<n <L —1,
L—1

2p(n)@hy(n) = Y zyp(m)hyp(n —m) =

m=0

Ju

= 3 @y (m)hy(n —m) =

3
=)

z(m)hp(n —m)
Foro<n<L-land0<m<N-1

—(N-1)<n-m<L-1 = hy(n—m)=nh(n—m)

—1

N
2p(n)@hy(n) = Y x(m)h(n —m) = x(n) ® h(n).

=0

Q.E.D.

We can compute the linear convolution of two finite-length sequences by means of the following opera-
tions:

1. Compute the FFT on L points of z(n) and h(n).
2. Multiply X (k) and H(k) for0 <k < L.
3. Compute the inverse FFT transform on L points of X (k)H (k).

The fast convolution technique with the FFT is efficient when the two sequences z(n) and h(n) have
similar lengths (N ~ M). If this is not true, we have to add a large number of zeros to the shortest
sequence, increasing the computational cost considerably.

If we assume to know a priori H(k), since the computational cost of the FFT is £ log,(L) complex
multiplications and Llog,(L) complex additions, the total cost of the fast convolution algorithm is

L T
2. <2 logz(L)) + L =L (logy(L)+1) complex multiplications,

2-(Llogy(L)) complex additions.

This computational cost must be compared with that of the direct computation of the convolution on L
output samples which is:
L-M complex multiplications,

L-(M—-1) complex additions.

In general, log,(L) + 1 < M and we have a significant computational saving.

Note that to apply this technique, we must process the entire input sequence before applying the fast
convolution algorithm. Thus, there is a delay introduced, which is equal to the length of the input
sequence
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Linear convolution of a finite length sequence with an infinite length sequence.

The fast convolution method for finite-length sequences can be extended to compute the convolution
between a finite-length sequence h(n) and an infinite-length sequence xz(n). This is a very common
situation: the FIR filtering of an infinite-length signal or a finite-length signal with very long duration.
The trick used is to split the sequence z(n) into many segments of finite length. For each of these
segments, we can evaluate the linear convolution with a technique similar to that we have seen for
finite-length sequences. There are two possible approaches:

* Overlap-add method

+ Overlap-save method

Overlap-add method.
In this method, the input sequence x(n) is split into the sum of adjacent non-overlapping sequences of
finite length V. Assuming the sequence z(n) to be causal,

+oo
z(n) = Z Zm(n —mN)
m=0

with
x(n 4+ mN) 0<n<N-1
Im(n) = .
0 otherwise.
<y (7 )
X
X5 (™)
<3/ ]
But, we have:
M-1 M—1 +00
y(n) =Y hWzn—1)= > h(l) Y zm(n—1—mN)=
=0 =0 m=0
400 [M-1 “+o00
= h(D)xp(n —mN —1)| = Z Ym(n — mN)
m=0 L [=0 m=0
where
M-—1

Um(n) = > h(D)am(n —1) = h(n) ® zm(n)

=0
ym(n) is the convolution of two finite-length sequences. It can be computed by means of the FFT of
the two sequences, the product of the FFTs, and an inverse FFT. If h(n) has length M and z,,(n) has
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length N, y,,(n) has length L = M + N —1 > N. Thus, the sequences y,,(n) overlap with the adjacent
ones over M — 1 samples.

+oo
Since y(n) = Z ym(n — mN), the tails that temporally overlap are added together. For this reason,

m=0
the method is called the 'overlap-add’ method.

Thus, the overlap-add method is applied with the following procedure:
1. Split z(n) in adjacent segments of length N.

2. Add M —1 zeros to each segment in order to obtain the sequences z,,,(n) of length L = M+ N —1
(typically, L is a power of 2).

