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Abstract

Many research questions in fields such as personalized medicine,
drug screens or systems biology depend on obtaining consistent
and quantitatively accurate proteomics data from many samples.
SWATH-MS is a specific variant of data-independent acquisition
(DIA) methods and is emerging as a technology that combines deep
proteome coverage capabilities with quantitative consistency and
accuracy. In a SWATH-MS measurement, all ionized peptides of a
given sample that fall within a specified mass range are frag-
mented in a systematic and unbiased fashion using rather large
precursor isolation windows. To analyse SWATH-MS data, a strat-
egy based on peptide-centric scoring has been established, which
typically requires prior knowledge about the chromatographic and
mass spectrometric behaviour of peptides of interest in the form
of spectral libraries and peptide query parameters. This tutorial
provides guidelines on how to set up and plan a SWATH-MS experi-
ment, how to perform the mass spectrometric measurement and
how to analyse SWATH-MS data using peptide-centric scoring.
Furthermore, concepts on how to improve SWATH-MS data acqui-
sition, potential trade-offs of parameter settings and alternative
data analysis strategies are discussed.
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Introduction

Over the last decades, liquid chromatography coupled to tandem

mass spectrometry (LC-MS/MS) has become the technology of

choice for the high-throughput characterization of proteins and

proteomes (Aebersold & Mann, 2016). Recent developments in the

field have moved beyond enumerating the proteins, peptides or

post-translational modifications detected in one or few samples

towards delivering high quality and consistent quantification in

large-scale projects that comprise 100s of samples. Especially in

areas such as personalized medicine, biomarker research, drug

screens, genetic association studies or systems biology, large

numbers of individuals, conditions and perturbations need to be

investigated to draw meaningful biological conclusions. For this

purpose, the large data matrices generated must be as reproducible,

complete and accurate as possible. In order to address these needs,

several different proteomic strategies have been developed over the

last years.

An emerging strategy, and the focus of this tutorial, is sequen-

tial window acquisition of all theoretical mass spectra (SWATH-

MS), which was described by Gillet et al (2012). For a detailed

introduction into the history, the basic principles as well as the

general advantages and limitations of SWATH-MS (also summa-

rized in Table 1), we refer to the Appendix. Briefly, for a

SWATH-MS measurement, typically non-labelled protein samples

are digested with trypsin and the resulting peptides are analysed

by liquid chromatography coupled to a tandem mass spectrometer

operating in the so-called data-independent acquisition (DIA)

mode. In this mode, all ionized compounds of a given sample

that fall within a specified mass range are fragmented in a

systematic and unbiased fashion. Figure 1A–C shows the DIA

scheme described as the initial implementation of SWATH-MS

(Gillet et al, 2012), using 32 consecutive, slightly overlapping

precursor isolation windows, with a width of 25 m/z each.

Depending on sample complexity, this acquisition scheme will

lead to the co-fragmentation of many co-eluting peptides concur-

rently selected in the precursor ion window and ultimately to

highly multiplexed and complex fragment ion spectra (Fig 1D).

To deal with this complexity, Gillet et al proposed a novel data

analysis strategy based on peptide-centric scoring, which relies on

querying chromatographic and mass spectrometric coordinates of

the proteins and peptides of interest in form of so-called peptide

query parameters (PQPs). PQPs are typically derived from previ-

ously generated spectral libraries.

In addition to the described SWATH-MS method, a wealth of

other DIA schemes and alternative data analysis strategies has been
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established. For an overview, see Appendix Fig S1, as well as recent

reviews (Chapman et al, 2014; Bilbao et al, 2015). While the term

“SWATH” became a registered trademark of SCIEX in the context of

Q-TOF instrumentation, the company Biognosys trademarked the

name “Hyper Reaction Monitoring” (HRM) for an analogous mode

of data acquisition on Orbitrap instrumentation (Box 1). Throughout

this tutorial, we only use the term “SWATH-MS”, independently

from the underlying instrument type, and the generic term “DIA”

when referring to the breadth of all data-independent acquisition

strategies.

When is SWATH-MS the method of choice for my proteomic study?

The major advantage of SWATH-MS is that it supports quantitative

analyses of peptides covering 1,000s of proteins with a high quanti-

tative consistency and accuracy. It is ideally suited for projects that

entail a large number of samples and that require accurate and

reproducible quantification for the major fraction of the expressed

proteome or peptidome in each sample. Typical projects that require

exactly these properties include for example biomarker studies (Liu

et al, 2014; Muntel et al, 2015; Kulkarni et al, 2016; Ortea et al,

2016), genetic association studies (Liu et al, 2015; Okada et al,

2016; Williams et al, 2016), clinical drug/perturbation studies

(preprint: Litichevskiy et al, 2018; Tan et al, 2017; Keam et al,

2018) or exploratory basic research (Collins et al, 2013; Lambert

et al, 2013; Parker et al, 2015a; Schubert et al, 2015b). SWATH-MS

is also particularly well suited for studies that need fast analyses

using LC gradient lengths below 60 min (Vowinckel et al, 2018).

Proteome coverages of ~50% of the MS-detectable proteome have

been achieved in complex mammalian samples in a single-shot anal-

ysis (Bruderer et al, 2017; Kelstrup et al, 2018). A current drawback

Table 1. Advantages and limitations of SWATH-MS in comparison with data-dependent (DDA) and targeted (SRM, PRM) proteomics.

*Least optimal performance.
**Medium performance.
***Best performance.

▸Figure 1. Principle of sequentially windowed data-independent acquisition in SWATH-MS.
(A) SWATH-MS measurements are performed on fast scanning hybrid mass spectrometers, typically employing a quadrupole as first mass analyser and a TOF or Orbitrap as
secondmass analyser. In SWATH-MSmode, typically a single precursor ion (MS1) spectrum is recorded, followed by a series of fragment ion (MS2) spectra with wide precursor
isolation windows (for example 25 m/z). Through repeated cycling of consecutive precursor isolation windows over a defined mass range, a comprehensive data set is
recorded, which includes continuous information on all detectable fragment and precursor ions. Hence, extracted ion chromatograms can be generated on MS2 as well as
MS1 level. For the analysis of SWATH-MS data, a peptide-centric scoring strategy can be employed, which requires prior knowledge about the chromatographic and mass
spectrometric behaviour of all queried peptides in form of peptide query parameters (PQPs). (B) The SWATH-MS data acquisition scheme described by Gillet et al (2012) for a
Q-TOF mass spectrometer uses 32MS2 scans with defined increments of 25 m/z, starting at 400 m/z and ending at 1,200 m/z. One full MS1 scan is recorded at the beginning.
By applying an acquisition time of 100 ms per scan, a total cycle time of ~3.3 s is achieved. (C) TheMS1 full scan detects all peptide precursors eluting at a given time point. For
example, in themass range from 925 to 950 m/z, three co-eluting peptide species are detected (green, red and blue). (D) The correspondingMS2 scan with a precursor isolation
window of 925–950 m/z represents a mixed MS2 spectrum with fragments of all three peptide species.
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Figure 1.
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of SWATH-MS compared to the classical targeted proteomic

approaches (SRM or PRM) is that peptide quantification with

SWATH-MS is still three- to 10-fold less sensitive (Gillet et al, 2012;

Liu et al, 2013; Schmidlin et al, 2016). Hence, targeted data acquisi-

tion remains the better option for projects that involve quan-

tification of particularly low-abundant proteins and peptides with

maximal accuracy. A further drawback of SWATH-MS in compar-

ison with DDA-based methods is the required upfront effort on

experimental or in silico spectral library and PQP generation and

optimization (Table 1).

In the context of very large-scale quantitative proteomic analy-

ses, two alternative mass spectrometric strategies are currently used

successfully in the field in addition to SWATH-MS. The first is the

classical label-free DDA proteomics workflow, where quantification

is based on precursor ion (MS1) intensities or spectral counts, and

which can possibly be combined with peptide fractionation tech-

niques to improve proteome coverage (Lawrence et al, 2015; Geyer

et al, 2016; Frejno et al, 2017). An important improvement for the

application of MS1 quantification to DDA data sets was the develop-

ment of analysis tools that allow the transfer of peptide identifi-

cations between samples and thereby improve the completeness of

the quantitative data matrix (Prakash et al, 2006; Mueller et al,

2007; Cox et al, 2014). However, even when using these tools, the

number of missing values in DDA data sets still remains higher than

for data acquired in SWATH-MS mode, especially for peptides and

proteins in the low concentration range (Bruderer et al, 2015, 2017;

Kelstrup et al, 2018). While direct comparisons of an optimal label-

free MS1/DDA workflow versus a SWATH-MS workflow are chal-

lenging, several papers have demonstrated that when the same

sample is injected under the same conditions using the same mass

Box 1: Definitions of frequently used terms in the context of SWATH-MS

Term Definition

DIA Data-Independent Acquisition (DIA)—here, we use DIA as an umbrella term for mass spectrometric acquisition methods that
continuously acquire fragment ion (MS2) spectra in an unbiased fashion, without requiring the detection of peptide
precursor ions in an MS1 survey scan (as in DDA) nor prior knowledge about peptide precursor m/z values (as in SRM and
PRM). Specific acquisition methods of the DIA family include for example SWATH-MS, Shotgun-CID, MSE, XDIA, MSX, AIF FT-
ARM and others

SWATH-MS Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH-MS)—represents a specific variant of DIA,
performed on hybrid full-scan instruments (preferably Q-TOF and Q-Orbitrap). The term SWATH is a registered trademark of
SCIEX. In SWATH-MS data acquisition, successive pre-defined ranges of precursor m/z values are isolated and subjected to co-
fragmentation (Gillet et al, 2012). Peptide-centric scoring of SWATH-MS data can be performed for example by using prior
knowledge in form of a spectral library

HRM Hyper Reaction Monitoring (HRM)—Synonym for SWATH-MS. The term has been implemented in the context of data acquisition
on Orbitrap mass analysers and is a registered trademark of Biognosys

Peptide-centric
scoring

A data query strategy which starts with a pre-defined list of target peptides and tests whether those peptides are detectable in
the data with a certain confidence. It can be applied to individual MS2 spectra or to extracted ion chromatograms (XICs). For a
peptide-centric scoring analysis, peptide query parameters need to be readily available. Typically, data acquired in SRM or PRM
mode are analysed by peptide-centric scoring, but also data acquired by DIA methods, such as SWATH-MS, can be analysed in this
way. An equivalent term also used in the literature is “targeted data extraction”

Spectrum-centric
scoring

A data analysis type which aims at finding the peptide sequence(s) from a user-specified proteome that explain(s) a given MS2
spectrum best. It is typically applied in the context of discovery-driven proteomics with data acquired by data-dependent
acquisition (DDA), but also data acquired by different DIA methods can be analysed in this way.

