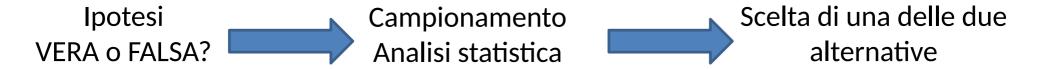


Distribuzione Normale Lezione 3

Statistica = scienza dell'incertezza

PROBABILITÀ ALLA BASE DELL'INFERENZA



Qui entra in gioco la probabilità

Introduzione alla probabilità

La probabilità è un valore numerico che rappresenta la possibilità che un particolare evento si verifichi

È una proporzione che varia fra 0 e 1 (0-100%)

Probabilità di un evento= X / T

X=numero di casi nei quali l'evento si verifica

T=numero totale di casi

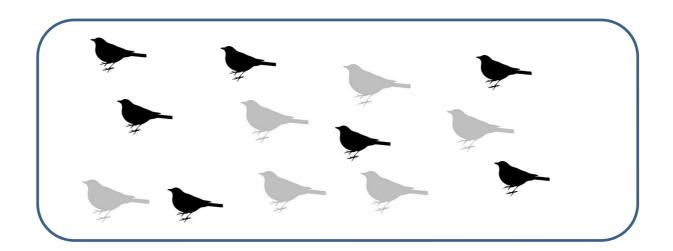
Introduzione alla probabilità

Esempio

N = 13

M=7

F=6



Qual è la probabilità di estrarre un maschio?

P=

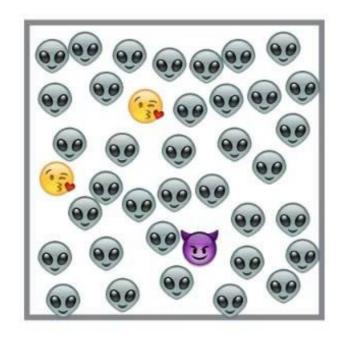
Introduzione alla probabilità

Esempio: probabilità di superare l'esame di statistica=0.8

N=120 studenti iscritti

Quanti studenti supereranno l'esame al primo colpo?

Un indice probabilistico di diversità



Specie 1 = 36 individui

Specie 2 = 2 individui

Specie 3 = 1 individuo

Indice di Diversità di Simpson

$$D = 1 - \left(\frac{\sum n(n-1)}{N(N-1)}\right)$$

Probabilità del 15% di pescare a caso due individui appartenenti a specie differenti

D = 1-
$$\left(\frac{(36(36-1)+2(2-1)+1(1-1))}{39(39-1)}\right)$$

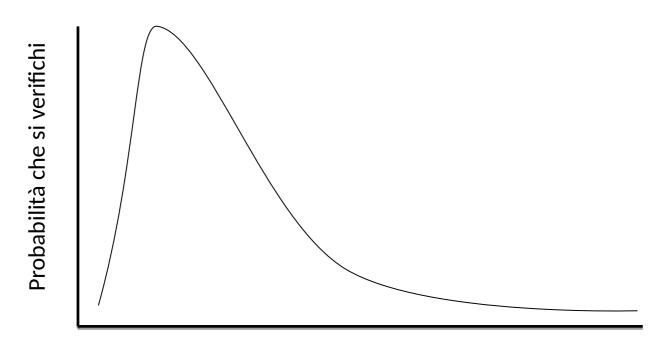
D = 1- $\left(\frac{(1260)+(2)+(0)}{1482}\right)$
D = 1- $\left(\frac{1262}{1482}\right)$

$$D = 1 - 0.85$$

$$D = 0.15$$

Distribuzione di probabilità

Spesso ci interessa costruire una distribuzione di probabilità che ci permetta di calcolare la probabilità esatta che un qualsiasi risultato della variabilie si verifichi



Valore o risultato della varibile

Distribuzione di probabilità

Esistono molte distribuzioni ma solo alcune vengono utilizzate frequentemente in statistica

Variabili discrete:	Variabili continue:

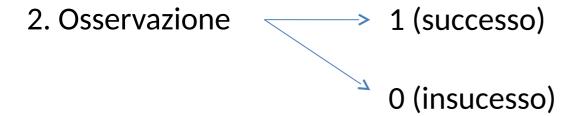
Binomiale Normale

Poisson

F

Descrive il numero di successi in un campione di n osservazioni

1. Numero finito di osservazioni (n)

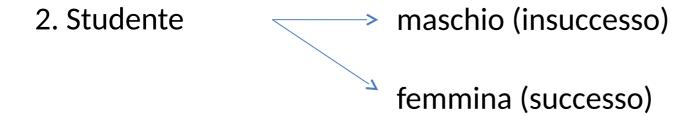


3. Probabilità nota e costante che si verifichi un successo

4. Indipendenza della osservazioni

Numero di studenti maschi in una classe di 50 studenti (25 F-25 M)

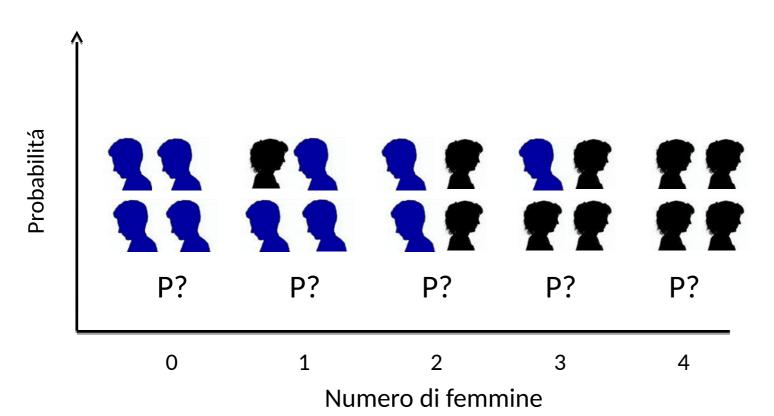
1. Numero finito di osservazioni=n

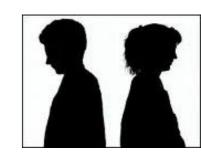


- 3. Probabilità nota e costante che si verifichi un successo=25/50
- 4. Indipendenza della osservazioni: campionamento casuale

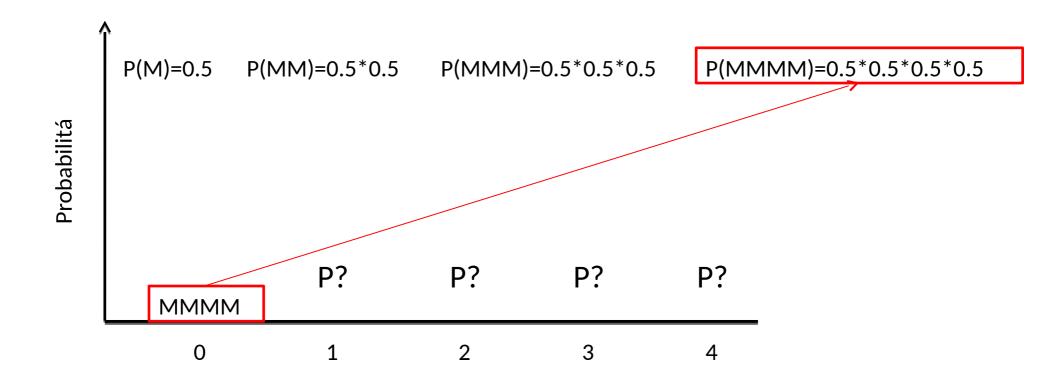
Estrazione di 4 studenti (n=4)

Probabilità di estrarre una femmina=0.5



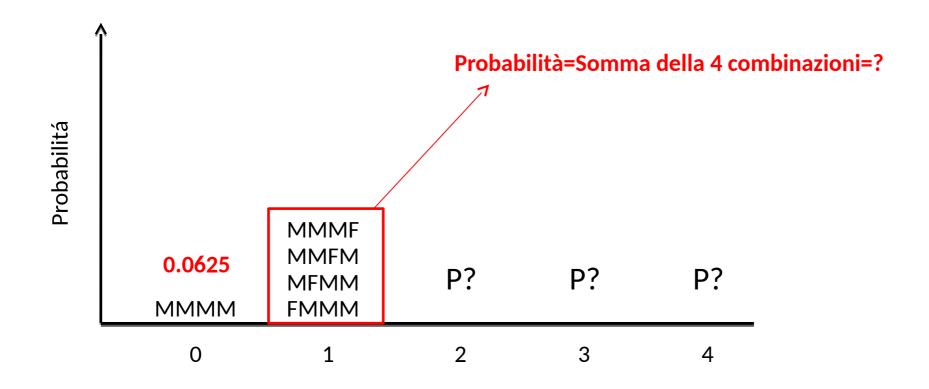


Estrazione di 4 studenti (n=4)