3. Compute X,, (k) with FFT.
4. Compute Y,, (k) = H(k)X,,(k) (with H(k) computed once and a priori).

5. Compute the inverse FFT of Y,,,(k): ym(n) = IFFT{Y,,(k)} .

+oo
6. Add (on M — 1 points) the overlapping tails to get y(n) = Z Ym(n —mN).

m=0
Using Cooley and Tukey algorithms for computing the FFT and IFFT, it is convenient to use the decimation-
in-frequency algorithm for the FFT and the decimation-in-time algorithm for the IFFT. In this way, we can
avoid permutations with the bit-reversal rule. From the sequence with natural order z,,,(n), we obtain the
sequence with bit-reversal order X, (k). We can think that H (k) has also been obtained with the same
decimation-in-frequency algorithm, and its samples are ordered with the bit-reversal rule. Multiplying
element by element H (k) and X,,,(k) and computing the IFFT with the decimation-in-time algorithm, we
obtain y,,,(n) with the natural order.
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Figure 5.14: (a) Original x[n], (b) segments Xy, [n] of x[n], and (¢) linear convolution of x, [n] with h[n].

(From S. K. Mitra, “Digital signal processing: a computer based approach”, McGraw Hill, 2011)

Overlap-save method
Consider h(n) of length M, h(n) =0V¥n < 0and ¥n > M, and g(n) oflength L =M + N — 1, g(n) =0
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Vn < 0and Vn > L. Let h,(n) and g,(n) be obtained from the periodic repetition of 2(n) and g(n) with
period L. The circular convolution h,(n)@g,(n) = y,(n) is given by:

L-1
Yp(n) = Z gp(m)hy(n —m) =
m=0

L—1
forM —1<n<L-1: = g(m)h(n —m) = y(n)
m=0
L—1
for0<n< M -1: + g(m)h(n —m) = y(n)
m=0

For M —1 < n < L-1, y,(n) coincides with the linear convolution, while for the first M —1 samples, y,,(n)
differs from the linear convolution. These first M — 1 samples are "affected” by the periodic repetition of

the signals.

Theorem: Let z(n) be a sequence of length L, z(n) = 0 Vn < 0 and Vn > L. Similarly, let h(n) be
a sequence of length M, where h(n) = 0 for all n < 0 and n > M. Consider the sequences z,(n)
and hy(n) obtained by the periodic repetition of z(n) and h(n), respectively, with a period of L. For
M—-1<n<L-—1,we have:

2p(n)@hp(n) = z(n) ® h(n).

Proof:
Define N=L—- M +1 (i.e., L=M + N — 1) . By construction it is

* zp(n)=z(n)for0<n<L-1.
* hp(n) =h(n)for = (N —-1)<n<L-1.

Thus,forM —1<n<L-1
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ForM—-1<n<L-land0<m<L-1,
M-1—-(L-1)<n-m<L-1

M-1-(L-1)=M-1-(M+N—-1-1)=—(N—1)

Thus,
—(N-1)<n-m<L-1 = hy(n—m)=nh(n—m)

5 (m)@hy(n) = 3 a(m)h(n —m) = a(n) ® hn).

Q.E.D.

The overlap-save method exploits this property by splitting z(n) into sequences x,,(n) of length L,
where the first M —1 samples of each sequence repeat the last M —1 samples of the previous sequence
Tpm—1(n).

By computing the circular convolution on L samples, the first M — 1 samples of y,(n) are affected by
temporal aliasing and are discarded, while the remaining N samples coincide with those of the linear
convolution z(n) ® h(n).

(The darkened terms are discarded because they are affected by aliasing). Note that

(n) z(n —mN) —M+1<n<N-1
Im\N) = .
0 otherwise

Summarizing the overlap-save method is composed of the following operations:

1. Build the sequence z,,(n) composed by the last M — 1 samples of z,,_1(n) and N new samples
of z(n).

2. Transform with the FFT z,,,(n) to obtain X,, (k).
3. Multiply X, (k) - H(k) = Yy, (k).

4. Compute the inverse transform y,,,(n) = IFFT{Y,,(k)}.
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5. Discard the first M — 1 samples of y,,,(n) and keep the last N samples that provide y(n).

Also in this case, it is convenient to use a decimation-in-frequency FFT for the direct transform and a
decimation-in-time FFT for the inverse transform.
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Figure 5.16: Tllustration of the overlap-save method. (a) Overlapped segments of the sequence x[n] of Figure
3.14(a). (b} sequences generated by an 11-point circular convolution. and (¢) sequence obtained by rejecting the firs
four samples of w; [17] and abutting the remaining samples.