Peptide query
parameters
(PQPs)

Compendium of parameters required for peptide identification by peptide-centric scoring. PQPs are stored in a table format and
include (i) optimal (proteotypic) peptides to target for a given protein, (ii) chromatographic elution times of those peptides on the
applied chromatography setup, (iii) most intense fragment ions (typically four to six) generated under the applied fragmentation
conditions, (iv) charge state(s) of precursors and fragment ions and (v) relative ion intensity of all selected fragments. PQPs can be
derived from previous discovery-driven experiments, from which all peptide identifications are summarized in form of a spectral
library

(Targeted)
Peptide assay

Synonym for peptide query parameters (PQPs). Term mainly used in the context of SRM, where different tier levels (1–3) of
analytical assay validation have been defined (Carr et al, 2014)

Spectral library Compendium of MS2 spectra confidently assigned to a specific peptide sequence, typically acquired by discovery-driven
proteomics using data-dependent acquisition. In case, several MS2 spectra refer to the same peptide sequence either the best
scoring spectrum or an average consensus spectrum gets reported. Peptide retention time information can also be stored in a
spectral library file and normalized retention times can be generated through retention time re-alignment using reference
peptides. Alternatively, spectral libraries can be generated from deconvoluted pseudo-MS/MS spectra directly from DIA data (DIA-
Umpire; Tsou et al, 2015)

Transition Pair of a precursor and one corresponding fragment ion m/z value. Mainly used in the context of SRM

Targeted
proteomics

Umbrella term for mass spectrometric methods that aim at quantifying a list of pre-defined proteins, peptides or PTM-peptides of
interest. In the two classical targeted proteomic approaches, SRM and PRM, the data acquisition itself is performed in a targeted
fashion. However, also data acquired “untargeted”, using for example DIA measurements, can be analysed using a peptide-centric
data analysis strategy, which classifies SWATH-MS as targeted proteomic approaches
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spectrometer operated once in DDA and once in SWATH-MS mode,

SWATH-MS outperforms DDA in terms of detectable peptides

and associated proteins as well as measurement reproducibility

(Bruderer et al, 2015; Kelstrup et al, 2018).

A second popular strategy for large-scale quantitative proteomics

relies on isobaric labelling, using, for example, tandem mass tags

(TMT) (Thompson et al, 2003) or isobaric tags for relative and abso-

lute quantitation (iTRAQ) (Unwin et al, 2005). Frequently, isobaric

labelling is followed by an extensive peptide fractionation proce-

dure. The resulting fractions are then analysed individually by DDA

mass spectrometry (Chick et al, 2016; Roumeliotis et al, 2017). With

state-of-the-art TMT reagents 10 (McAlister et al, 2012) or 11,

samples can be mixed and analysed simultaneously, leading to

minimal sample preparation biases and highly consistent and

complete data matrices within a set of multiplexed samples. While

early implementations of this method suffered from quantitative

ratio compression due to interferences in reporter ions from co-

eluting and co-fragmenting peptides, this has been addressed to

some extent by using optimized data acquisition and analysis meth-

ods (Ting et al, 2011; Savitski et al, 2013; McAlister et al, 2014;

Ahrne et al, 2016; O’Brien et al, 2018; Sonnett et al, 2018). Label-

ling samples with isobaric tags can be an optimal workflow for

comparative analysis of medium-sized projects; however, if 100s of

samples need to be analysed, the issues of data incompleteness and

batch effects can become apparent again across sets of multiplexed

samples. To date, studies that directly compare isobaric tagging with

SWATH-MS are missing.

The overall intent of this tutorial is to guide readers towards

performing their own SWATH-MS measurements. We give guideli-

nes on how to set up and plan a SWATH-MS experiment, how

to perform the mass spectrometric measurement using data-

independent acquisition and how to analyse SWATH-MS data using

peptide-centric scoring. Furthermore, concepts on how to improve

SWATH-MS data acquisition, potential trade-offs of parameter

settings and alternative data analysis strategies are discussed.

Setting up and planning a SWATH-MS experiment

If a SWATH-MS study progresses towards the analysis of 100s

and eventually 1,000s of samples, particular attention should be

paid to the feasibility of producing comparable data of good

quality, both longitudinally on a single instrument, as well as

across multiple instruments of the same type, and conceivably

across different instrument platforms. Encouraging progress has

been made demonstrating the comparability of SWATH-MS data

generated between laboratories using standard samples (Collins

et al, 2017).

Cumulative instrument contamination during a measurement

series, caused for example by contaminants such as lipids, poly-

mers or detergents, is a major concern and extra care must be

taken to produce samples that are mostly devoid of such contami-

nants. Contaminants are an especially important issue in the

context of SWATH-MS, because we observed faster and more

severe instrument performance loss (such as charging effects and

sensitivity issues) in SWATH-MS mode than in DDA or PRM

mode on the same instrument. One possible explanation for this

observation is that the instrument operated in SWATH-MS mode

has a substantially higher ion flux in the fragment ion scans

(which compose > 90% of the data acquisition time), which in

turn means that also more sample contaminants and impurities

might enter and contaminate the instrument, leading to a faster

performance loss. Therefore, monitoring the performance of the

mass spectrometer and maintaining it at an acceptable level are

an important prerequisite. Recent efforts have been undertaken to

develop software tools that enable systematic tracking of instru-

ment performance and that can be applied also to SWATH-MS

data (Rudnick et al, 2010; Wang et al, 2014; Bereman et al, 2016;

Chiva et al, 2018).

When planning a label-free large-scale proteomic experiment,

statistical considerations for the experimental design, such as

group size, biological and technical variability or achievable sensi-

tivity and selectivity, should be taken into account (Krzywinski &

Altman, 2014b). We suggest that particular attention should be

paid to proper randomization and blocking (Krzywinski & Altman,

2014a) of a sufficient number of biological and technical sample

replicates (Blainey et al, 2014) to ensure optimal statistical power

(Krzywinski & Altman, 2013) during the downstream data analysis

process.

Prior knowledge required for peptide-centric scoring and

spectral libraries

The underlying concept behind SWATH-MS is that empirically

derived prior knowledge of the mass spectrometric and chromato-

graphic behaviour of peptides of interest can be used to selectively

extract peptide-specific information from highly convoluted SWATH

data in a targeted fashion (Gillet et al, 2012). This required prior

knowledge is referred to as “peptide query parameters” (PQPs). It is

worth noting that “prior” in this context indicates that PQPs should

be available as a prerequisite before data analysis is undertaken,

while the actual acquisition of the SWATH-MS data itself does not

depend on the availability of PQPs.

What kind of information do PQPs contain? In detail, the

information includes (i) the peptide sequence(s) to monitor for a

given protein, (ii) the dominant precursor ion m/z value(s) of the

peptide(s) and thus the charge state distribution, (iii) the four to six

most intense fragment ion m/z values for the peptide(s) under

the applied fragmentation conditions, (iv) information about the

expected fragmentation pattern under the applied conditions, i.e.

the relative fragment ion intensities, and v) the expected retention

time of the peptide(s) and thus the associated fragment ion signals,

ideally normalized to a reference. PQPs can commonly be obtained

from a spectral library [or potentially chromatogram library

(Sharma et al, 2014)] and are stored in a table format as shown in

Fig 2. Computational pipelines integrating all steps of spectral

library generation and PQP extraction have been developed that

simplify and standardize this process and are available for example

within Skyline (Egertson et al, 2015), PeakView (SCIEX), Spectro-

naut Pulsar (further referred to as Spectronaut) (Bruderer et al,

2015) (Biognosys) and the Trans-Proteomic Pipeline (TPP) (Deutsch

et al, 2010). Further tools to prepare and convert [specL (Panse

et al, 2015), Fraggle/Tramler/Franklin (Teleman et al, 2017)] or

extend [SwathXtend (Wu et al, 2016)] sets of peptide query para-

meters are also available. Particularly large spectral libraries can be

optimized and constrained by using MSPLIT-DIA (Wang et al,

2015).
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For further details on how to create spectral libraries and PQPs

from DDA data, we refer to a recent protocol paper (Schubert et al,

2015a). In the following paragraphs, we will discuss the types and

sources of information that can be used to generate spectral libraries

from which PQPs can be extracted.

An alternative to acquiring DDA runs for spectral library genera-

tion represents spectrum-centric scoring of the DIA data. While such

algorithms have been proposed early in the development of DIA

acquisition schemes, recently developed algorithms such as DIA-

Umpire (Tsou et al, 2015), Group-DIA (Li et al, 2015) and

Spectronaut Pulsar (Biognosys) make specifically use of the

improved data quality of the latest generation instruments. Gener-

ally, these algorithms generate a cumulative spectral library of a

related set of samples and achieve similar coverage as DDA runs of

unfractionated samples.

