
Cellule del sangue

Maurizio Romano

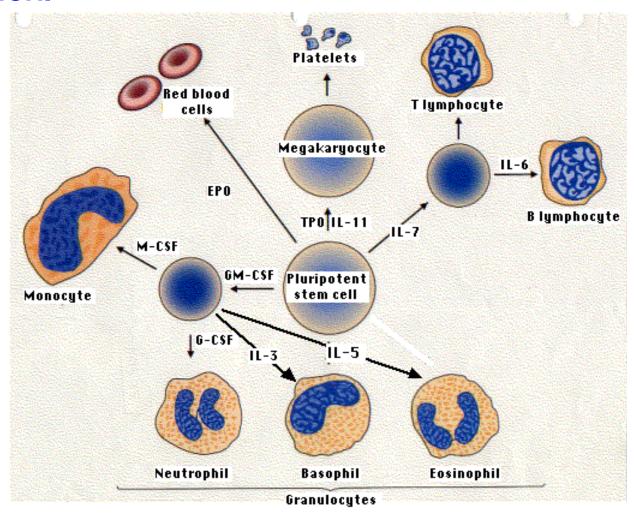
Dipartimento di Scienze della Vita Università di Trieste Via A. Valerio, 28

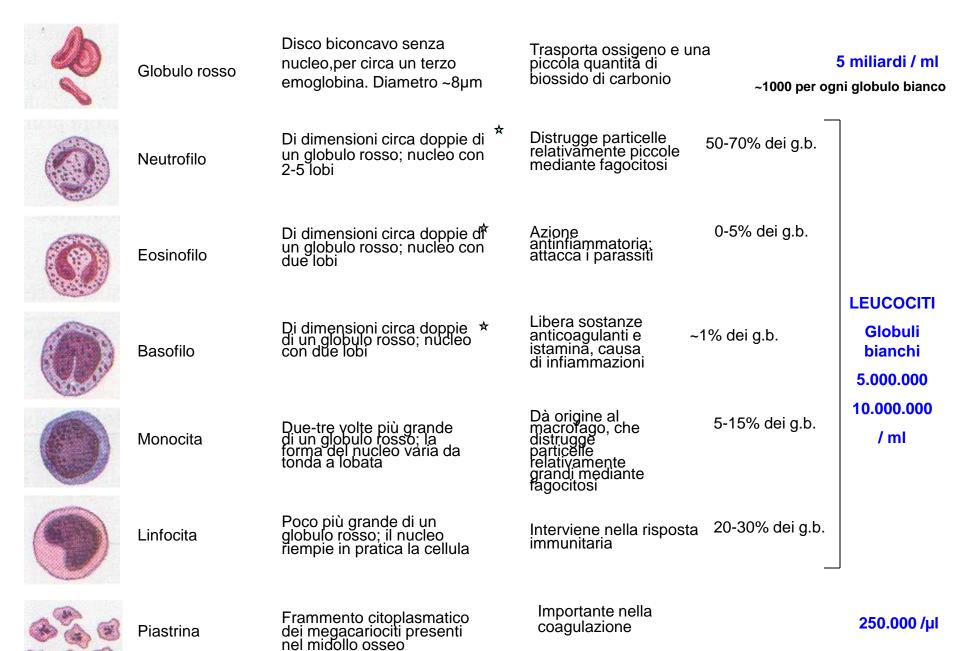
Tel: 040-3757316

e-mail: mromano@units.it

Sangue: Composizione Plasma (55%) Elementi cellulari (45%) Principali funzioni Componenti Tipi di cellule Numero **Funzioni** Acqua Solvente per diluire le altre (per mm³ di sangue) sostanze 5-6 milioni Eritrociti Trasporto di ossigeno e, in (alobuli rossi) Ioni inorganici: Equilibrio osmotico, parte, di anidride Sodio azione tampone, Sangue Potassio carbonica centrifugato trasmissione di Calcio impulsi nervosi Magnesio Cloruro 5000-10 000 Leucociti Difesa e Bicarbonato (globuli bianchi) immunità Proteine plasmatiche: Equilibrio osmotico Albumina e azione tampone _infociti Basofili Coagulazione Fibrinogeno Esosinofili **Immunità** Immunoglobuline Neutrofili Monociti Sostanze trasportate dal sangue: Sostanze nutritive Prodotti di rifiuto del metabolismo Coagulazione 250 000-**Piastrine** Gas respiratori (O2 eCO2) 400 000 del sangue Ormoni

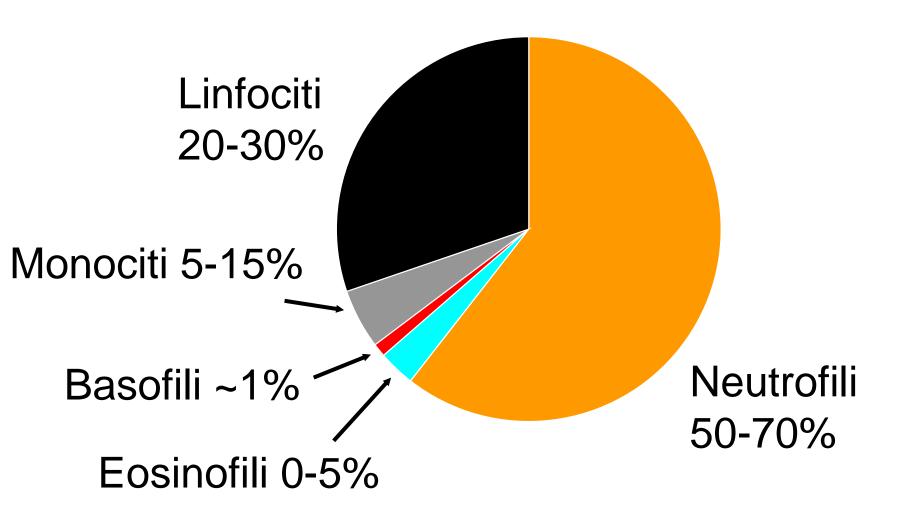
Sangue = Plasma + Elementi cellulari (si originano nel midollo osseo).