(From S. K. Mitra, “Digital signal processing: a computer based approach”, McGraw Hill, 2011)

Computational cost of the overlap-save method
Since we work with an infinite-length input sequence x(n) (or a very long finite-length input sequence),
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it is convenient to refer to the complexity per single output sample.

By applying the convolution sum directly, the computational cost is equal to M complex multiplications
and M — 1 additions per sample.

In the case of the overlap-save technique, the computational cost is

{2 (é’ 10g2(L)) + L] /N complex multiplications,

[2L1log,(L)] /N complex additions.

Indeed, we have two FFTs of length L, L products X (k)H(k), and from these, we obtain N output
samples.
Also in this case it is convenient to choose N > M and almost equal to M.

Example: Consider h(n) of length M = 128. The convolution sum costs 128 multiplications and 127
additions per output sample. Assuming L = 256 (N = 129), the overlap-save technique has a cost of
17.86 multiplications and 31.75 additions per output sample. With L = 512 (N = 385), the overlap-save
technique has a cost of 13.29 multiplications and 23.93 additions per output sample. Further increments
in L do not lead to any further reduction in computational complexity.

Note that the higher is N (and thus L), the greater the delay introduced by the convolution using the
overlap-add or overlap-save method.

Convolution of real sequences

If the FIR filter is real, and the sequence x(n) is also real, it is possible to achieve significant compu-
tational savings by simultaneously computing the convolution of two consecutive segments. Indeed,
given z,,(n) and z,,+1(n), we can construct

Tm(n) + jmr1(n)
and apply the fast convolution technique to this sequence. The corresponding output signal is
Ym (n) + jym-‘rl (TL)

By separating the real and the imaginary parts, we can compute the output signal of the two consecutive
sequences.
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06.06 Frequency analysis with DTFT and DFT

In order to compute the spectrum of a continuous-time or discrete-time signal, we need all the signal
samples from —oo to +oo. Nevertheless, in practice, a signal is always observed only within a finite
temporal window. If the signal is analog, we first filter it with an anti-aliasing (lowpass) filter, and then
sample it with a sampling frequency Fs; > 2B, where B is the bandwidth of the signal, to obtain a
discrete-time signal. The length of the discrete-time signal is then limited (i.e., truncated) to only L
samples (i.e., to a window of T'L seconds, with T" being the sampling period and T' = 1/Fy).

The finite-length interval limits the frequency resolution, i.e., it restricts our ability to distinguish between
two frequencies with a frequency separation lower than ﬁ

Let us denote the infinite length sequence we want to analyze as z(n). Limiting the sequence duration
to L samples, i.e., to the interval 0 < n < L — 1, is equivalent to multiplying sample by sample z(n) with
a rectangular window function w(n) of length L:

1 0<n<L-1
w(n) = .
0 otherwise.

In this way the signal spectrum to be analyzed, X (e/*) is given by
—+7

~ 1 . .
X(ev) = — X (eIW(e?@=)de

2 J_ .

Let us prove the last relation. We know that

+m
z(n) = —/ X (e7%)eimdh

+o00o
DTFT [z(n)w(n)] = Z z(n)w(n)e 79" =

n=—oo

“+o0

1 i 70N 70n —jwn
= Z w(n)% X (')’ dbe =

=5 » X (e’%) Z w(n)e™? df =
n=-—oo

1 [t , ,

= _— X ()W (e “=9)dg

2 J_,

The last integral is also known as the convolution integral.

The spectrum of the rectangular function W (e/«) is given by

L—-1
DTFT [w(n)] = > e 7" =

n=0
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This is a function similar to Sm(x). In the convolution with X (e/*), it has the effect of spreading the

T
spectrum of x(n) over all frequencies. This phenomenon is called leakage.

Let us consider an example:
1 , ‘
ZC(TL) = COS(wO’rL) = 5 [e—JUJon + e]wOn} .

For the frequency shift property:

X(e2) = 5 [ 4 wiere)]
14 . : , |
12+ g
L =25
. 1o}k 4
°
.§ 8t 1 |
2 6f { |
Z [
ni 1 |
|
2L 4 |
[ .
2.‘ = 0 ‘I = [Figure 512 Magnitude spectrum for
2 2 L =25 and n = 2048, illustrating the
Frequency occ;‘.ln-cncc of leakage.