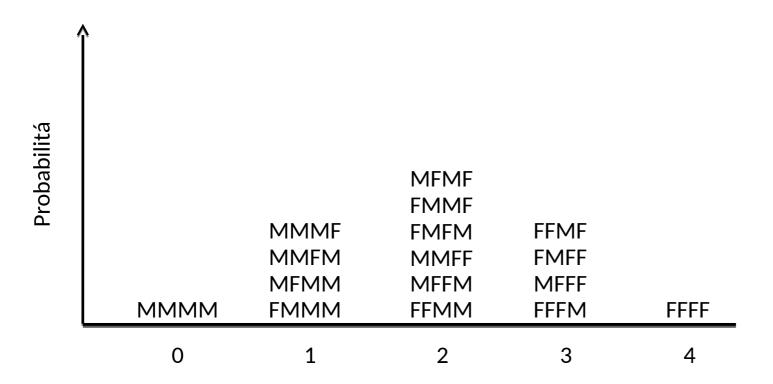
P(XXXX)=prodotto delle probabilità dei singoli eventi in una combinazione

Estrazione di 4 studenti (n=4)



P(XXXX)=Somma delle probabilità delle varie combinazioni

Estrazione di 4 studenti (n=4)



La somma di tutte queste probabilità è 1

Calcolo di Probabilità: Permutazioni Semplici

Dato un insieme di n oggetti differenti a1, a2, a3, ..., an, si chiamano permutazioni semplici tutti i sottoinsiemi che si possono formare, collocando gli n elementi in tutti gli ordini possibili.

Il numero di permutazioni di n elementi è

$$P = n!$$

dove n! (n fattoriale) è il prodotto degli n elementi: n! = 1•2 •3•...•n.

Esempio: le permutazioni di 3 elementi abc P=??

PER DEFINIZIONE: 0! = 1 e 1!=1

Calcolo di Probabilità: Permutazioni Semplici

Tabella dei fattoriali di interi (per facilitare i calcoli).

n	n!	n	n!
1	1	26	4.03291 x 10 ²⁶
2	2	27	1.08889×10^{28}
3	6	28	3.04888×10^{29}
4	24	29	8.84176×10^{30}
5	120	30	2.65253×10^{32}
6	720	31	8.22284×10^{33}
7	5040	32	2.63131×10^{35}
8	40320	33	8.68332×10^{36}
9	362880	34	2.95233 x 10 ³⁸
10	3.62880×10^{6}	35	1.03331×10^{40}
11	3.99168×10^7	36	3.71993×10^{41}
12	4.79002×10^{8}	37	1.37638 x 10 ⁴³
13	6.22702 x 10 ⁹	38	5.23023 x 10 ⁴⁴
14	8.71783×10^{10}	39	2.03979×10^{46}
15	1.30767×10^{12}	40	8.15915 x 10 ⁴⁷
16	2.09228×10^{13}	41	3.34525 x 10 ⁴⁹
17	3.55687×10^{14}	42	1.40501×10^{51}
18	6.40327×10^{15}	43	6.04153×10^{52}
19	1.21645×10^{17}	44	2.65827×10^{54}
20	2.43290×10^{18}	45	1.19622 x 10 ⁵⁶
21	5.10909×10^{19}	46	5.50262 x 10 ⁵⁷
22	1.12400×10^{21}	47	2.58623 x 10 ⁵⁹
23	2.58520×10^{22}	48	1.24139 x 10 ⁶¹
24	6.20448×10^{23}	49	6.08282×10^{62}
25	1.55112×10^{25}	50	3.04141×10^{64}

Calcolo di Probabilità: Disposizioni Semplici

Dato un insieme di n oggetti differenti a1, a2, a3, ..., an si chiamano disposizioni semplici I sottoinsiemi di p elementi che si diversificano almeno per un elemento o per il loro ordine. Le disposizioni delle 4 lettere a,b,c,d, raggruppate 3 a 3 sono: abc, acb, bac, dba, bda, abd, ecc.