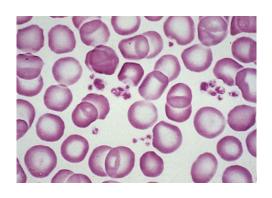

- Plasma: composto per ~ 90% da acqua; tra i numerosi soluti si trovano sali inorganici sotto forma di ioni, proteine, sostanze nutritive, prodotti di scarto, ormoni.
- Siero: è il plasma privato delle proteine della coagulazione (FIBRINOGENO).
- Elementi cellulari: chiamati nel loro insieme elementi figurati, che sono in sospensione nel plasma.
- Elementi figurati: globuli rossi, i globuli bianchi e le piastrine.


Elementi figurati del sangue

GLOBULI ROSSI PIASTRINE GLOBULI BIANCHI

Emopoiesi o ematopoiesi:


Formazione e maturazione di tutti tipi di cellule del sangue a partire dai loro precursori.



[★] I granuli citoplasmatici contengono pigmenti che, in presenza dei coloranti, danno reazione acida ed assumono il colorante diventando di colore arancio

Formula Leucocitaria

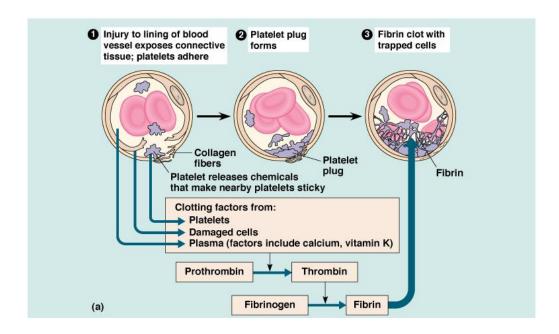
Globuli Rossi (eritrociti/emazie)

- Emazie dal greco αἰμάτιον, haimàtion, derivato da αἶμα, hàima, sangue
- **Eritrociti** dal greco ἐρυθρός, erythròs, rosso e κύτος, cytos, cellula

71% Acqua
28% Emoglobina
0,7% Lipidi
0,3% altro

Struttura:

- Forma di disco biconcavo. Diametro di circa 7,5 μm, con la parte centrale più sottile rispetto ai bordi.
- Anucleati nei mammiferi, perdono il nucleo durante il processo di differenziazione.
- Contengono principalmente emoglobina nel loro citoplasma.
- Estremamente elastici e deformabili, permettendo loro di fluire anche attraverso i vasi sanguigni più piccoli.


Intervallo di normalità nel sangue:

- ~5.000.000 per µl (5.000.000.000 per ml).
- Valori possono variare leggermente a seconda del laboratorio e di altri fattori come l'altitudine e la mestruazione.

❖ Funzioni:

- Trasportano la maggior parte dell'ossigeno presente nel sangue.
- Contribuiscono al trasporto del diossido di carbonio dai tessuti ai polmoni.
- La loro quantità e qualità influenzano la viscosità del sangue.
- Sono prodotti nel midollo osseo e la loro produzione è regolata dall'eritropoietina, un ormone rilasciato dai reni in risposta a bassi livelli di ossigeno.
- Hanno una vita media di circa 120 giorni, dopo i quali vengono degradati e i loro componenti riciclati.

Piastrine

*TROMBOCITI (θρόμβος, "coagulo" and κύτος, "cellula")

❖ Struttura:

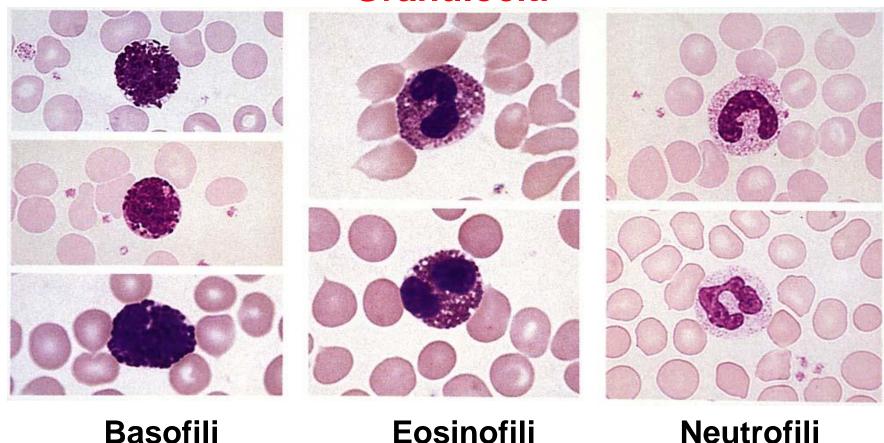
- Sono frammenti di cellule senza nucleo presenti nel sangue, prodotte nel midollo osseo a partire dai megacariociti.
- Hanno un diametro ~ 2 µm.
- La loro struttura include una membrana cellulare ricca di molecole proteiche e glicoproteine che fungono da recettori.

Intervallo di normalità del numero di piastrine nel sangue periferico:

- Conteggio normale: 250.000 a 400.000 per microlitro (vita media di 7-10 giorni).
- Basso numero => può causare manifestazioni emorragiche.
- Alto numero => può causare manifestazioni trombotiche.

Funzioni:

Coagulazione del sangue


- Attivazione per formare un tappo emostatico in risposta a lesioni vascolari.
- Un alto numero di piastrine può causare difetti nella coagulazione e manifestazioni trombotiche.
- Rilascio di sostanze chimiche: secernano fattori di crescita e sostanze che favoriscono la riparazione dei vasi sanguigni.