Representative sample types for spectral library generation

Here, one has to choose between endogenous sources of peptides

from the samples of interest, synthetic analogues of those peptides

or recombinant full-length proteins (Fig 2). The majority of
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Figure 2. What are peptide query parameters (PQPs) and where do these parameters come from?
PQPs contain information about the chromatographic andmass spectrometric behaviour of a given peptide, as exemplified here for the peptide AAHTEDINACTLTTSPR. Various
different input sample types can be used for the purpose of PQP generation. Typically, those samples are analysed in initial DDA measurements, and the results are
summarized in the form of one or several spectral library files. From the spectral library file(s), the relevant PQPs are extracted by filtering the identified peptide coordinates
using the indicated criteria. PQPs contain information about: the underlying protein, peptide sequence, precursor m/z, fragment m/z, precursor and fragment charge,
fragment ion type, expected relative fragment ion intensities and normalized retention time (retention time relative to a set of reference peptides, iRT).

6 of 23 Molecular Systems Biology 14: e8126 | 2018 ª 2018 The Authors

Molecular Systems Biology A tutorial for SWATH-MS Christina Ludwig et al



SWATH-MS studies to date have used a side-by-side characterization

of the samples of interest by DDA analysis for generation of spectral

libraries. These libraries frequently include a sample fractionation

step prior to DDA analysis, which can be beneficial from a sensitiv-

ity perspective for post-acquisition peptide queries (Rosenberger

et al, 2014; Zi et al, 2014; Selevsek et al, 2015). This is because the

sensitivity and coverage of single-shot DDA analysis are frequently

lower than that of SWATH-MS data (Bruderer et al, 2015; Kelstrup

et al, 2018). Therefore, the SWATH-MS data would not be fully

covered by a “single shot” DDA spectral library generation strategy.

The strategy focusing on repeated DDA analysis of non-fractionated

samples is sometimes favoured because it is straightforward to

implement; however, primarily for library completeness and quality

reasons, other sources of peptides can be considered.

Chemically synthesized peptides have long been proposed as a

source of prior knowledge, in particular, with respect to the devel-

opment of SRM assays (Kuster et al, 2005; Picotti et al, 2010), and

large-scale efforts to synthesize and measure peptides for several

organisms on a proteome-wide scale have been reported (Picotti

et al, 2013; Schubert et al, 2013; Kusebauch et al, 2016; Zolg et al,

2017). This approach has several advantages: (i) all proteins can be

represented in the library, irrespective of whether they have been

previously observed, (ii) high-quality MS2 spectra and derived PQPs

can be generated, because the synthetic peptides can be analysed at

very high concentrations and represent ground truth, and (iii) the

error rate in the spectral library generated should be close to zero.

In some cases, the selection of which peptides to synthesize for a

given protein has been driven by prior empirical observation.

However, since there has been so far no species with absolute

complete proteome coverage by DDA methods, sets of proteotypic

peptides for each protein have also been computationally predicted

(Mallick et al, 2007). Since computational prediction methods have

turned out to be less reliable than expected (Searle et al, 2015),

empirical peptide selection is still preferred over computational

prediction. More recent efforts to create synthetic proteomes for

general purposes in proteomics have extended to a very large scale

(> 330,000 human peptides) by synthesizing much larger numbers

of peptides per protein and by also including PTMs and common

sequence variants (www.proteometools.org; Zolg et al, 2017). A

useful extension of this approach is to create full-length proteins by

recombinant methods or in vitro transcription/translation systems.

In this way, the most suitable peptides per protein for analysis can

be determined empirically (Stergachis et al, 2011; Matsumoto et al,

2017). While those large-scale synthetic peptide and protein MS

resources have not yet been fully exploited for SWATH-MS analysis,

it seems likely that they will be useful resources going forward.

Hybrid libraries consisting of endogenous samples and synthetic

peptides to increase coverage may also be an attractive option and

have proved useful in the case of an organism-scale library for

Mycobacterium tuberculosis (Schubert et al, 2015b).

Comprehensive versus sample-specific spectral libraries

A natural extension of the ideas discussed above is to attempt to

characterize peptides by DDA from all proteins in a given species to

generate a comprehensive “off the shelf”, species-specific library for

general use, obviating the need to generate experiment- or sample-

specific libraries. These libraries could include data from endogenous

samples and/or synthetic proteomes. Presently, such organism-scale

spectral libraries are publicly available for S. pyogenes (Karlsson

et al, 2012), S. cerevisiae (Picotti et al, 2013; Selevsek et al, 2015),

M. tuberculosis (Schubert et al, 2013, 2015b), H. sapiens

(Rosenberger et al, 2014; Kusebauch et al, 2016; Zolg et al, 2017),

phyllosphere-colonizing bacteria (M. exotorquens, P. syringae and

S. melonis) (Muller et al, 2016) and E. coli (Ludwig et al, in prepa-

ration). Further, the number of public repositories for various types

of MS data that could conceivably also be used as prior knowledge

in the analysis of SWATH-MS data continues to increase (Craig

et al, 2004; Martens et al, 2005; Deutsch et al, 2008; Picotti et al,

2008; Sharma et al, 2014; Whiteaker et al, 2014; Wilhelm et al,

2014; Zolg et al, 2017). These include SWATHAtlas (www.swatha

tlas.org), which focuses on SWATH-MS and provides spectral

libraries in formats directly compatible with most software tools for

peptide-centric analysis of SWATH-MS data.

An important consideration for the use of such public libraries

will be portability of information between instrument types and

between laboratories. For example, efforts have been made to evalu-

ate the effect of using DDA spectra generated on different instru-

ment types as prior knowledge (Toprak et al, 2014). Although the

best comparability is achieved when fragment ion spectra are gener-

ated on the same instrument platform, the data also indicated that

fragment ion spectra acquired from instruments using “beam type”

collision-induced dissociation (e.g. QqQ, QqTOF and Orbitrap oper-

ated in HCD mode) produce spectra that are sufficiently comparable

for their effective use as prior knowledge in peptide-centric analysis

(de Graaf et al, 2011; Zolg et al, 2017). The portability of chromato-

graphic information between laboratories has been advanced

through the use of normalized retention times (Norbeck et al, 2005)

such as indexed retention time (iRT) (Escher et al, 2012). The accu-

racy of such methods is generally tolerant to changes in gradient

length and column dimensions; however, larger errors will result

from changes in other factors that may significantly affect the

peptide elution order such as mobile/stationary phases or column

temperature. An inter-laboratory evaluation study recently showed

that an organism-scale spectral library could effectively be used to

analyse SWATH-MS data generated from 11 different laboratories

worldwide (Collins et al, 2017).

Another important issue to consider when working with very

large-scale spectral library resources and querying very high

numbers of peptides in many samples measured by SWATH-MS is

appropriate error rate control. In such analyses, it is common that a

significant fraction of queried peptides from the library are actually

not present in the samples of interest at a detectable level and, as

such, represent channels in which false positives may appear and

accumulate if many runs are analysed. If SWATH extraction results

are summarized at the inferred protein level, the error rate can be

further inflated by such false positives (Reiter et al, 2009; Rosen-

berger et al, 2017a). Therefore, it is important to control false discov-

ery rates at the protein level, rather or in addition to the peptide level

and to compute false discovery rates globally for a complete experi-

ment rather than at the per-file level. Rosenberger et al (2017a)

recently established statistical concepts derived from discovery

proteomics that can be applied to appropriately control the error rate

of detected peptides and inferred proteins in SWATH-MS.

In conclusion, using organism-scale “off the shelf” libraries

might be convenient from the perspective of reducing the effort of

creating project specific libraries, but their use may eventually result
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in some loss of statistical power due to the additional multiple test-

ing burden and necessary correction that comes from querying such

a large number of peptides. Alternatively, researchers need not

necessarily query all of the peptides in a spectral library, but can

also focus on just a subset of proteins that are of interest for their

specific biological question.

Which and how many peptides should be queried for?—From targeted

to discovery uses of SWATH-MS

In the initial implementation of SWATH-MS, the primary goal was

to use peptide-centric scoring based on prior knowledge combined

with sequentially windowed data-independent acquisition (Gillet

et al, 2012) to develop an approach that generates data resembling

those from classical targeted proteomics approaches such as SRM

but at a largely extended scale of analytes. Hence, a discrete set of

peptides from proteins related to a particular biological question

was targeted for quantification. However, it was soon realized that

SWATH-MS data sets offer the opportunity to characterize complex

samples in a more comprehensive manner by extracting and scoring

ion chromatograms for a maximum number of peptides, by using

sample-specific or combined libraries. Over time, the number of

peptides that were queried in comprehensive SWATH-MS studies

has grown significantly to the point that, with the appropriate error-

rate control (Rosenberger et al, 2017a), it is now possible and

reasonable to query for tens to hundreds of thousands of peptides

derived from organism-scale spectral libraries in a fashion that

resembles discovery-based proteomics much more than targeted

proteomics in its scope (Bruderer et al, 2017).

The choice of whether to choose a targeted approach and extract

peptides for only a smaller set of proteins of interest, or whether to

extract data for all peptides contained in a large-scale spectral

library, will depend on the specificity of the hypothesis that under-

lies the targeted approach, i.e. how useful the set of proteins being

measured is for answering a given biological question. If a biological

hypothesis can be addressed with a selected set of target proteins,

then increasing the number of queries by including peptides from a

large-scale library will increase the multiple testing burden. If the

hypothesis cannot be addressed by few selected proteins and

requires a data-driven investigation, such as exemplified by classifi-

cation problems, then extracting a maximum number of peptides

from a large-scale library will likely provide the most informative

result, despite the increased number of statistical tests that need to

be performed.