Il numero di disposizioni semplici di n elementi p a p è

$$D_n^p = \frac{n!}{(n-p)!}$$

Esempio 1: le disposizioni di 4 elementi 3 a 3 sono:

$$D_4^3 = \frac{4!}{(4-3)!} = \frac{24}{1} = 24$$

Derivato dalla semplificazione di questa formula, un altro modo per calcolare le disposizioni semplici di n elementi p a p è:

$$D_n^p = n(n-1)(n-2)...(n-p+1)$$

Calcolo di Probabilità: Combinazioni Semplici

Dato un insieme di n oggetti differenti a1, a2, a3, ..., an, si chiamano combinazioni semplici di n elementi p a p i sottoinsiemi che si diversificano almeno per un elemento, ma non per il loro ordine.

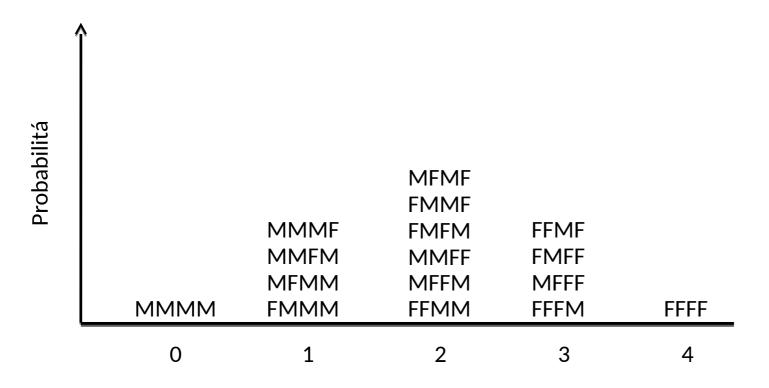
Le combinazioni semplici delle 4 lettere a,b,c,d, 3 a 3 sono: abc, abd, acd, bcd.

Il numero di combinazioni semplici di n elementi p a p è

$$C_n^p = \frac{n!}{(n-p)! \, p!}$$

Sotto l'aspetto del calcolo e dal punto di vista concettuale, il numero di combinazioni di n elementi p a p corrisponde al rapporto tra il numero di disposizioni di n elementi p a p ed il numero di permutazioni di p elementi.

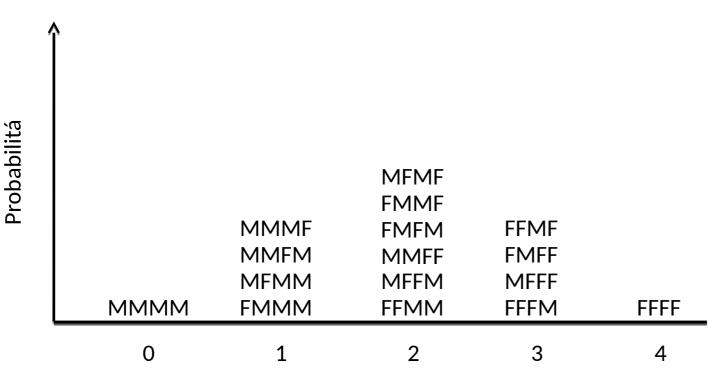
Estrazione di 4 studenti (n=4)



La somma di tutte queste probabilità è 1

Calcolo delle probabilità - Distribuzione binomiale

Estrazione di 4 studenti (n=4)



$$P(x) = \binom{n}{x} * p^x * (1-p)^{n-x}$$

n = numero di prove

x = numero di successi

p = probabilità di successo

1 - p = probabilità di insuccesso

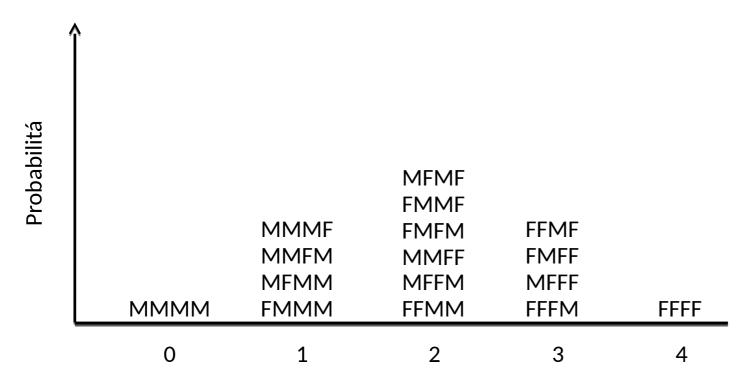
Coefficiente Binomiale

$$\binom{n}{x} = \frac{n!}{x! * (n-x)!}$$

n combinato x

Esempio

Estrazione di 4 studenti (n=4)