Globuli Bianchi

- ✓ Sono presenti in numero 1000 volte inferiore rispetto agli eritrociti (5-10x10⁶ /ml)
 - Possono comunque subire delle variazioni fisiologiche durante il lavoro muscolare e la digestione (aumentano fino a 10 milioni). Sono cellule dotate di nucleo, e citoplasma e si distinguono in base alle caratteristiche morfologiche
- GRANULOCITI: cellule di 10-14µ di diametro, con nucleo lobato e citoplasma ricco di granuli. Sulla base delle caratteristiche tintoriali si distinguono in NEUTROFILI, BASOFILI ed EOSINOFILI
- MONOCITI: cellule grandi (10-18µ di diametro), ricche in citoplasma e con nucleo leggermente lobato (reniforme)
- LINFOCITI: presentano un diametro di 7-10µ e sono caratterizzati dall' avere un nucleo todeggiante che occupa quasi per intero la cellula stessa.

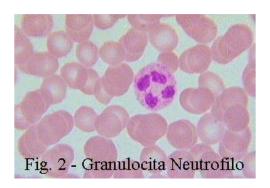
In base alle funzioni si distinguono in T, B, NK.

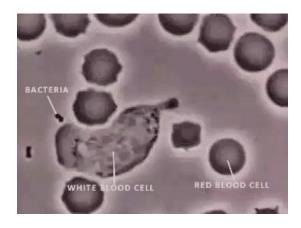
Granulociti

- Il termine di granulociti è dovuto alla presenza di granuli nel citoplasma di queste cellule. Questi granuli sono differenti nei vari tipi di granulocita e aiutano a distinguerli
- Questi granuli hanno una differente affinità verso i coloranti neutri, acidi o basici e fanno assumere al citoplasma un colore differente.
- I granulociti si distinguono dunque in neutrofili, eosinofili (o acidofili), basofili.

Granulociti Neutrofili

❖ Struttura:


- Sono caratterizzati dalla presenza di granuli nel citoplasma.
- Presentano un nucleo multilobato e granuli specifici che si colorano in modo neutrofilo.


❖ Intervallo di normalità nel sangue:

- ➤ II numero = 5.000 8.000 cellule per microlitro di sangue
- Rappresentano circa il 50-70% dei leucociti totali.

❖ Funzioni:

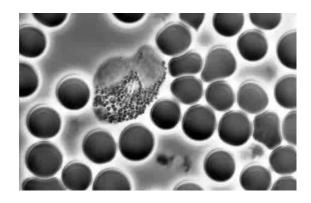
- Difesa immunitaria:
- Sono fondamentali nella risposta immunitaria contro batteri e funghi.
- · Fagocitano microrganismi e rilasciano enzimi per distruggerli.
- >Infiammazione:
- Partecipano attivamente alla risposta infiammatoria del corpo.
- Secernano sostanze pro-infiammatorie per attivare altre cellule del sistema immunitario.

Granulociti Eosinofili

❖ Struttura:

- Sono caratterizzati dalla presenza di granuli citoplasmatici che si colorano in arancione.
- Hanno nuclei di forma irregolare con due lobi e sono leucociti polimorfonucleati.
- **❖** Intervallo di normalità nel sangue:
- Conteggio normale: 100-500 eosinofili per microlitro di sangue.
- Rappresentano circa l'1-4% della popolazione leucocitaria nel sangue periferico.
- **❖** Funzioni:
- Difesa contro i parassiti
- Attaccano parassiti come tenie e schistosomi che non possono essere fagocitati dai neutrofili.
- Modulazione delle reazioni allergiche:
- Partecipano alla modulazione delle reazioni d'ipersensibilità immediata attraverso la degradazione di sostanze reattive come i leucotrieni. (Anchilostomiasi, schistosomiasi, strongiloidiasi, toxocariasi, trichinosi, filariasi, echinococcosi e cisticercosi).

Granulociti Basofili


Struttura:

- Sono globuli bianchi caratterizzati dalla presenza di granuli citoplasmatici specifici che si colorano con coloranti basici.
- Hanno un nucleo lobato con due o tre lobi e vengono prodotti nel midollo osseo.

Intervallo di normalità nel sangue:

- Conteggio normale:10-100 cellule per microlitro
- Rappresentano lo 0,5-1% dei leucociti totali.

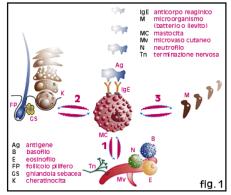
- Rilascio di mediatori infiammatori:
- Liberano istamina, bradichinina e altre sostanze chimiche coinvolte nella risposta allergica e immunitaria.
- Difesa aspecifica dell'organismo:
- Svolgono una funzione di difesa nei tessuti infiammati, rilasciando istamina ed eparina in risposta a infezioni o lesioni.

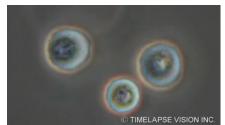
Mastociti (dal tedesco Mastzelle, "cellula infarcita")

Struttura:

- Cellule immunitarie di forma variabile, rotondeggiante, ovale o ramificata.
- Diametro di circa 20-30 µm.
- Contengono granuli ricchi di eparina ed istamina nel citoplasma.

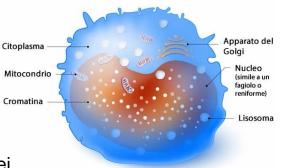
Intervallo di normalità nel sangue e tessuti:


- Non specificato per il numero di mastociti nel sangue.
- I livelli di triptasi totale, un marcatore delle malattie mediate dai mastociti, sono mediamente intorno a 5 ng/mL con un intervallo da <1 a 15 ng/mL.
- Livelli di triptasi sierica inferiori a 11,4 ng/mL sono considerati normali nella maggioranza dei laboratori.