\
We see that the spectrum, instead of being a line (a Dirac pulse at +wy), forms a lobe whose width
depends on the number of samples L that we are observing. Generally, the greater the value of L, the
better the spectral resolution. For instance, consider

z(n) = cos(win) + cos(wan)

with w1 >~ wo,

—_

X (&) = - [W(ejwm)) W (I @Hen)) L (@) (i (@mws))

\}

Only when |w; — wa| > %’T (which is half of the lobe width), it is possible to distinguish two separate
lobes.
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Example:
x(n) = cos(won) + cos(win) + cos(wan)

with wy = 0.27, wy = 0.227, and wy = 0.67

8 T
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£ 4] E
& | E
b &
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©

Figure 5.13 Magnftudc spectrum for the sihnal given by (5.4.8), as observed through a
rectangular window. I

If we increase the observation window, i.e., L, we can reduce the width of the main lobe of W (e7), but
the secondary lobes are not attenuated; that is, the leakage effect remains. To reduce these lobes and

minimize leakage, we can use an appropriate window function w(n)
For example, a commonly used window function is the Hann window (or Hanning window), which is a

raised cosine function:

1 2
[1—cos( Fn)} foro<n<L-1
wn) =4 2 L—1
0 otherwise,
or the Hamming window:
0.54 — 0.46 cos (2”) for0<n<I—1
w(n) = L—-1
0 otherwise.

For these window functions, the secondary lobes are more attenuated than with the rectangular window.
The reduction of the secondary lobes is obtained at the expense of an enlargement of the main lobe,

i.e., at the expense of resolution loss (which can be compensated by increasing L). Since

. 1 [T7 , ,
X (%) = X (W (e?@=)de

),
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if the spectrum of w(n) is narrow compared to that of z(n), the window function leads only to a negligible
lowpass effect (a smoothing effect) on the spectrum X (e’“). On the contrary, if w(n) has a large main
lobe (as in the case of small L), the spectrum of w(n) will mask the details of X (e/«).

Typically, the spectrum is evaluated with the DFT, which, for finite-length sequences of length L, coin-
cides with the DTFT estimated at L uniformly spaced points on the interval [0, 2x]:

DFT[#(n)] = &(e’)

w:%‘k

By extending &(n) with N — L zeros (i.e., by computing the DFT on N points), we can increase the
resolution in estimating X (¢7*) as much as we desire. Nevertheless, it's important to note that the DFT
provides samples of X (e/“), and increasing N does not result in a better estimation of X (/). The
frequency resolution in the estimation of X (e/“) depends only on the length of the observation window
L.

Window functions used in practice and their spectra

TABLE 8.1 WINDOW FUNCTIONS FOR FIR FILTER DESIGN

Name of Time-domain sequence,
window hin),0<n<M-1
2 |n— M; 1 ‘
Bartlett (tri | -
ett (triangular) 1 s
rtn 4rn
Black .42 - 0. : -
ackman 0.42 OSCosM_l—l«UUScosM_l
2rn
Hammi 0.54 — 0.46
mming cos ——
. 1 2n
Hanning & 3 (1 — cos = 1)

o[/ (-]

Kaiser ;[ (M«—l)]
0|« >
. L
sin[:ZJ-r(n—M2 1)/(M——1)]
Lanczos 2”( _M-l)/(M—l) L>0
2 2
l.n-—Mz_l 50{“{1 D<a<l
1 a—(l+a)(M-1)/2
Tuk g
e 2[1”“( d-a)M-1J2 ”)]
aM -1 < |n- _1|s"—"{~l
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Figure 8.5 Shapes of several window
functions.

Figure 86 Frequency responses of
Hanning window for (a) M = 31 and
(b) M =61.