 $P(x) = \binom{n}{x} * p^x * (1-p)^{n-x}$

n = numero di prove

x = numero di successi

p = probabilità di successo

1 - p = probabilità di insuccesso

Coefficiente Binomiale

$$\binom{n}{x} = \frac{n!}{x! * (n-x)!} = C_{n}^{X}$$

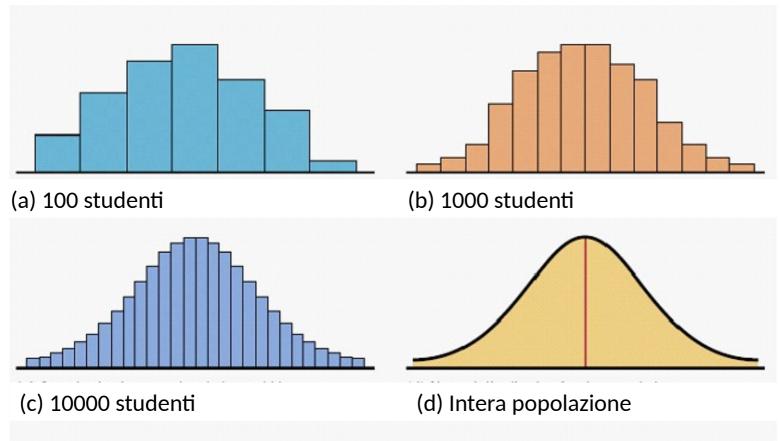
n combinato x

$$C_{4}^{2} = 6$$

 $C_{4}^{3} = 4$

Distribuzione normale

Istogramma della distribuzione delle altezze

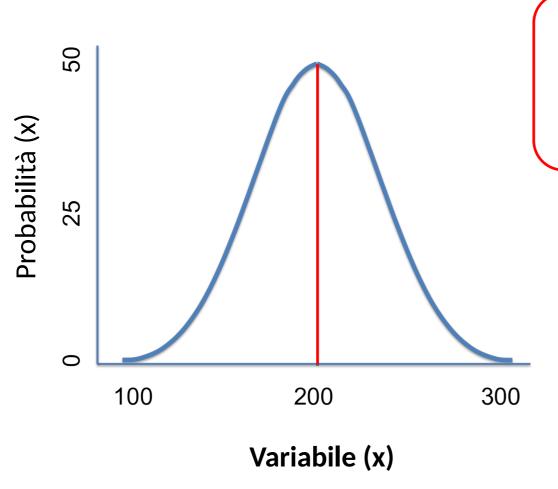


Molte variabili continue seguono questa distribuzione!!!

La frequenza diventa una probabilità

Distribuzione normale

Per ogni valore della variabile ho una probabilità: una variabile continua spesso assume la distribuzione normale



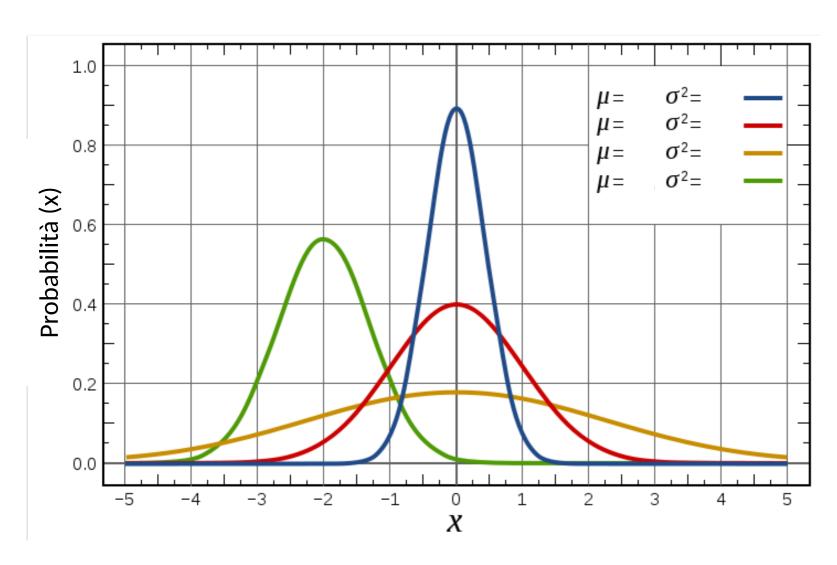
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