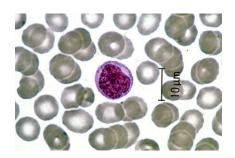

Localizzazione e origine:

- Origine nel midollo osseo durante l'emopoiesi.
- Si trovano nel tessuto connettivo propriamente detto, del tipo fibrillare lasso, prevalentemente in prossimità dei vasi sanguigni e linfatici, nonché nelle mucose del tratto respiratorio e gastroenterico.

- Rilascio di eparina ed istamina, con azione anticoagulante e aumento della permeabilità vasale per favorire l'afflusso di altre cellule immunitarie.
- Produzione di ossido nitrico con azione vasodilatatrice.
- Coinvolti nelle reazioni allergiche e nella risposta infiammatoria.
- Rilascio di mediatori dell'infiammazione (bradichinina, fattori vasoattivi, istamina, sostanza P, serotonina) e sostanze neurotrofiche come il fattore di crescita dei nervi (NGF).
- Iperattivazione dei mastociti può essere innescata da fattori infettivi, meccanici, fisici, chimici, ormonali e neurogeni.



Monociti/Macrofagi


❖ Struttura:

- I monociti hanno un diametro di 10-15 micron, un nucleo a fagiolo e un citoplasma contenente lisosomi, vacuoli fagocitici e filamenti di citoscheletro.
- I macrofagi sono cellule immunitarie altamente differenziate, più grandi dei monociti, con un nucleo pressoché rotondeggiante e un citoplasma ricco di lisosomi, reticolo endoplasmatico rugoso e apparato di Golgi sviluppati.

Intervallo di normalità nel sangue e tessuti:

- Monociti rappresentano il 2-10% dei leucociti circolanti, con una concentrazione di circa 500-1000/µl nel sangue.
- Macrofagi non sono presenti come tali nel sangue ma si trovano nei tessuti, dove possono sopravvivere per mesi o addirittura anni.

- Monociti maturano e si differenziano in macrofagi quando entrano nei tessuti.
- Macrofagi sono "spazzini del corpo umano", concentrati dove c'è necessità di eliminare rifiuti come batteri, prodotti di disfacimento dei tessuti o cellule danneggiate.
- Svolgono un ruolo cruciale nell'immunità innata e adattativa, inglobando microrganismi e altre particelle attraverso la fagocitosi.
- I macrofagi producono e secernono un'ampia gamma di prodotti di secrezione, come interleuchine e il fattore di necrosi, influenzando la migrazione e l'attivazione di altre cellule del sistema immunitario.
- Funzionano come cellule presentanti l'antigene (APC), esponendo componenti processate degli antigeni sulla propria membrana esterna per segnalare il pericolo alle altre cellule immunitarie.

Maturazione e funzioni dei monociti nei tessuti

- I monociti completano la maturazione in vari distretti come fegato, osso, rene, milza, peritoneo e alveoli polmonari.
- Svolgono funzioni fisiologiche essenziali nei tessuti in cui si localizzano.

Funzioni specifiche dei macrofagi:

- Ricambio delle cellule morte.
- Uccisione degli spermatozoi non utilizzati.
- Emocateresi, ovvero la rimozione dei globuli rossi invecchiati o danneggiati.
- Pulizia degli alveoli polmonari da particelle e patogeni.
- Rimodellamento dell'osso.
- Contributo alla guarigione delle ferite.
- Detossificazione epatica da endotossine.
- Risposta a stimoli infiammatori.

Attività in risposta a focolai infiammatori:

- In presenza di un focolaio infiammatorio, i monociti migrano attivamente dai vasi sanguigni e iniziano un'intensa attività fagocitaria.
- Attività fagocitaria antibatterica.
- Collaborazione con i linfociti per coordinare la risposta immunitaria.

Produzione di sostanze difensive:

• Produzione di lisozima, interferoni e altre sostanze che modulano la funzionalità di altre cellule.

Cooperazione nella difesa immunitaria:

 I macrofagi espongono sulla membrana molecole dei corpi digeriti e li presentano alle cellule immunitarie specializzate, come i linfociti Th e B.

Linfociti

Struttura:

- Cellule del sistema immunitario con un nucleo rotondo e un piccolo citoplasma.
- Presentano una varietà di sottotipi con funzioni specifiche.

Intervallo di normalità nel sangue e tessuti:

- Conteggio neomale nel sangue: 4.000 10.000 / μl.
- Nei linfociti circolanti, circa il 75-80% è costituito da cellule T, il 10-15% da cellule B e la restante percentuale da altre cellule non B e non T.
- Nei tessuti linfoidi, come i linfonodi e la milza, i linfociti svolgono funzioni cruciali per la risposta immunitaria.

Funzioni:

- Partecipano alla risposta immunitaria adattativa, producendo anticorpi e coordinando la distruzione di cellule infette.
- Svolgono un ruolo fondamentale nella memoria immunologica, ricordando gli antigeni precedentemente incontrati per una risposta più rapida in caso di reinfezione.
- Regolano l'attività delle altre cellule immunitarie per mantenere l'equilibrio del sistema immunitario.
- Possono essere coinvolti in processi infiammatori e nella difesa contro patogeni come virus, batteri e funghi.

Interagiscono con altri tipi di cellule immunitarie per coordinare una risposta immune efficace.



Fig. 11 - Linfocita

Linfociti T helper

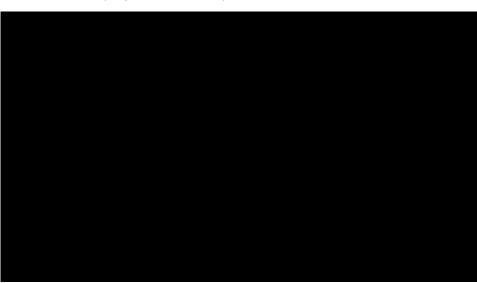
Struttura:

 Presentano recettori specifici sulla loro superficie per riconoscere antigeni. In particolare, sono caratterizzati dalla presenza del recettore CD4 sulla loro superficie (CD4+).