Figure 8.7 Frequency responses for
Hamming window for (a) M = 31 and
(b) M =61, |
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TABLE 8.2 IMPORTANT FREQUENCY-DOMAIN
CHARACTERISTICS OF SOME WINDOW FUNCTIONS

Approximate
transition width of  Peak sidelobe
Type of window main lobe (dB)
Rectangular 4n /M -13
Bartlett 8n/M =27
Hanning 8n/M -32
Hamming 8n/M -43
Blackman 12n /M -58
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06.07 The Short-Time Fourier Transform - STFT

The Short-Time Fourier Transform (STFT) is a commonly used tool for the analysis, modification, and
synthesis of signals with time-varying characteristics. It is often employed in speech and audio process-
ing. Given an input signal x(n), data segments are extracted at regular intervals using a time-limited
window w(m). The signal segments or frames can be expressed as

xi(m) = w(m)x(m + IL); 0<m<N-1,

where N is the window length, [ is the frame index, L is the hop size, i.e., the spacing in samples
between two consecutive frames, with L < N in general. Thus, two consecutive frames may overlap
over L — N samples. The index m is the local time index, i.e., an index relative to the start of the sliding
window, while the 'global’ time index of z;(m) is

n=m-+I[L.

For each signal frame, the discrete Fourier transform is computed as follows:

N-1 .
= Z w(m)z(m 4 IL)e I E "k,
m=0

where K is the DFT size, with K > N (performing the DFT on a larger number of points than the window
size can enhance spectrum visualization or account for processing at a later stage). The STFT X (k,1)
characterizes the local time-frequency behavior of the signal around time /L and bin k. For a continuous
sampling rate Fy, the discrete indexes correspond to the continuous time [L/Fs and frequency kFs/K.

The STFT can be thought of as the spectral representation of a time slice of the input signal. By inter-
preting X (k, 1) as a function of the frequency k for each value of the time index [, the STFT corresponds
to a series of time-localized spectra. Alternatively, we can view the STFT as a function of time for each
frequency. Interpreting X (k, 1) as a time series that is a function of [ for each bin &, the STFT then corre-
sponds to a filter bank that decomposes the input signal into subbands (with one subband for each bin).
We will delve into filter banks later in the course. In any case, these two interpretations are depicted
with respect to the time-frequency plane in the following figure.
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Fig.12.1 Interpretations of the short-time Fourier transform
as a series of time-localized spectra (vertical) and as a bank
of bandpass filters (horizontal)

(Figure taken from Benesty, Jacob, M. Mohan Sondhi, and Yiteng Huang, eds. Springer handbook of
speech processing. Berlin: Springer, 2008.)

Note that we can increase the spectral resolution by extending the length of the window N, but this
leads to lower resolution in time. Conversely, we can enhance time resolution by reducing the length of
the window N, but it results in lower resolution in frequency. Therefore, a compromise must be reached
between the two requirements of achieving high time resolution or high frequency resolution.

The STFT is an analysis tool: it provides a representation of the signal and can reveal information about
the signal. Very often, the squared magnitude of the STFT, | X (k,1)|? is visually represented using
an image called a spectrogram. The X-axis of the spectrogram corresponds to time, and the Y-axis
corresponds to frequency, with | X (k,1)|? depicted using gray levels or false colors:

8000
7000
6000

5000

4000

Frequency, Hz

3000

2000

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time, sec
Figure 2.16 Spectrogram of English word “hello™

(Figure taken from lan Vince McLoughlin, “Speech and Audio Processing”- Cambridge Univesity Press,
2016)
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Spectrogram of the word "manta” (Figure taken from Wikipedia)

The STFT allows for useful modifications of the signal, some guided by the information captured by
the STFT itself. This includes techniques such as (i) speech enhancement, which aims to improve the
signal-to-noise ratio or the intelligibility of the speech signal; (ii) time-scale modification, which can be
applied to alter the duration of a speech or audio signal without changing its character (i.e., the pitch),
such as playing the signal faster or slower; (iii) pitch modification that can be employed to change
the pitch without altering the time scale. In these scenarios, the STFT of the input signal is modified
to achieve the desired effect. To generate the modified signal, an appropriate synthesis operation is
needed. Ideally, such a synthesis operation should perfectly reconstruct the original signal if no STFT-
domain modification is carried out. A synthesis procedure based on this perfect reconstruction property
is described in the following.