The possibility that specific peptide queries might result in false-

positive signals arising from contaminating peptide species that are

similar to the target peptide in their mass spectrometric and chro-

matographic parameter space has been a concern of peptide-centric

scoring. This might be the case for peptides with a sequence that is

similar to that of the target peptide, or for peptides for which the

precursor mass difference between target and mismatch can be

explained by a modification of the common backbone sequence. A

recent study comparing standard database searching of DDA data

with open modification searches of the same data found that this

scenario occurs rather infrequently (Kong et al, 2017). The open

modification search assigned a given fragment ion spectrum to a

modified peptide sequence rather than to the unmodified peptide

sequence originally assigned by the standard database search

only for ca. 1% of the identified peptides. This suggests that

false-positive identifications in SWATH-MS data due to unantici-

pated modified peptides might also occur rather infrequently, but

nevertheless, close attention in ongoing algorithmic development

should be paid to the likelihood of matching-related peptide

species (Rost et al, 2012). Data analysis methods have now been

developed that address the problem of related “peptidoforms” in

SWATH datasets (Rosenberger et al, 2017b).

Overall, the high degree of fragment ion data completeness, both

in the mass and chromatographic dimension, constitutes a main

strength of data acquired by SWATH-MS and related DIA

approaches, as it offers the opportunity of applying diverse and flex-

ible data analysis strategies. It also equally supports different experi-

mental strategies, including targeted quantification of selected

analytes and discovery-driven studies of all detectable analytes,

provided that the types of possible scoring errors are recognized and

appropriately controlled.

Performing a SWATH-MS measurement

Setting up liquid chromatography for SWATH-MS

The LC setup used for SWATH-MS measurements does not differ

from that used for targeted or DDA setups. Typically, peptide

mixtures of 0.5–2 lg total peptide mass are separated by injection

onto a nano-HPLC system equipped with a 15–50-cm-long column

packed with reversed phase particles (e.g. 3 or 1.8 lm C18 mate-

rial), operated at 300 nl/min flow rate and eluted with a solvent

gradient of increasing organic composition. Note that ~5 ll/min

microflow HPLC systems are also compatible with SWATH-MS,

though at the cost of a three- to fivefold loss of sensitivity that can

be compensated by injecting three to five times more peptide

amount on column (Bruderer et al, 2017; Vowinckel et al, 2018).

Peptide-centric analysis of SWATH-MS data depends on a suffi-

cient number of data points (typically in the range of 10) collected

over the elution profile of a peptide peak to allow the accurate

reconstruction of the respective chromatographic peak (Fig 3C). The

2–4 s cycle time required by the current windowed SWATH-MS

methods to cycle through the precursor isolation range, together

with the required number of measurements over the peak indicates

that the average chromatographic peak width in SWATH-MS

measurements should not fall below 20–40 s. This is in contrast to

single-window DIA methods, which only cycle between a single

MS1 and a single MS2 scan and which can accommodate the 2–3 s-

wide chromatographic peaks produced by higher performance LC

setups [for example AIF (Geiger et al, 2010) or MSE (Silva et al,

2006)]. As MS instruments improve in scanning speed, narrower

chromatographic peaks may increasingly become compatible with

windowed SWATH-MS methods.

Interestingly, SWATH-MS copes well with shortening of the

HPLC gradient length. While the number of acquired MS2 spectra

and the number of peptides identified decrease proportionally with

the gradient length in DDA mode, the deterministic nature of the

MS2 sampling in SWATH-MS mode attenuates the attrition in

number of peptides identified for shorter separation gradients

(Fig 3A). The loss in the number of peptide identifications at

shorter gradients in SWATH-MS mode seems, therefore, to be

related to the increase in precursor co-elution and ensuing potential

ion suppression and co-fragmentation effects rather than to
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undersampling. As MS instrumentation continues to improve, it is

likely that SWATH-MS will reach higher selectivity and identifi-

cation rates under short gradient regimens compatible with rela-

tively high sample throughput.

In summary, we advise a 2-h nano-HPLC gradient for the acquisi-

tion of high-quality spectral libraries (Schubert et al, 2015a), while

the use of shorter nano- (or micro-) HPLC gradients to acquire

SWATH-MS data, for example in the range of 30–60 min, still

provides results with good selectivity and proteome coverage at a

significantly higher sample throughput.

Setting up the SWATH-MS data acquisition method

Finding an optimally balanced method

The optimal setup of precursor ion (MS1) and fragment ion (MS2)

scans in a SWATH-MS acquisition scheme depends on a range of

considerations, including the expected mass range for analytes of

interest, underlying sample complexity, available mass spectrometer

type with its specific resolution and scanning speed, the LC setup

and its expected average chromatographic peak width, as well as

the desired measurement selectivity and sensitivity. In practice, the

following instrument parameters need to be considered: (i) the

precursor m/z range to cover, (ii) the widths and number of precur-

sor isolation windows, (iii) the fragment and precursor ion

accumulation/scanning time and resolution, (iv) the chromato-

graphic cycle time and (v) the number of injections per sample. In

the following section, each of these parameters is discussed in

detail. The experience of the authors is primarily focussed on Q-TOF

instrument configurations, and our recommendations in that respect

are based on empirical knowledge, optimization and simulation

(Rost et al, 2012). However, as the quadrupole-Orbitrap is increas-

ingly popular for SWATH-MS analysis, we also refer to successfully

published methods on that configuration. A detailed overview of

acquisition parameters for Q-TOF as well as Q-Orbitrap instruments

is provided in Table EV1. Those parameters can serve as a starting

point for the generation of SWATH-MS data of good quality;

however, further optimization might allow an increase in the level

of quantifiable proteins and peptides. Of final note, optimal

SWATH-MS parameters for Q-TOF as well as Q-Orbitrap instruments

are still subject to adaptations and might change significantly in the

future.

Precursor m/z range to cover The precursor m/z range covered in a

SWATH-MS measurement is defined by the adjacent set of precursor

isolation windows that the instrument cycles through across the

chromatographic separation. Ideally, this mass range should cover

as completely as possible the m/z space of the proteins or peptides

of interest. Analytes outside the specified range are not monitored
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Figure 3. Setting up the optimal SWATH-MS data acquisition scheme.
(A) Effect of liquid chromatography gradient length on the number of identified proteins for technical triplicate injections of a trypsin-digested HEK cell lysate acquired either
in DDA (grey bars), SWATH 32 fixed windows (dark blue bars) or SWATH 64 variable windows (light blue bars) on a Q-TOF instrument. (B) To improve precursor selectivity in
SWATH-MS, an acquisition scheme using variable precursor isolation window widths can be used to partition the precursor density equally across all isolation windows. (C)
Ten recorded data points are considered necessary for accurate reconstruction of a chromatographic peak. For a peak width of 30 s a cycle time of 3 s leads to 10 recorded
data points (red), which allows appropriate reconstruction of the actual peak shape (grey dashed line). Longer cycle times, for example 6 s (green) or 12 s (blue), lead to under
sampling and the correct peak shape can no longer be optimally reconstructed. (D) If the average peak width is reduced from 30 (left panel) to 15 (middle panel) or even 5 s
(right panel), the cycle time needs to be decreased accordingly from 3 to 1.5 and 0.5 s, in order to maintain 10 data points over the elution profile.
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and can therefore neither be detected nor quantified. If the aim is to

analyse a significant portion of the proteome and if trypsin is used

as proteolytic enzyme during the sample preparation, the most

peptide-rich region typically spans 400–1,200 m/z (Gillet et al,

2012). The range can be further reduced to 500–900 m/z (Egertson

et al, 2015) depending on instrument and analyte constraints with a

minimal attrition of quantified proteins. If other proteases than

trypsin are used, or if SWATH-MS is applied to analytes other than

peptides (e.g. metabolites), the precursor m/z range needs to be

adapted accordingly. Coordinates for m/z ranges successfully used

in selected publications on Q-TOF and Q-Orbitrap instrument are

given in Table EV1.

Precursor isolation window placement The precursor isolation

window width defines the range of peptide precursor masses that

are co-isolated and co-fragmented in a given MS2 scan. Hence, the

isolation window width directly influences the selectivity and the

dynamic range of the measurement and in turn the sensitivity of

peptide detection. It is probably the parameter that varies the most

between various DIA methods, ranging from one isolation window

of 800 m/z to hundred windows of 2 m/z (Appendix Fig S1).

Whereas the use of wider isolation windows allows the mass

spectrometer to cycle faster through the predetermined precursor

m/z range, it results in a higher number of peptide precursors being

co-fragmented, more strongly convoluted MS2 spectra and lower

sensitivity due to a limited intra-scan dynamic range. Conversely,

using narrower isolation windows reduces the number of co-frag-

mented precursors and signal interference, but limits other parame-

ters such as the covered precursor m/z range per injection or the

number of data points recorded over the chromatographic peak

profile.

Note that the precursor isolation window width does not need to

be identical for all MS2 scans. Rather, variable window widths

(Zhang et al, 2015) can be used to optimize the number or intensity

distribution of precursor ion signals between isolation windows

(Fig 3B). Such optimal variable window patterns can be applied on

a per-sample basis or identically across multiple samples. Auto-

mated tools are available to facilitate such placement based on

empirical data (“SWATH Variable Window Calculator” provided by

SCIEX). In practice, we observed that the fine adjustment of the

isolation window widths does not drastically influence the peptide

identification or quantification results. For practical reasons, we

therefore generated a “universal 64 variable window” acquisition

scheme for TOF instruments (Table EV1) that seem compatible with

most complex tryptic digests from various organisms ranging in

complexity from bacteria to human. This precursor isolation scheme

was devised to split ~50,000 experimental human tryptic precursor

signals from a human cell line in 64 equal bins that vary from

5.9 m/z width for the range [472.4–478.3], where the density of

precursor ion signals is the highest, up to 90.9 m/z width for the

range [1,109.6–1,200.5]. The gain achieved by moving from 32 fixed

to 64 variable windows has been demonstrated both qualitatively

and quantitatively (Navarro et al, 2016). Bruderer et al optimized a

SWATH-MS acquisition method for the Q-Exactive with 19 variable

windows (Bruderer et al, 2015) and the Q-Exactive HF with 24

variable windows (Bruderer et al, 2017), whereas Kelstrup et al

(Kelstrup et al, 2018) published a method with 70 windows for the

latest and fastest Q-Exactive HF-X instrument (Table EV1).