❖ Funzioni

- Coordinano e regolano la risposta immunitaria, aiutando altri tipi di cellule immunitarie a svolgere le loro funzioni.
- Attivano i linfociti B per produrre anticorpi specifici contro gli antigeni.
- Secernono citochine che modulano l'attività delle cellule immunitarie e regolano la risposta infiammatoria.
- Sono cruciali per la difesa contro patogeni come virus, batteri e funghi.
- Interagiscono strettamente con i linfociti B e altri linfociti T per garantire una risposta immune efficace.

Sottotipi principali


- I linfociti T Helper sono una classe di linfociti che si suddividono principalmente in tre sottotipi: TH-1, TH-2 e TH-17.
- TH-1: Producono interleuchina-2, interferone gamma e fattore di necrosi tumorale beta, svolgendo funzioni come l'attivazione dei macrofagi e la promozione della risposta immunitaria cellulare.
- > TH-2: Esprimono interleuchina-4, interleuchina-5, interleuchina-6 e interleuchina-10, favorendo la produzione di anticorpi da parte dei linfociti B e la risposta immunitaria umorale.
- TH-17: Secernono interleuchina-17 e sono coinvolti nella difesa contro patogeni extracellulari e nelle risposte infiammatorie.

Linfociti T citotossici

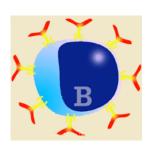
Struttura:

 I linfociti T Citotossici (CTL) sono una classe di cellule del sistema immunitario caratterizzate dalla presenza del recettore CD8 sulla loro superficie (CD8+).

- Questi linfociti sono essenziali per eliminare le cellule infette da agenti patogeni come virus e batteri, agendo attraverso meccanismi citotossici per distruggere le cellule bersaglio.
- Svolgono un ruolo cruciale nella difesa dell'organismo contro le infezioni intracellulari e contribuiscono all'immunità antitumorale.
- I linfociti T Citotossici riconoscono specificamente le cellule bersaglio tramite il riconoscimento dell'antigene presente sulla loro superficie e inducono la morte delle cellule infette per proteggere l'organismo da agenti patogeni.

https://youtu.be/5TcH3ITMqOM?si=L3cBh7Eo03bwvsrX

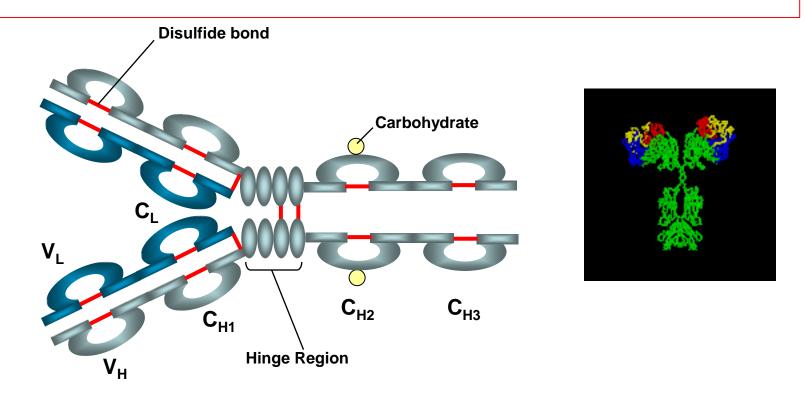
Linfociti T reg

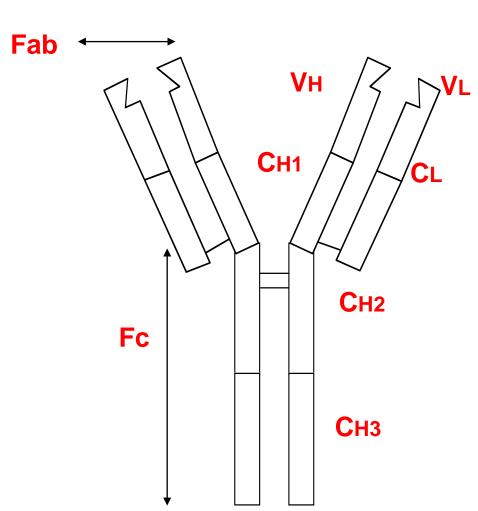

- I linfociti T regolatori, noti anche come soppressori, svolgono un ruolo chiave nella regolazione negativa della risposta immunitaria, contribuendo alla tolleranza periferica.
- Inducono la sospensione della risposta immunitaria, talvolta attraverso l'apoptosi delle cellule coinvolte, e sono coinvolti nei processi di regolazione immunitaria.
- Questa regolazione sembra essere compromessa nei processi autoimmuni, mentre i tumori possono sfruttare questa capacità per evitare il riconoscimento e la distruzione da parte del sistema immunitario.
- I linfociti T regolatori esprimono livelli più elevati di proteine antiapoptotiche, permettendo loro di sopravvivere più a lungo rispetto ad altri linfociti.
- Rispetto ai linfociti normali, i T regolatori sono presenti in numero maggiore per lo stesso antigene e offrono una risposta più immediata e potente.

Linfociti B e Plasmacellule

- I linfociti B sono cellule del sistema immunitario che, in risposta a stimoli, possono trasformarsi in cellule effettrici chiamate plasmacellule.
- Le plasmacellule sono responsabili della produzione della maggior parte degli anticorpi, che facilitano la distruzione degli antigeni da parte dei fagociti e attivano il sistema del complemento.