1. Distribuzione simmetrica attorno alla media

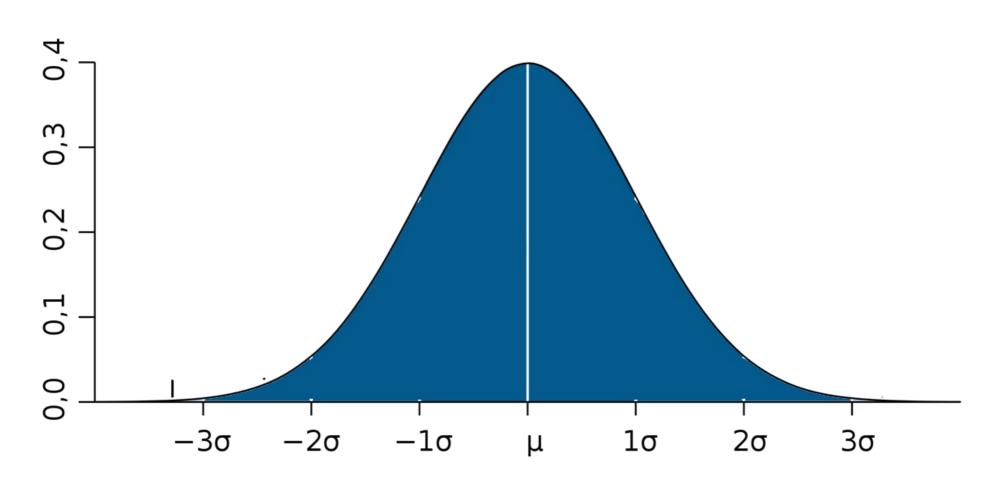
2. La "larghezza" dipende dalla variabilità della popolazione

Distribuzione normale: i due parametri chiave

Esistono infinite distribuzioni a seconda della media e varianza

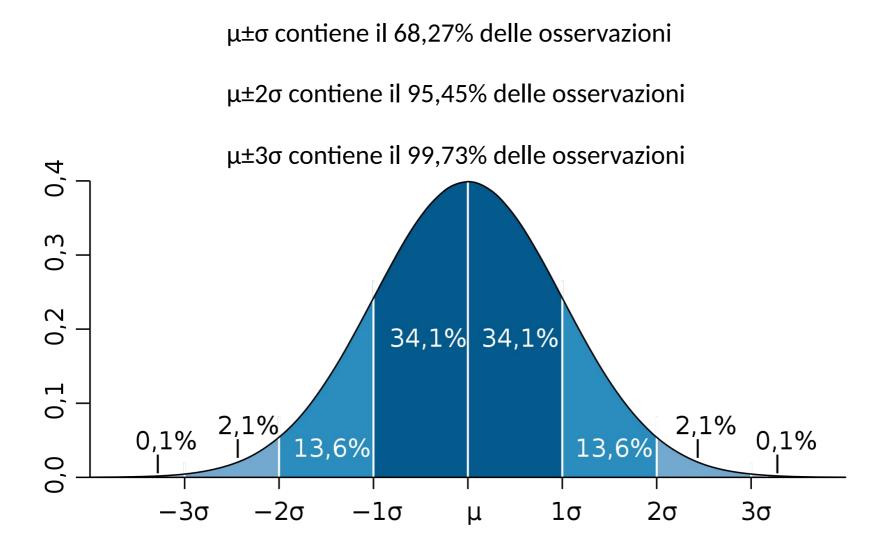


L'area sotto la curva è sempre pari a 1 (100% probabilità)