The reconstruction operation is essentially the reverse of the analysis operation. First, the inverse
Discrete Fourier Transform (IDFT) of each local spectrum is computed. Then, the resulting signal frames
are aggregated to synthesize the signal. If the DFT size is sufficiently large (K > N), the IDFT simply
returns the windowed signal segment:

#1(m) = IDFT{X (k,1)} = w(m)x(m+1IL), 0<m<N-1
considering the local time m. In the global time n, considering m = n — IL we have
Zin—IL)=w(n—I1L)x(n) IL<n<IL+N-1

The output signal reconstruction can then be obtained by an overlap-add operation, possibly adopting
a synthesis window. Denoting v(n) as the synthesis window, the overlap-add reconstruction is given by

#(n) => w(n—1L)&(n—IL) = wv(n—IL)w(n — IL)z(n)
l l
To obtain the output signal #(n), each frame generated by the IDFT is weighted by the synthesis window
v(m) and added to the neighboring windows in the parts that overlap in time. Since z(n) is not a function
of I, we have

#(n) =x(n) > wv(n—IL)w(n—IL).

l
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Perfect reconstruction is achieved if the analysis and synthesis windows satisfy the constraint

Zv(n —IlDwn—1IL)=1

l

In many cases, v(n) is not specified, and the equivalent synthesis window is a rectangular window or
length N. Then, the constraint becomes simply

Zw(n—ll;) =1

l

Several perfect reconstruction windows that satisfy this condition have been studied in the literature.
For example, the rectangular or the triangular windows, and the Blackman-Harris family, which includes
the Hann and Hamming windows. These are also referred to as windows with the overlap-add property
and will be denoted by wpr(n) in the following. It is worth noting that any window function satisfies the
overlap-add property when L = 1; for L = N, the only window that has the overlap-add property is a
rectangular window of length N; for L > N, there are time gaps between successive frames and no
window can have the overlap-add property.

There are several methods to design analysis and synthesis windows that satisfy

Zv(n —lL)yw(n —1IL) =1.

l

The simplest and most common approach is that of considering

v(m) = w(m) = \/wpr(n).

Another approach involves using a perfect reconstruction window wpg(m) and an arbitrary window
b(m), which is strictly nonzero over the time support of wpr(m). In this case, b(m) is employed as the
analysis window, and

is used as the synthesis window.

The following figure illustrates the operations involved in the analysis, processing, and synthesis using
the STFT and the overlap-add method:
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(Figure taken from lan Vince McLoughlin, “Speech and Audio Processing”- Cambridge Univesity Press,
2016)
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06.08 The Discrete Cosine Transform - DCT

The DFT is not the only transform that requires only multiplications and additions for its computation.
Let us consider first the expressions of the direct and inverse DFTs:

N-1 )
X(k)= z(n)e I Tk
n=0
1= .
x(n) = X (k)e? Nk
k=0
These expressions can also be written as
N-1
X(k) =)  a(n)f(n, k)
n=0
N-1
z(n) = )  X(k)g(n, k)
k=0

where for the DFT it is

By choosing different sequences f(n, k) and g(n, k), we obtain different transforms that still require only
additions and multiplications. Obviously, in order to have a pair of reciprocal transforms, g(n, k) and
f(n, k) must be linked in some way.

We have already discussed the matrix representation of the DFT If we define:

X(0) z(0)
X
x_| YO | e
X(N 1) (N —1)
we have
X=F-x and x=G-X
where -
f(ﬂ ) f170 f(N—l,O)
P f(0, f(,1 f(N—l,l)
fOON-1) f(IL,N—-1) ... f(N—1,N—1)

(because we consider f(n, k) and we sum on n),

9(0,0) 9(0,1) . g(0,N —1)
G- 9(1.» 0) 9(1.» . g, N -1
g(N;LO) g(N;l,l) g(N—ll,N—l)
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(because we consider g(n, k) and we sum on k).
The two transforms are reciprocal if and only if

F!'=aG.

In the field of data compression, many different transforms of this family are considered. All these
transforms differ in the choice of the sequences f(n, k) and g(n, k). With these transforms, we exploit
a property of natural signals (and sequences): natural signals tend to concentrate most of their energy
at low frequencies. Given a natural sequence (i.e., a sequence obtained by sampling a natural signal),
we can compress this sequence (i.e., we can code this sequence with a reduced number of bits) by
considering the DFT of the sequence and coding the low frequencies with an adequate number of bits
while the other frequencies are coded with a reduced number of bits.

The DCT is a real transform for real sequences (i.e., for the DCT f(n, k) and g(n, k) are real) which
offers two significant characteristics:

* it obtains a good compression of the energy in a few terms,
+ it has fast computation algorithms (similar to the FFT).