❖ Funzioni:


- I linfociti B svolgono un ruolo principale nella risposta umorale producendo immunoglobuline specifiche contro gli antigeni.
- Quando un linfocita B incontra un antigene specifico, può attivarsi rapidamente, replicare il clone di linfociti B e produrre anticorpi specifici per combattere l'antigene.
- Le plasmacellule, derivanti dai linfociti B attivati, producono anticorpi in grandi quantità che si legano agli antigeni segnalando la loro pericolosità e facilitando la loro eliminazione da parte delle cellule immunitarie.
- Durante questo processo, il linfocita B si divide ripetutamente e dà origine a due tipi di progenie: cellule B della memoria e plasmacellule capaci di secernere anticorpi sintetizzati negli spazi intracellulari



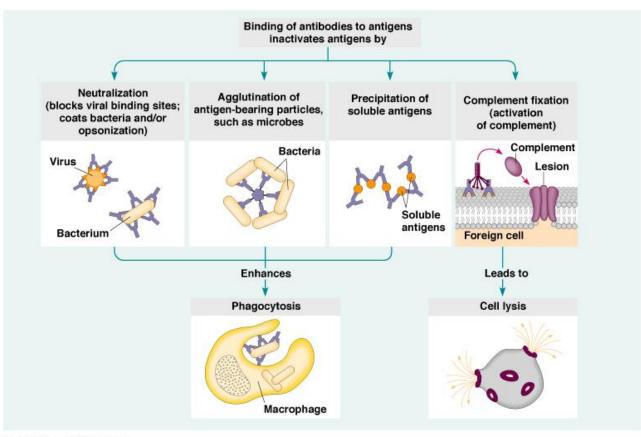
Anticorpi = Immunoglobuline

- ✓ Riconoscono e legano particolari antigeni con specificità alta (Ag = molecola in grado di essere riconosciuta dal sistema immunitario)
- ✓ Possono esistere sia come molecole di membrana (linfociti B) che come molecole solubili (plasmacellule).
- ✓ Un virus od un batterio può presentare diversi antigeni riconosciuti da diversi anticorpi.
- ✓ Ciascun anticorpo ha almeno due siti identici di legame per l'antigene

Struttura degli Anticorpi / Immunoglobuline

- STRUTTURA: Glicoproteine a forma di Y composte da 4 catene polipeptidiche:
 - due identiche Catene Pesanti (5 tipi) e
- due identiche Catene Leggere (2 tipi)
- Composte da due frammenti principali: il frammento Fab (Fragment antigen-binding) e il frammento Fc (Fragment crystallizable).
- Frammento Fab contiene i siti di legame per l'antigene e varia tra le diverse immunoglobuline per riconoscere specifici antigeni.
- Frammento Fc è coinvolto nell'attivazione del sistema del complemento e nell'interazione con i recettori delle cellule immunitarie.

REGIONI costanti e variabili:


- Regioni variabili: responsabili della specificità dell'anticorpo per l'antigene
- Regioni costanti: conferiscono funzioni effettive all'anticorpo.

Caratteristiche e Funzioni degli ISOTIPI anticorpali

Isotipo dell' anticorpo	Sottotipo	Catena H	Concentr. nel siero (mg/ml)	Emivita Plasmatica (giorni)	Funzioni
IgA	IgA1, 2	α (1 ο 2)	3.5	6	Immunità delle mucose
IgD	Nessuno	δ	Tracce	3	Recettore per l'ag dei linfociti B naive
IgE	Nessuno	ε	0.05	2	Ipersensibilità immediata, difesa contro gli elminti
IgG	IgG1-4	γ (1,2,3 o 4)	13.5	23	Opsonizzazione, attivazione del complemento, citotossicità Abdipendente e cellulare, immunità neonatale, feedback inibitorio delle cellule B
IgM	Nessuno	μ	1.5	5	Recettore per l'Ag dei linfociti B naive, attivazione del complemento

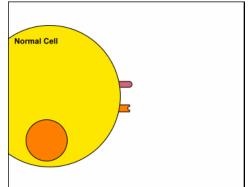
Conseguenze del legame Antigene-Anticorpo (immunità umorale)

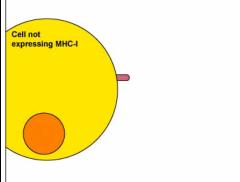
- Neutralizzano i patogeni, impedendo loro di entrare nelle cellule;
- Precipitano antigeni solubili;
- Agglutinano gli antigeni;
- Opsonizzano gli antigeni (creano complessi antigeneanticorpo ben riconoscibili e fagocitabili dai fagociti);
- "Fissano" il complemento (richiamano le proteine del complemento che lisano le membrane cellulari dei batteri).

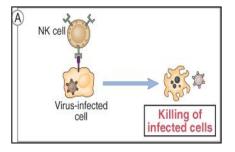
Linfociti NK

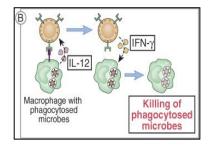
- ❖ Altra denominazione: Grandi Linfociti Granulari (large granular lymphocyte, LGL) a causa delle dimensioni maggiori rispetto ai linfociti B e T e per la presenza di granuli preformati nel citoplasma, contenenti i mediatori della loro citotossicità (ad esempio l'interferone di tipo y, il TNF e GM-CSF).
- ❖ Rappresentano fino al 15 % dei linfociti circolanti e non presentano sulla superficie recettori per l'antigene nè dei linfociti T e B.
- ❖ Riconoscono come non-self le cellule con bassa/nulla espressione di HLA-1, inducendone la lisi.
- * Funzione: riconoscere ed uccidere le cellule infettate da virus o batteri intracellulari e le cellule tumorali.
- ❖ Le cellule NK attivate liberano IFN-gamma e altre citochine (IL-1, GM-CSF) importanti nella regolazione dell'emopoiesi e delle risposte immunitarie.