Recently, alternative DIA acquisition methods have reported the

use of deterministic but differential isolation windows during LC

separation and a peptide’s elution profile (Egertson et al, 2013;

Moseley et al, 2018). However, their analysis requires specific

deconvolution tools to decipher, post-acquisition, the contribution

of the differential interferences arising during the peptide co-isola-

tion process across the various isolation schemes.

Fragment and precursor ion accumulation time/resolving power For

Q-TOF instruments, the MS acquisition or accumulation time

defines how long the mass spectrometer accumulates ion signals for

a given MS scan. With longer accumulation times, the signal-to-

noise ratio for the acquired spectrum increases. Conversely, longer

accumulation times increase the time the instrument requires to

cycle through the series of MS scans. Therefore, the accumulation

time should be chosen in conjunction with the number of precursor

isolation windows (Fig 3C).

For Orbitrap mass analysers, the MS acquisition is subdivided

into two parallelized time-constrained processes. First, the “injec-

tion time” is the time required to collect in the ion trap the desired

number of charged species designated by the automatic gain control

(AGC) parameter. Second, the “scan time” is the time required by

the Orbitrap to record the mass spectrum depending on the set reso-

lution. On new generation instruments (Q-Exactive and Fusion/

Lumos), these two processes are parallelized, and thus, the more

time-consuming step determines the cycle time. Typically, the maxi-

mal injection time is set according to the required scan time. Recent

publications have reported methods with 19 (Bruderer et al, 2015)

(Q-Exactive) and 24 variable precursor isolation windows (Bruderer

et al, 2017) (Q-Exactive HF) at a resolution of 30,000 (at Full Width

Half Maximum) or 70 windows (Kelstrup et al, 2018) (Q-Exactive

HF-X) with fixed width of 9 m/z at a resolution of 15,000

(Table EV1). With the rapidly evolving specifications of these instru-

ments, further optimization of the acquisition settings can be

expected.

In summary, for Q-TOF instruments coupled to a nano-LC setup

that results in an average chromatographic peak width in the range

of ca. 30 s, we recommend to use an MS2 accumulation time in the

range of 50 ms for each of 64 variable MS2 acquisition windows.

This adds up to a total cycle time of ~3.3 s. On the Q-Exactive HF

instrument, the use of 24 variable windows at 30,000 resolution has

been described recently, leading to a similar cycle time (Bruderer

et al, 2017). However, due to the added complexity of balancing

automatic gain control, scan time and duty cycle effects on Orbitrap

instrumentation, further optimization for given instrument configu-

rations and sample types should be considered. We also recommend

the inclusion of a 250 ms MS1 scan on Q-TOF instruments before

each cycle of MS2 scans. Similarly, the inclusion of one or several

MS1 scans is recommended for Orbitrap instruments. Information

from the MS1 scan is increasingly being used by recent DIA analysis

software, either to confirm the precursor mass of the peptide of

interest upon peptide-centric targeted chromatogram extraction or

to aid in the deconvolution of co-eluting fragment ion traces with

spectrum-centric analysis tools.

Chromatographic cycle time In SWATH-MS, the “cycle time”, also

referred to as “duty cycle” or “sampling rate”, corresponds to the

sum of the accumulation times set for the MS1 and MS2 scan series
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(plus any instrument overhead time which is usually negligible).

Hence, the cycle time defines how often along the chromatographic

elution profile of a peptide the same ion gets recorded. The cycle

time is critical for any chromatography-based quantification

approach. Generally, around 10 acquired data points are considered

necessary to reconstruct chromatographic peak shapes and to

perform accurate quantification (Fig 3C) (Matthews & Hayes, 1976;

Lange et al, 2008). However, the available time to collect 10 data

points throughout an average chromatographic peak width can vary

substantially, depending on the specific chromatographic setup. In

an experiment with an average peak width (at base) in the range of

30 s (typical peak width in a 3 lm C18 particles nano-HPLC setup

with gradient length in the range of 1–2 h), a cycle time of 3 s is

appropriate. However, if a higher resolution chromatographic

system is employed, the average peptide elution peak width might

be significantly shorter, for example 5 s. In such cases, the cycle

time must be decreased, e.g. to 0.5 s, to ensure the constant record-

ing of 10 data points over the elution profile (Fig 3D).

Number of injections per sample For large-scale proteomic studies

that include 100s of samples, a single injection per sample is

strongly preferable to maintain sample throughput and quan-

tification consistency. However, for smaller scale projects, multiple

injections per sample (N), each covering a different m/z range,

might be an attractive alternative to improve selectivity and sensitiv-

ity of the SWATH-MS measurement (Panchaud et al, 2009; Ting

et al, 2017). This allows the reduction in precursor isolation

window width by a factor of N, while ensuring that a large precursor

m/z range can be covered.

Setting the collision energy in SWATH-MS

Whereas for DDA, SRM and PRM acquisition methods, the collision

energy can be set individually on a per-precursor basis (based on

precursor m/z value and charge state), or even optimized for a

specific transition (SRM), the collision energy in SWATH-MS can

only be set on a per-isolation window basis. In other words, if two

peptides with different charge states are selected in the same precur-

sor isolation window, they will be fragmented with the same colli-

sion energy, which is likely to be suboptimal for at least one of the

charge states. However, this suboptimal peptide fragmentation can

be compensated for, to some degree, as long as the measured rela-

tive fragment ion intensities are similar to those in the spectral

library used to query the data. This can be achieved by acquiring

DDA fragment ion spectra for spectral library generation with a

charge-state-independent collision energy equation, i.e. a collision

energy varying with the precursor m/z but identical for all charge

states. Note that this strategy may come at the cost of lost identifi-

cations in the DDA analysis due to suboptimal fragmentation of

higher charge state peptides. This suboptimal fragmentation might

be partially rescued by ramping the collision energy within a

SWATH window, for example from �15 to +15 V, over the course

of MS2 accumulation in both DDA and SWATH-MS mode.

In summary, for Q-TOF instruments, we recommend to set a

collision energy proportional to the m/z of a 2+ charged precursor

for DDA library generation and to apply the same collision energy of

a theoretical 2+ precursor located in the centre of the precursor

isolation window for SWATH-MS. Further, we recommend to

systematically assess the fragmentation similarity between

instruments and external public spectral libraries. Software tools

that support such comparative analysis are readily available

(Toprak et al, 2014). If significant differences between the fragmen-

tation pattern of a spectral library and a SWATH-MS measurement

are identified, it might be worth to optimize the used collision

energy equation in the SWATH-MS measurements until a maximal

similarity to the spectral library is found. This will ensure optimal

portability of the peptide query parameters across instruments and

laboratories.

Should adjacent precursor isolation windows be overlapping?

In the original SWATH-MS publication, we suggested to acquire

consecutive SWATH windows with a 1 m/z precursor isolation m/z

overlap (Fig 4A and Table EV1) (Gillet et al, 2012). This was imple-

mented for two reasons: first, precursor ion isolation of the quadru-

pole mass analyser does not work with 100% efficiency over the

whole mass range, but is compromised at the borders of the isola-

tion windows (Fig 4B). Therefore, a small m/z overlap on both

window edges compensates to some degree signal losses due to not

perfectly square-shaped ion transmission efficiencies and ensures

that precursors with m/z located at the border of the isolation

window suffer as little as possible from signal attrition. Second,

overlapping windows ensure maximal transfer of the complete

isotopic pattern of precursors that would otherwise be split between

two consecutive isolation windows for precursor masses close to a

window edge (compare Fig 4C and D). Importantly, unless the

entire precursor isotopic envelope gets isolated, the fragment ions

will show a distorted isotopic pattern, which will potentially result

in lower scoring of this peptide at data analysis stage (see section

“Automated peak group scoring”). The SWATH-MS schemes

published to date with 1 m/z window overlaps do not completely

account for the problems mentioned above in the most extreme

cases and, as such, slightly larger overlaps could be considered in

future schemes. Note that, even if the precursor isotopic distribution

is split between two consecutive isolation windows (as shown in

Fig 4C), label-free quantification of that peptide using fragment ion

intensities will still be accurate across runs, as long as the window

geometries are reproducible and consistent between scans and injec-

tions (Egertson et al, 2015). A problem may occur, though, in the

case of labelled SILAC-type experiments when one of the precursor

isotopic distribution (e.g. the light form) would be split but the

heavy is not. In this case, the light-to-heavy monoisotopic fragment

ion ratios would be distorted due to the fact that part of the intensity

of the monoisotopic peak at the fragment ion level is arising from

the non-monoisotopic peaks in the precursor isotopic envelope.

Another possibility to minimize the impact of imperfect ion

transmission efficiency is to purposely position the isolation

window edges at masses where peptide m/z values are unlikely to

occur as described by Egertson et al (2013). Such theoretically opti-

mal window placement can be realized easily using the Skyline soft-

ware (Egertson et al, 2015). Though this does not per se account for

the signal attrition at the window borders, nor prevents precursor

isotopes to split in different windows, it ensures that the mono-

isotopic precursor mass does not fall exactly on a window border.

In summary, the 1 m/z window overlapping suggested by Gillet

et al (2012) causes a small loss in terms of selectivity, because the

effectively measured windows are slightly broader. However, this is

justified by positive effects like minimized signal losses for peptides
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falling at the sides of the isolation windows and more complete

transfer of the isotopic envelope. If no window overlap is imple-

mented, it is highly recommendable to perform optimal window

placement as suggested by Egertson et al (2013).