Distribuzione normale

Media e unità di SD definiscono degli intervalli di probabilità



Distribuzione di probabilità continue: Normale

Media e unità di SD definiscono degli intervalli di valori determinati

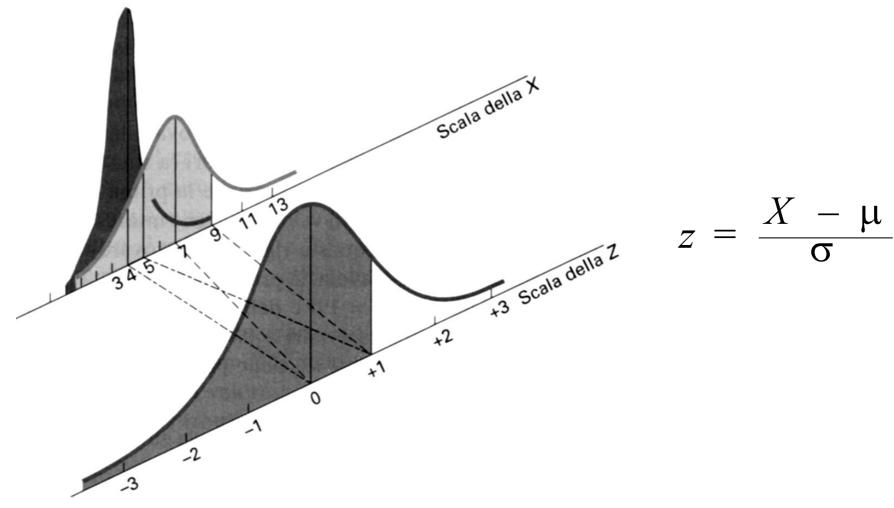
μ±0.647σ contiene il 50% delle osservazioni

μ±1.960σ contiene il 95% delle osservazioni

 μ ±2.576 σ contiene il 99% delle osservazioni

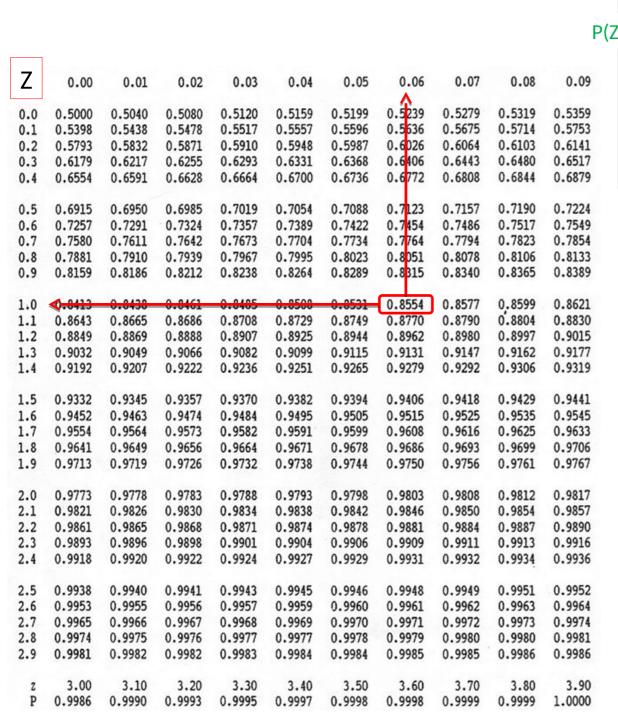
Come ottenere questi valori?

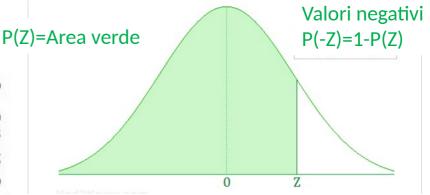
Ogni curva nomale con media μ e deviazione standard σ può essere trasformata in una curva normale standardizzata z (μ =0 e σ =1)



Curva normale standardizzata z (μ =0 e σ =1)

Curva normale standard z (μ =0 e σ =1)





P(1.06)=0.8554

P(-1.06)=1-0.8554=0.1446

La distribuzione normale: Usi

1. Testare semplici ipotesi sulla probabilità di estrarre da una popolazione osservazioni con determinati valori della variabile (es. qual è la probabilità di estrarre uno studente che beve più di 10 birre alla settimana?)

2. Molti test e analisi statistiche richiedono, per essere applicati, che le variabili seguano una distribuzione normale (statistica inferenziale) (vedi prossime lezioni)

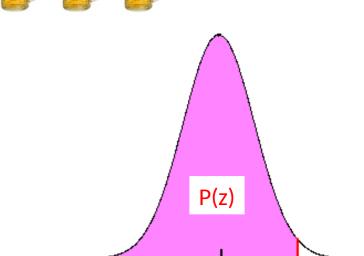
Valutare la normalità di una distribuzione (assunzioni)

Esempio 1

Qual è la probabilità di estrarre uno studente che beva più di 5 birre alla settimana?

Procedimento

- 1. Ci serve media e dev. st. della popolazione ($\mu = 3 e \sigma = 2$)
- 2. Trasformare X in z
- 3. Cercare il valore di z(x=5)
- 4. Trovare la valore di probabilità P(z) di z(x=5)



z(x=10)

Esempio 2

Qual è la probabilità che uno studente beva da 1 a 3 birre alla settimana?