Recettori inibitori

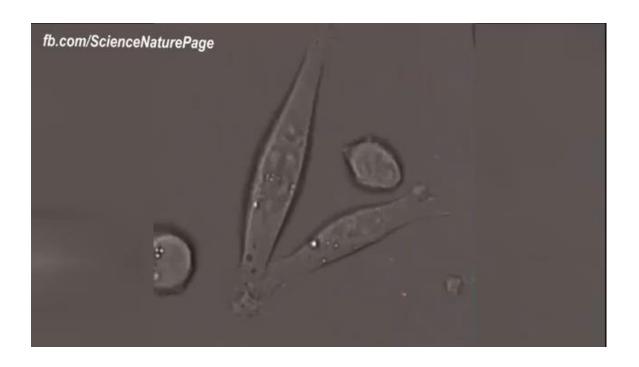

 La cellula NK dispone di recettori inibitori, che, se attivati, trasducono un segnale inibitorio alla cellula stessa impedendo di esplicare la sua azione litica.


Recettori attivatori


 La mancanza di attivazione dei segnali inibitori e la contemporanea attivazione dei segnali attivatori (recettori attivatori) provoca l'attivazione dei NK.


EFFETTI

- Apoptosi citolitica granulo-mediata
- Citotossicità cellulo mediata anticorpo dipendente



Linfociti NK

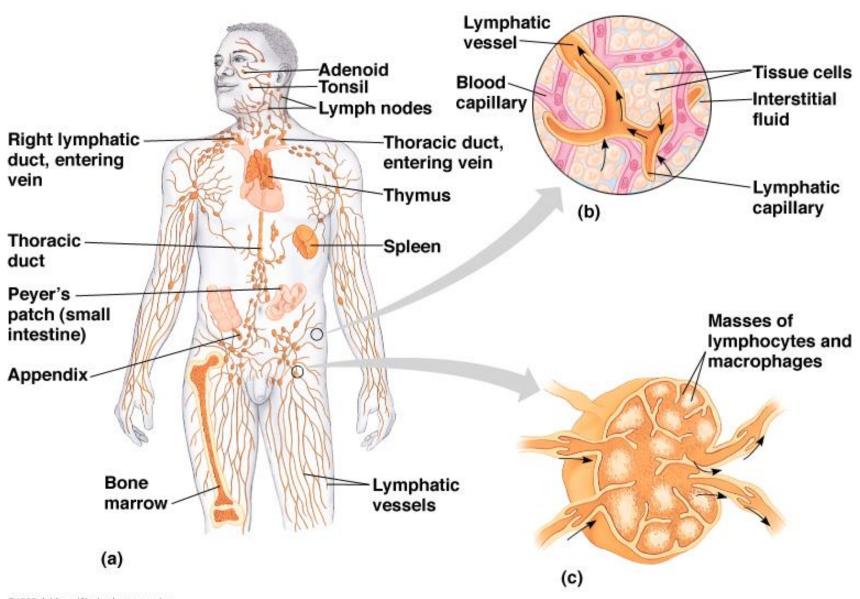
https://youtu.be/Va1jaBGwoT8

Gli organi del sistema linfatico

Organi linfatici primari

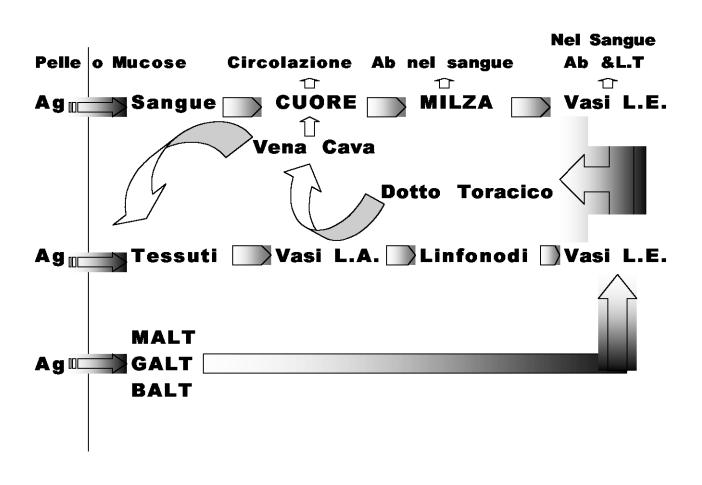
Midollo osseo

Origine di tutte le cellule del sistema immune e luogo di maturazione dei linfociti B


Timo

Luogo di maturazione dei linfociti T (educazione timica)

Organi linfatici secondari (riserva delle cellule immunitarie)


- •Milza (50% L.B, 30% L.T)
- Sistema linfatico
- Linfonodi
- Tonsille
- Adenoidi
- Placche del Peyer's
- Appendice
- Pelle

"Autostrade" del sistema immune

Destino dell'antigene dopo la penetrazione

DESTINO DELL'ANTIGENE DOPO LA PENETRAZIONE

Emocromo

WBC (Globuli bianchi)	6,08	x10^3/uL	4,00 - 10,00
RBC (Globuli Rossi)	4,59	x10^6/uL	4,50 - 6,00
HGB (Emoglobina)	13,30	gr/dl	13,00 - 17,50
HCT (Ematocrito)	38,90	%	38,00 - 48,00
MCV	84,70	fL	82,00 - 98,00
MCH	29,00	pg	27,00 - 32,00
MCHC	34,20	gr/dl	32,00 - 37,00
RDW-CV	12,40	%	11,50 - 14,50
PLT (Piastrine)	193	x10^3/uL	150 - 450
Formula Leucocitaria			
NEUT %	50,7	%	
LYMPH %	37,5	%	
MONO %	5,9	%	
EO %	5,6	%	
BASO %	0,3	%	
NEUT	3,08	x10^3/uL	
LYMPH	2,28	x10^3/uL	
MONO	0,36	x10^3/uL	
EO	0,34	x10^3/uL	
BASO	0,02	x10^3/uL	