Advanced DIA acquisition schemes with improved precursor selectivity

The selectivity of SWATH-MS is a direct function of the precursor

isolation window width. Further, selectivity directly affects the

achievable dynamic range and sensitivity of a SWATH-MS measure-

ment. Recently, novel acquisition methods have been proposed to

improve the selectivity of SWATH-MS (Fig 5).

Multiplexed DIA (MSX) In 2013, the MacCoss group reported the

development of MSX (Egertson et al, 2013), a multiplexed DIA

scheme. Instead of recording MS2 spectra for precursors selected in

systematic SWATH windows of 20 m/z width, MSX records at each

cycle fragment ions for peptides selected from different multiple non-

contiguous isolation windows (e.g. five non-contiguous isolation

windows of 4 m/z, Fig 5A). For the MSX setup, the overall absolute

selectivity per spectrum is theoretically the same as for a 20 m/z

wide SWATH-MS method. However, in MSX, a given peptide precur-

sor will randomly co-fragment with different species in each cycle,

resulting in different interferences over the elution profile of a

peptide. In its current implementation, MSX requires an instrument

with multiplexed trapping capabilities (ruling out Q-TOFs).

Offset isolation windows intra-run In the offset window approach,

the precursor isolation window boundaries are shifted back and
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Figure 4. The rationale for using slightly overlapping precursor isolation windows.
(A) In the first implementation of SWATH-MS, a 1 m/z overlap between adjacent SWATH windows was used to compensate the inefficient ion transmission of the quadrupole
at the edges of the precursor isolation window (B) and to limit the effect of precursor isotope splitting between windows (C and D). (B) Schematic representation of the
efficiency of ion transmission with a state-of-the-art quadrupole mass analyser filtering for the [500–526] m/z range. (C) Theoretical isotopic distribution of the doubly
charged peptideMLSYPITIGSLLHK (m/z = 524.965). If non-overlapping nominal windows are used [(500–525) and (525–550)], the isotopic profile is split between bothwindows
and falls within the inefficient ion transmission range of the quadrupole [effective windows from ca. (500.5–524.5) and (525.5–549.5)]. Even if the window edge is placed at a
mass where no precursor mass is supposed to occur (for example 525.1), the issue of inefficient ion transmission and loss of parts of the isotopic envelope would remain. (D)
With overlapping nominal windows [(499–525) and (524–550)], most of the precursor isotopic pattern will be transmitted within the effective ion transmission range of the
quadrupole [effective windows from ca. (499.5–524.5) and (524.5–549.5)].
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forth between consecutive cycles in a way that the isolation

windows overlap by a significant proportion (e.g. 25 m/z isolation

windows overlapping by 12.5 m/z; Fig 5B). Similarly to MSX, the

offset acquisition scheme results in differential precursor ion co-

isolation and co-fragmentation in every second cycle. Therefore,

interferences that originate from species co-selected in the dif-

ferently overlapping part of the isolation window can be partitioned

away and mathematically removed. This approach shows improved

selectivity and lower limit of quantification compared to the stan-

dard non-overlapping approach, without extra cost related to cycle

time, accumulation time, covered mass range or resolving power

(https://skyline.gs.washington.edu/labkey/files/home/software/

Skyline/2013-ASMS-Overlapped-DIA.pdf). However, the method

still requires the use of an automated algorithm which pre-empts

easy direct raw data inspection or direct raw fragment ion extrac-

tion prior to data deconvolution. Unlike MSX, this method is also

possible on non-trapping instruments such as Q-TOFs.

Scanning quadrupole isolation The latest advancement of SWATH-

MS was recently published under the name “SONAR” (Waters) by

Moseley et al (2018). Instead of “stepping” through consecutive

isolation windows cyclically one after the other, the quadrupole

constantly “scans”, for example, a 24 m/z wide isolation window

through the entire precursor mass range of interest (Fig 5C). In

other words, while with the original SWATH-MS method, a given

precursor will conceptually be present in only one isolation window

and absent from all the others, with the “scanning windows” one

can see fragment ion signals appearing and disappearing
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Figure 5. Advanced DIA acquisition schemes with improved precursor selectivity.
(A) Multiplexed DIA (MSX) (Egertson et al, 2013) can be used to improve data selectivity by isolating and co-fragmenting at each cycle different non-contiguous precursor mass
regions. (B) In the offset-windowed DIA approach, the precursor isolation window boundaries are offset by a discrete mass between consecutive cycles. For example, 25 m/z
isolation windows get shifted by � 12.5 m/z in each cycle. (C) In the “scanning quadrupole” isolation approach, termed SONAR (Moseley et al, 2018), the instrument
continuously scans a wide precursor isolation window through the entire precursor mass range of interest, for example by scanning a mass range from 500 to 900 m/z using
200 × 20 m/z wide windows swiped with an 2 m/z increment.
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accordingly to the precursor’s isotopes entrance and exit from the

scanning window. This essentially adds a fourth dimension on top

of retention time, mass and intensity to the SWATH-MS data. The

method will require significant modifications of the existing peptide-

centric analysis tools, but intuitively, this extra dimension will allow

to access another level of selectivity.

Peptide-centric scoring of SWATH-MS data

Over the past 20 years, a wide variety of strategies have been devel-

oped to analyse DIA data. These strategies can be classified into two

groups, depending on whether they are based on querying the data

in a spectrum-centric or in a peptide-centric manner (Ting et al,

2015). In this tutorial, we focus on the chromatogram-based

peptide-centric scoring analysis workflow for SWATH-MS data illus-

trated in Fig 6 and discuss specific considerations for each step. For

alternative analysis strategies, we refer to recent reviews (Chapman

et al, 2014; Bilbao et al, 2015).

Several software tools have been developed that support all or

most steps of the workflow shown in Fig 6. These include for exam-

ple OpenSWATH (Rost et al, 2014) (part of OpenMS, Rost et al,

2016b; Sturm et al, 2008), Skyline (MacLean et al, 2010), PeakView

(SCIEX) and Spectronaut (Bruderer et al, 2015) (Biognosys). A

recent comparative study (Navarro et al, 2016) using a ground truth

data set has demonstrated remarkable agreement for the qualitative

and quantitative results produced by those peptide-centric scoring

tools as well as by the spectrum-centric scoring algorithm DIA-

Umpire (Tsou et al, 2015) that was also included in the study.

Peptide query parameter (PQP) definition

The first step in a peptide-centric analysis is the definition of PQPs.

While recently developed algorithms can score data without the

need for empirically derived PQPs (Tsou et al, 2015; Ting et al,

2017), and thereby make the availability of prior knowledge in form

of spectral libraries obsolete, empirical PQPs derived from experi-

mental fragment ion spectra can still provide higher sensitivity,

especially when working with rather large precursor isolation

windows (> 5 m/z) during data acquisition. Depending on the

sample complexity, several high-quality peak groups can be found

for a given queried peptide. To quantitatively describe the frequency

of this phenomenon, decoy peptides are used, which are expected to

closely model the properties of the target peptides in terms of their

chromatographic and mass spectrometric parameter space, but

which should not be present in the sample. The decoy PQPs are

generated in silico from the target peptide list by reversing or shuf-

fling the amino acid sequence (Fig 6A). Decoy peptides are crucial

for controlling the error rate of peptide detection and protein infer-

ence in SWATH-MS data, because they can be used to estimate the

effect of random co-elution of fragment ion chromatograms in the

underlying data (Rost et al, 2014). It is generally recommended to

use the same number of fragment ions per peptide for both targets

and decoys to not introduce any biases during peak scoring, because

peptide queries with six co-eluting fragment ions can have different

score distributions than queries with only three fragment ions.

Chromatogram extraction

The next step of a peptide-centric data analysis strategy is to use the

defined PQPs to extract precursor and fragment ion chromatograms

for the peptides of interest. As a peptide elutes from the column, the

signal intensity of its queried fragment ions will vary synchronously

following a usually Gaussian-like peptide elution profile, forming a

chromatographic “peak group” that will be used to assess the

peptide detection and to estimate its quantity (Fig 6B). Fragment

ion chromatograms are extracted in the same manner for the target

and decoy peptides. In essence, this chromatogram extraction step

transforms, and thus reduces the multiplexed SWATH-MS2 spectra,

to a data structure highly similar to SRM or PRM data.

To substantially improve the selectivity of peptide-centric

SWATH-MS data analysis, the chromatogram extraction is usually

not conducted throughout the whole chromatographic gradient

length but only in a retention time window centred around the

expected elution time for the queried peptide (similar to the sched-

uled SRM strategy). A set of shared endogenous (Parker et al,

2015b; Bruderer et al, 2016) or synthetic spike-in peptides (Escher

et al, 2012) can be used to mediate transformation of the previously

empirically determined elution times and to restrict the size of reten-

tion time extraction window as much as possible. The specific

elution times of such reference peptides serve as beacons to define a

normalized retention time (such as in the iRT approach; Escher

et al, 2012) to which the elution times of query peptides can be

aligned. The functionality to automatically perform a normalized

indexed retention time alignment is implemented in many popular

SWATH-MS data analysis tools (e.g. OpenSWATH, Skyline, Peak-

View and Spectronaut).