In reality there are eight cosine transform. Here we will study the DCT type 2 transform, which is the
most used in practice both for image and audio compression (it is used in JPEG, MPEG, H.261, in MP3,
i.e., in MPEG layer 3 audio coding).

The DCT is related to the DFT. Indeed, here we derive it from the DFT.

Given a sequence z(n) of finite length NV, we have seen that the DFT transform the sequence z,(n),
obtained from the periodic repetition of (n) with period N. Also in the DCT a periodic extension of the
sequence x(n) is considered, but it is an even-order periodic extension. l.e.,

The sequence transformed by the DCT is more regular: we do not have those relevant steps as in the
DFT. Thus, this transformation is able to compact the energy towards the low frequencies better than
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the DFT and is more suitable for data compression. In the DCT (of type 2), the periodic repetition with
period 2N of the sequence

(n) = x(n) for0<n<N-1
Y seN—1-n) for N <n<2N-—1

is considered.
Let us compute the DFT of this sequence:

2N—-1 N—-1 2N—-1
Y(k)= > ym)Ws=> x(n Z (2N —1 —n)Wik
n=0 n=0

In the second sum, consider the following variables change m = 2N —1 —n, andthusn =2N —1—m
Forn= N,itism =N —1,andforn =2N —1,itism = 0.

N—1
2N 1-m)k _
Y(k) =Y a(n Z )
n=0
N—1 ( :
{m _ n} _ 1-n)k / B
/ = ( +3 )k
—k/2 n
=Wy [Z z(n) ot Z 1 =
n=0
- (n+1)k (n+1)k
—k/2 n+3 —(n+3
= W2N/ Z z(n) {W2N AWy 7 }
n=0

(n+1)k (n+1)k 521 (n _j2m(n 2m 1 m(2n + 1)k
Won 2" + Wy = IR (H3k) | IR 3R) = 9 cog {2]\]( +)k} = 2cos [2N

Thus,

—k/2 m(2n + 1)k
2 E RS
Y(k ) cos [ SN

with0 <k <2N — 1.
By definition, the Type 2 DCT is given by

Clk) =2 ]g 2(n) cos [W]

with 0 <k < N —1 (for N < k < 2N — 1 we find the same samples).

Since Y (k) = WQJ\’f/QC’(k:) we have C(k) = W2'“]<,2Y(k). From this relation, we see that we can compute
the samples C(k) by building the sequence y(n) and by computing its FFT. This is a fast algorithm, but
for computing a real transform of a real sequence, it requires complex computations. There exist other
algorithms for the fast computation of the DCT (similar to FFT) that require only real operations.

IDCT
For computing the inverse DCT, we exploit the IDFT of Y (k). Let us consider
2N—1 2N—-1
—nk —nk —nk —nk
yn 2NZ WQN { +ZY +Y +k%:+1 }
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In the last term, let us consider the change of variables I = 2N — k. Fork =N +1,itisi = N — 1. For
k=2N—-1,1=1.

N-1 N_1

1 - B o

v =5 {Y(O) + DY RWogs + YV (NWoih + 37 V(N — )Y l>}
k=1 =1

Since we assume y(n) to be real, for the properties of conjugate symmetry of Y (k)
Y(2N — k) = Y*(k)

and the two sums are not independent.

2N -1
Y(0) = ) y(n) is the mean value of the real signal.
n=0
2N -1
Y(N)= Y y(n)Wy'" = 0 because Wi = +1 when n is even, and WA = —1 when n is odd. The
n=0

sequence y(n) is symmetric and for each y(n) with n even, there is an identical term with n odd.
Thus,

N-—-1
yn) = 5 {Y(O) Y YW+ Y*(k)(Wﬁk)*J} =
k=1

N-—-1
- % {Y(O) + ; 2 Re [Y(k)Wzﬁ’“J}

Taking the first N terms we have
1 N—-1
But Y (k) = C(k)W,,/?, thus

N-1
2(n) = % {0(0) + 3" 20(k) Re [Wm("*%)’“}}
and the IDCT is Nt
v(n) = 5 {C(o) + 3 20(0 cos | TR }

k=1
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