Emocromo
Esame che valuta il
numero di globuli rossi,
globuli bianchi, piastrine
e diversi parametri
correlati

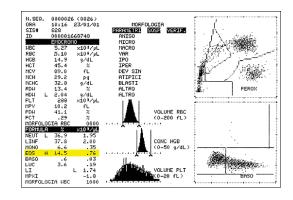


TABELLA 23.1. Principali forme di leucocitosi patologiche

FORME	PRINCIPALI CAUSE		
Neutrofilia (>8.000/μl)	Infezioni localizzate o diffuse sostenute da batteri, in particolare dai cocchi piogeni. Processi infiammatori, anche ad eziologia non infettiva. Neoplasie. Necrosi tissutali (ad esempio dopo gravi ustioni o dopo un infarto). Dopo emorragie.		
Eosinofilia (>700/μl)	Malattie allergiche. Infestioni da parassiti (in particolare da elminti, da ossiuri, da ascaridi). Linfoma di Hodgkin. Alcune malattie della cute.		
Basofilia (molto rara)	Neoplasie del sistema emopoietico. Alcune infezioni.		
Linfocitosi (> 4000/μl)	Spesso associata a neutrofilia, soprattutto nell'infanzia e nell'adolescenza. Infezioni virali. Tubercolosi, sifilide, brucellosi, toxoplasmosi.		
Monocitosi (>1500/μl)	Alcune malattie infettive (ad es. pertos croniche (tubercolosi).	sse, brucellosi, mononucleosi) e	
(* 1555.þ.)	Infezioni da protozoi. Sindromi mielodisplastiche.	TABELLA 23.2. Principali forme di leucopenie	

LEUCOCITOSI

&

LEUCOPENIE

FORME	PRINCIPALI CAUSE
Neutropenia (< 1500/μl)	Da ridotta produzione midollare Alcune malattie ereditarie (Sindrome di Kostman). Alcune malattie sistemiche. Infezioni molto gravi e durature da batteri (salmonelle brucelle etc.), da virus e da rickettsie. Iatrogene (farmaci antitumorali, radiazioni ionizzanti). Alcuni avvelenamenti. Da accelerata distruzione Malattie autoimmuni aventi per bersaglio i leucociti, Infezioni sistemiche gravi.
Linfopenia (< 1500/μl nell'adulto; < 3000 μl nel bambino)	Immunodeficienze ereditarie ed acquisite (vedi Cap. 6). Aplasia midollare. Malattie neoplastiche. latrogene: da glicocorticoidi, da farmaci immunosoppressori, da radiazioni. Da AIDS.

Malattie genetiche dei Leucociti

TABELLA 23.3. Principali difetti ereditari a carico dei leucociti

MALATTIA	CONSEGUENZA
Deficit dei granuli azzurofili dei neutrofili	Riduzione dell'attività microbicida (vedi Cap. 4).
Sindrome di Chediak-Higashi	Alterazioni della fagocitosi associata ad altri sintomi. Deficit di adesione leucocitaria. Infezioni batteriche ricorrenti per deficiente espressione di molecole di adesione sulla super- ficie dei leucociti, che riduce la loro partecipazione al pro- cesso flogistico (vedi Cap. 6).
Deficit di mieloperossidasi	Ridotta capacità difensiva verso alcuni microrganismi con frequente comparsa di candidosi (vedi Cap. 5).
Sindrome di Giobbe	Infezioni batteriche ricorrenti conseguenti ad alterazioni della chemiotassi leucocitaria. Incremento della sintesi di IgE con conseguenti manifestazioni atopiche (vedi Cap. 6).
Malattia granulomatosa cronica	Infezioni recidivanti a causa di alterazioni del metabolismo ossidativo dei polimorfonucleati e dei monociti che determinano riduzione dell'attività microbicida e rilascio di citochine attive sui monociti/macrofagi, che favoriscono la formazione di granulomi in tutti gli organi (vedi Cap. 5).

Autoanalisi in FARMACIA

Jn questa farmacia autoanalisi

EMOCROMO

completo del sangue

18 parametri tra cui i valori di:

- > globuli bianchi e formula leucocitaria
- globuli rossi con ematocrito ed emoglobina, ecc.
- piastrine, ecc.

Micros Care ST offre alle Farmacie la stessa affidabilità e precisione analitica comune a tutti gli analizzatori HORIBA Medical usati presso le più importanti strutture Ospedaliere e Laboratori Analisi in tutto il mondo

•	Parametro analitico singolo	euro 5
•	Quadro completo lipidemia	euro 18
•	Emocromo Completo	euro 18
•	Emoglobina Glicata	euro 18

- Oggi, è possibile effettuare le autoanalisi direttamente in farmacia senza lunghe attese e senza perdere giorni di lavoro.
- In pochi minuti e con solo una goccia di sangue si possono ottenere preziose informazioni sul nostro stato di salute: controllare, ad esempio, la funzionalità di reni e fegato, oppure misurare il livello del colesterolo, trigliceridi, glicemia ed altro ancora.
- La Farmacia offre da oggi la possibilità di effettuare delle autoanalisi ancora più approfondite utilizzando gli strumenti più all'avanguardia autorizzati dal ministero della sanità
- la Farmacia offre a disposizione del cliente/paziente, in esclusiva, la possibilità di valutare i propri livelli di emoglobina glicata, il parametro più importante per la prevenzione della patologia diabetica e per monitorare l'andamento della glicemia nel tempo, e anche di effettuare l'emocromo; grazie alle nuove tecnologie messe a disposizione è possibile anche in pochissimi minuti misurare con un unico prelievo capillare dal dito i livelli di colesterolo totale, buono, cattivo e i trigliceridi.

Autoanalisi sangue con Samsung LABGEO PT10S