The mass tolerance or width of the ion extraction also directly

impacts the selectivity of the chromatographic trace signals and thus

the derived identification scores and abundance estimates. In

general, an extraction width of half of the mass spectrometric peak

width provides a good compromise between maximising the fraction

▸Figure 6. Principle of peptide-centric scoring of SWATH-MS data.
(A) Peptide-centric scoring begins with a set of peptide query parameters (PQPs), which represent retention time, precursor ionmasses, fragment ionmasses and fragment ion
signal intensity coordinates for the target peptides (red table). PQPs are also required for decoy peptides and are generated, for example, by reversing the amino acid
sequence of target peptides, while keeping the terminal amino acid (blue table). Decoy peptides are used to assess the chance that peptides which are expected to be absent in
the sample may also be detected by chance. (B) Extracted ion chromatograms (XICs) are generated based on PQPs from the continuously acquired SWATH-MS2 spectra for
target and decoy peptides. This results in a transformed and reduced data structure similar to data generated by targeted proteomics (SRM or PRM). (C) Fragment ion
chromatograms are grouped according to their peptide association and “peak groups”with defined peak boundaries in the retention time dimension are selected. (D) For both
target and decoy peak groups, a range of chromatogram- and spectrum-based scores are computed and combined to a discriminant score by a semi-supervised learning
approach. The false discovery rate (FDR) of a set of detected peptides can be estimated by statistical modelling of the score distributions of target and decoy peptides. (E) For
large-scale SWATH-MS analyses, error rate control should not only be performed on the peptide level, but should be extended to the protein level. Further, in large
experiments including many samples, it might not be sufficient to conduct error rate control individually per run (“run-specific” context), but better on an “experiment-wide”
scale. The “global” context considers only the best scoring detected peak groups, peptides or inferred proteins over all runs. (F) A multi-run alignment allows to correct or
reinforce confidence in peak detection by leveraging the chromatographic time consistency and transfer of detection confidence across runs.
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Figure 6.
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of recovered ion signals while maintaining a reasonable selectivity

of the extracted data. In practice, we suggest applying an extraction

width of ~50 ppm or less for MS2 measurements performed with a

resolution of 15,000.

Chromatographic extraction can be performed on profile (raw) or

centroided MS2 data level. Centroided MS2 data are significantly

smaller in size and were shown to perform similarly to profile data

in terms of identification depth and quantification accuracy

(Navarro et al, 2016). The optimal extraction window width for

centroided data may be less than that of the same data extracted in

profile mode, because in this case the extraction window width can

be optimized with respect to the mass error distribution. However

special attention should be given to the choice of centroiding algo-

rithm used. We have observed that they can dramatically affect the

data in terms of mass accuracy, signal-to-noise levels and relative

fragment ion intensity (e.g. depending on whether the centroiding is

done on peak height or peak area) (Toprak et al, 2014). Accurate

centroiding is especially challenging for SWATH-MS data due to the

high level of co-fragmenting peptides and the high level of overlap-

ping fragment ion signals in the MS2 spectra. Such algorithm-

specific artefacts will affect the scoring of the fragment ion peak

groups as well as the statistics of peptide detection. It is thus recom-

mended to follow the instrument vendor and algorithm developer

instructions for the choice of centroiding algorithm.

Finally, if the SWATH-MS data acquisition scheme includes MS1

scans within a chromatography-compatible cycle time, precursor

ion chromatograms can also be extracted from the MS1 data and

scored in combination with the fragment ion peak group to enhance

confidence in the peptide detection.

Automated peak group scoring

In the next step of the workflow, an algorithm defines the left and

right borders of one or several potential chromatographic peak

groups and scores each of these candidate peptide signals individu-

ally (Fig 6C). This is done independently for the extracted target as

well as decoy chromatographic traces. During this scoring process, a

variety of individual scores is computed (Reiter et al, 2011). Those

can be categorized into five types: (i) scores related to chromato-

graphic performance, (ii) scores correlating the measured data to

the information from the spectral library, (iii) scores correlating the

data to external or internal isotope-labelled standards (if available),

(iv) scores taking into account the high resolution and accurate

mass of the MS2 scans and (v) scores that exploit information from

the precursor ion (MS1) scans. All or most of those individual scores

have been implemented in one way or another into the SWATH-MS

software tools OpenSWATH, Skyline, PeakView and Spectronaut,

which all automatically combine them into a final discriminant

score.

Discriminant score and q-value estimation

By applying the individual scores described before to extracted ion

chromatograms of target and decoy peptides from SWATH-MS data,

individual score distributions can be computed. Ideally, in these

distributions, “true positive” target and “false positive” decoy

peptides are clearly separable. However, depending on experiment-

specific factors such as sample complexity, instrument performance

and SWATH-MS method setup, some scores might perform better

than others, while a single individual score is generally not

discriminative enough to ascertain the detection and correct quan-

tification of a given peptide. Therefore, it is beneficial to combine

the individual scores into a single discriminant score in a way that

allows the most sensitive recall of the peptide queries (Fig 6D). This

goal can be achieved by using a semi-supervised learning algorithm

(Kall et al, 2007) that converges iteratively towards the most opti-

mal set of weighted individual score combinations to separate

targets and decoys. The peak group with the highest discriminant

score (rank 1, Fig 6C) is then usually considered as the most likely

detected peak group for a set of queried peptides, which may even-

tually be revised upon across-run alignment.

Several requirements need to be fulfilled in order to allow

successful learning and proper statistical modelling of SWATH-MS

data. First, a sufficient number of high scoring true positive peptides

are necessary for the semi-supervised algorithm to learn the scoring

characteristics of true detection events and to achieve a sensible

combination of individual weight-feature scores. Second, the decoy

peptides must appropriately represent peptides that are not detect-

able in the sample.

In general, we highly recommend to inspect target and decoy

score distribution plots that most SWATH-MS analysis tools report

to verify that (i) assumptions made with regard to the decoy distri-

butions (e.g. normality) are not violated, (ii) the target scores

appear approximately as a bimodal distribution when analysing

complex samples with medium to large spectral libraries and (iii)

the decoy distribution matches the true-negative part of the bimodal

target distribution both in terms of apex, shape and width (Fig 6D).

In scenarios, where the spectral library overlaps to a very high

degree (> 90%) with the detected precursor ions of the sample, the

true-negative target distribution might be very small, thus rendering

criterion (iii) difficult to judge (Reiter et al, 2011). If one or more of

those conditions are not fulfilled, it is likely that either the machine

learning or the q-value estimation step has failed or are biased,

which could result in misleading statistics and inappropriate error

rate control.

Context-specific error rate estimation

The above described strategies are commonly applied to individual

runs separately. However, under certain circumstances, this might

introduce biases, especially when large numbers of peptides are

queried across data sets consisting of a large number of heteroge-

neous samples, or when spectral libraries are used that were assem-

bled from different sample types (e.g. obtained from public

repositories) or contain a large number of true-negative peptides

and proteins for the tested samples. We therefore suggest to adapt

the analysis strategy according to requirements of the specific data

set as described recently by Rosenberger et al (2017a). Briefly, to

ensure comparable scoring and statistics throughout the complete

data set, the semi-supervised machine learning step should be

conducted in an experiment-wide fashion on all the candidate peak

groups for all runs at once (Fig 6E). For practical reasons (file size

and memory restrictions), this step can also be performed on a

representative selection of peptide queries randomly subsampled

through each sample of the data set. Then, the same score weights

are applied to all the candidate peak groups throughout all the runs

of the data set (Rosenberger et al, 2017a).

While a 1% peptide FDR threshold on a per run basis (referred to

as “run-specific” context) might be sufficient for small sample sizes
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analysed with sample-specific libraries, accumulation of false posi-

tives will occur when conducting large numbers of queries across

large sample sets. Similar as for DDA database search strategies,

more stringent score cut-offs become necessary on large data sets to

account for multiple hypothesis testing. We therefore recommend to

also use target and decoy score distributions to conduct error rate

control at the protein level in addition to the peptide level

(Rosenberger et al, 2017a). Further, we suggest assessing the FDR

in an “experiment-wide” context where q-values are estimated over

all samples using a single score distribution, as well as in a “global”

context, where only the best scoring instance of a given peptide or

inferred protein from all samples in the experiment is used. We

recommend that the list of peptide queries and inferred proteins

identified in the “global” context at 1% FDR can be used to filter the

resulting data from the “experiment-wide” context to prevent accu-

mulation of false positives in experiments with many samples

(Fig 6E; Rosenberger et al, 2017a). The above described context-

specific error estimation has been implemented in PyProphet

(Rosenberger et al, 2017a), a component of the OpenSWATH work-

flow, and Spectronaut (Bruderer et al, 2017).

Across-run alignment and transfer of identification confidence

A main assumption of peptide-centric scoring is that only the best

scoring peak group per peptide represents the true peptide signal.

This may however not always be the case, for example when the

peptide abundance drops below the limit of detection in one or

several runs of a sample cohort and a candidate peak group that

does not originate from the target peptide achieves a better score.

Frequently, this wrong peak group is detected at a different reten-

tion time than the true peptide, resulting in a false value in the final

peptide quantification matrix. By re-emphasizing the consistency of

the retention time information across samples and aligning the peak

boundaries of the peak group from the run where the peptide was

most confidently identified, it is possible to detect and amend those

false peak group ranking mistakes (Fig 6F). This process sometimes

re-ranks the peak groups or may rescue some peak groups at the

expected retention time that would otherwise not have passed the

1% peptide FDR threshold in those specific runs. An algorithm for

multi-run retention time alignment is TRIC (TRansfer of Identifi-

cation Confidence), a component of the OpenSWATH workflow

(Rost et al, 2016a).

In general, multi-run alignment is similar to what has already been

developed and applied successfully for the analysis of DDA data

(Prakash et al, 2006; Mueller et al, 2007; Cox et al, 2014). However,

while in DDA peptide identification and quantification are often

inferred across runs based solely on retention time and precursor

m/z, in SWATH-MS the full information of all fragment ions can be

used as part of the alignment strategy and to control the error rate.

Peptide and protein quantification

Just like any other bottom-up LC-MS/MS proteomic methods,

SWATH-MS provides quantification data on peptide level and

peptide quantities are typically computed by summing or averaging

the integrated peak area of several fragment ions. It is not necessary

to use all of the queried fragment ions per peptide to perform accu-

rate quantification. Rather only high-quality and interference-free

fragment traces should be selected and for such a task automated

algorithms have been developed (Keller et al, 2015; Teleman et al,

2015). Additionally, MS1-based quantification on the precursor

extraction ion chromatograms may provide orthogonal quan-

tification information (Rardin et al, 2015). In many instances,

however, the lower limit of quantification (LLOQ) appears to be

more strongly impaired at the precursor than at the fragment ion

level (Gillet et al, 2012; Egertson et al, 2013; Collins et al, 2017).

This is due to the lower selectivity and the higher dynamic range of

detection required in full MS1 scans compared to that of windowed-

isolation MS2 scans.

To infer the abundance of a protein from a SWATH-MS measure-

ment, the measured intensities of one or many peptides need to be

aggregated into a final protein intensity value per sample. For this

purpose, various strategies have been developed, for example (i)

summing or averaging the n-most intense peptides per protein (Silva

et al, 2006; Ludwig et al, 2012), (ii) summing up all peptide intensi-

ties per sample, regardless of whether they occur across samples or

not (iBAQ; Schwanhausser et al, 2011), or (iii) considering only

those peptides per protein that occur in the two samples to be

compared (LFQ; Cox et al, 2014). Optionally, those aggregated

protein intensity values can be further normalized by a factor repre-

sentative of the detectability of that protein, for example protein

length (Zybailov et al, 2006), number of theoretical peptides gener-

ated (Schwanhausser et al, 2011) or a computed peptide detection

probability score (Lu et al, 2007). Missing values can be either recov-

ered using the re-quantification values provided from the across-run

re-alignment analysis (Rost et al, 2016a) or using statistical imputa-

tion as provided by other tools (Karpievitch et al, 2012). Compared

to SRM or PRM, which commonly only use a few measured targeted

peptides for protein inference, and to DDA, which may not identify

and quantify the same peptides per protein through large sample

sets, SWATH-MS peptide-centric analysis intrinsically offers a more

consistent and complete choice in peptides for protein quantification.

Several statistical tools have been developed to assess differential

peptide or protein abundance between experimental groups and to

compute the relative fold change in peptide or protein quantification

starting from fragment ion level data (Chang et al, 2012). For most

consistent relative protein quantification comparisons, we recom-

mend to systematically use the same, and throughout the complete

SWATH-MS data set the most robust, fragments and peptides per

protein. For the selection of these fragments and peptides, informa-

tion such as conservation of the relative fragment ion signal intensi-

ties per peptide and the relative peptide intensities per protein can be

leveraged across the whole data set, as MSstats (Choi et al, 2014) or

mapDIA (Teo et al, 2015) do for fold-change statistics computation.

Post-translational modifications

SWATH-MS peptide-centric scoring is directly compatible with

measuring peptides carrying post-translational modifications

(PTMs). However, analysis of modified peptides by SWATH-MS

presents additional challenges that stem from the often high similar-

ity of MS2 spectra arising from related peptide species, including the

non-modified peptide, modified peptides with the same backbone

carrying the same modification at different sites or peptides with the

same backbone carrying (near) isobaric modifications. Such

peptides may be co-isolated in the same SWATH-MS window and

produce multiple high scoring peak groups.

As in DDA analysis, specific strategies have been developed to

confidently identify or detect modified peptides in DIA and
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SWATH-MS data sets. The most straightforward way is to directly

use PQPs of the modified peptide versions, for example from spec-

tral libraries that were acquired from DDA analyses of PTM-

enriched samples or with open modification search strategies (Na &

Paek, 2015). An alternative strategy relies on using non-modified

PQPs to query for modified peptides and focuses on additional high

scoring peak groups. Those additional peak groups may be detected

in the same isolation window as the non-modified peptides or in

other isolation windows. Such strategies have been implemented in

MSPLIT-DIA (Wang et al, 2015) and SWATHProphetPTM (Keller

et al, 2016) and were shown to work most successfully when the

peptide fragmentation shows enough similarity up to the site of the

modification (Toprak et al, 2014).

A recently introduced algorithm termed “Inference of Peptido-

Forms” (IPF) (Rosenberger et al, 2017b) extends the standard Open-

SWATH workflow to modified peptides. IPF uses a two-stage

workflow in which the first pass resembles a standard OpenSWATH

analysis whereby typically, about six fragment ions from DDA- or

DIA-derived spectral libraries are extracted and scored to detect

high-quality peak groups. These transitions need to be specific for

the targeted peptide sequence and types and numbers of modifi-

cations; however, they do not need to be specific for positional

isomers. In a second step, IPF uses XICs extracted both for precursor

signals in MS1 and theoretically predicted fragment ions that can

differentiate positional isomers. This information is then integrated

using a Bayesian hierarchical model leading to a single peptidoform

confidence score for each detected peak group. The site localization

is thus independently reassessed, even if the underlying peptido-

form is not present in the spectral library.

In summary, PTM-SWATH analyses are applicable to total cellu-

lar lysates as well as to samples enriched for specific types of modi-

fications, such as phospho-enriched samples. In recent years,

several different PTM-types have been successfully studied with

SWATH-MS (Krautkramer et al, 2015; Sidoli et al, 2015; Lawrence

et al, 2016; Rosenberger et al, 2017b). Particularly in experiments

involving many experimental conditions or replicates, similar

improvements in terms of consistent detection and quantification

can be expected for modified and unmodified peptides.

Outlook

Since the first implementations of DIA in the early 2000s (Masselon

et al, 2000; Purvine et al, 2003; Venable et al, 2004), numerous

improvements in terms of data acquisition speed, mass accuracy

and resolution have taken place on the instrument side. Also, since

the first description of a peptide-centric data analysis workflow

(Gillet et al, 2012), substantial progress has been achieved in terms

of spectral library generation (Schubert et al, 2015a), automated

data analysis pipelines (Rost et al, 2014, 2016a; Keller et al, 2015)

and statistical control in peptide and protein error rates

(Rosenberger et al, 2017a). The excellent reproducibility and accu-

racy of SWATH-MS data acquisition have been proven in a large

study comparing data acquired in different laboratories worldwide

(Collins et al, 2017). Also, the robustness of peptide-centric data

analysis tools has been demonstrated recently by comparing five

major software tools currently used for peptide-centric scoring of

SWATH-MS data (Navarro et al, 2016). The development of

SWATH-MS laid the foundation for novel large-scale biological stud-

ies, such as the study of mitochondrial links to liver metabolism in a

mouse reference population (Williams et al, 2016), the study of

phosphoproteomic and chromatin signature in response to drug

treatments in cancer cell lines (preprint: Litichevskiy et al, 2018) or

the contribution of heritability and environment to different traits in

pairs of monozygotic and dizygotic twins (Liu et al, 2015). Through-

out this tutorial, we have documented the advancements and refer-

enced established workflows, software tools and analysis pipelines

that will hopefully support and facilitate SWATH-MS experiments

by a large user community in the years to come.

Although most published SWATH-MS studies to date used spec-

tral libraries generated by DDA, novel approaches that do not rely

on libraries were developed. Spectrum-centric scoring approaches

such as DIA-Umpire (Tsou et al, 2015) or Group-DIA (Li et al, 2015)

generate pseudo-MS2 spectra directly from DIA data and subject

them to conventional database search algorithms. Peptide-centric

library-free analysis tools such as FT-ARM (Weisbrod et al, 2012) or

PECAN (Ting et al, 2017) use theoretical fragment ion predictions to

query and score the multiplexed MS2 spectra of SWATH-MS data.

Interestingly, tools that rely on prior knowledge in the form of spec-

tral libraries seem to deal better with lower selectivity data than

library-free tools (Navarro et al, 2016; Ting et al, 2017). This

finding suggests that, as measurement selectivity improves with

better instruments (smaller precursor isolation windows, higher

peak capacity chromatography, scanning quadrupoles, ion mobility

separations, etc.), prior knowledge for data analysis might become

less important. On the other hand, prior knowledge in the form of

organism-wide deep proteome data sets from endogenous samples

or synthetic proteomics is likely to increase substantially during the

same time period. This might spur the development of novel analy-

sis methods that can better leverage such libraries.

In the future, we expect that mass spectrometers will continue to

improve in sensitivity and scanning speed. Hence, it is foreseeable

that the time necessary to acquire high-quality precursor and frag-

ment ion spectra will decrease, allowing for higher number of

narrower isolation windows and enabling to approach the 1–3 m/z

isolation width commonly used during DDA acquisition and PRM.

We speculate that increasing instrument sensitivity and speed will

reach a threshold where ultimately the benefits of all currently

employed data acquisition methods can be achieved with a single

“super” method. The question then will no longer be whether one

should do a DDA, DIA or targeted experiment, but whether to use a

peptide-centric or spectrum-centric data analysis strategy. It seems

unlikely that a purely spectrum-centric approach, where each

consecutive MS2 scan is subjected to a database search algorithm

independently, would be most effective, because the rich informa-

tion in the chromatographic dimension and prior information about

the fragmentation pattern would not be leveraged. As such, it seems

more likely that either peptide-centric approaches as described in

detail in this tutorial or hybrid methods between spectrum- and

peptide-centric analyses best exploit the highly comprehensive and

selective data sets in the future.

Other future-oriented features of DIA in general, and SWATH-MS

in particular, are the simplicity of the underlying data acquisition

method and the suitability for high-throughput proteomics. Already

today ~50% of the MS-detectable proteome can be reproducibly

measured by SWATH-MS at a relatively fast time scale (< 1 h per
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sample). This progress will hopefully allow to further democratize

access to proteomics data in the future and to perform novel types

of cross study comparisons, which are goals that the proteomics

community had difficulties achieving in the past.

Expanded View for this article is available online.
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