
Chapter 1

The Statistical Operator

We introduce the statistical operator formalism. After defining the statistical operator and its main properties,
we reformulate Quantum Mechanics in this new formalism. Next, we present some of the possible representations
of the statistical operator in the phase space. Examples follow along the way.

1.1 Statistical Operator and Density Matrix

In describing quantum mechanical systems, often for simplicity one assumes that the state of the system is
perfectly known. However, as for classical systems, this is not true in reality. Usually, we have only a partial
knowledge of the system, and the best we can know is represented by

{ k, pk} with
X

k

pk = 1, (1.1)

where  k are the possible states of the system, and pk the probabilities for each of them to be the actual state
of the system. This is called a statistical mixture. Note that this mixture reflects a classic ignorance about the
system, that is not related to quantum indeterminism.

Clearly each state  k evolves according to the Schrödinger equation and the usual rules of Quantum Mechanics
(QM) apply to each of them. In particular, for a system in a state described by the mixture in Eq. (1.1) the
probability for an outcome on associated to the eigenstate |oni of an observable Ô is

P[on] =
X

k

pk| hon| ki |2, (1.2)

which shows a mixing of classical ignorance (determined by pk) and quantum indeterminism (given by
|hon| ki|2). Proceeding this way is possible although not ideal, since one has to consider each state separately.
A more convenient way is provided by the density matrix or statistical operator formalism.

The statistical operator is defined as follows:

⇢̂ =
X

k

pk | ki h k| . (1.3)

To understand the physical meaning of ⇢̂, let {|aii}i be a basis of the Hilbert space H, of dimension n, associated
to the quantum system. Then, we can represent the statistical operator as a matrix:
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⇢̂ ! ⇢ij =

0

BBB@

ha1|⇢̂|a1i ha1|⇢̂|a2i . . . ha1|⇢̂|ani
ha2|⇢̂|a1i ha2|⇢̂|a2i . . . ha2|⇢̂|ani

...
...

...
han|⇢̂|a1i han|⇢̂|a2i . . . han|⇢̂|ani

1

CCCA
, (1.4)

which is called the density matrix. In practice, the density matrix and the statistical operator are often used as
synonymous, as we will do. However, as a matter of principle, the density matrix is the representation of the
statistical operator with respect to a specific basis.

Example 1.1
Let us consider a system with two degrees of freedom. The associated Hilbert space H is two-dimensional;
let {|0i, |1i} be a basis of H. Let us consider the state

|+i =
1p
2

(|0i + |1i) .

The corresponding statistical operator is

⇢̂ = |+ih+| =
1

2
(|0ih0| + |0ih1| + |1ih0| + |1ih1|) ,

while the density matrix with respect to the chosen basis is

⇢ij =

✓
h0|⇢̂|0i h0|⇢̂|1i
h1|⇢̂|0i h1|⇢̂|1i

◆
=

1

2

✓
1 1
1 1

◆
.

The di↵erent elements of the density matrix have specific physical meanings. The diagonal elements are

hak|⇢̂|aki = hak| ih |aki = |hak| i|2, (1.5)

which represent the probabilities for the system to be found in state |aki upon a measurement of the observable
Â =

P
k ak |aki hak|. The o↵-diagonal elements instead are

hak|⇢̂|aji = hak| ih |aji, (1.6)

which are di↵erent from 0 only if the state | i has components both with respect to the basis states |aki and
|aji. As such, the o↵-diagonal elements measure the presence of quantum coherence among the di↵erent states
of a chosen basis. It is important to remember that the information provided by the density matrix is always
relative to the chosen basis. This is made clear by the following example.

Example 1.2
Instead of representing the statistical operator in Example 1.1 with respect to the basis {|0i, |1i}, we now
represent it with respect to the basis {|+i, |�i}, where

|+i =
1p
2

(|0i + |1i) , |�i =
1p
2

(|0i � |1i) .

Then, the corresponding density matrix reads

⇢̃ij =

✓
h+|⇢̂|+i h+|⇢̂|�i
h�|⇢̂|+i h�|⇢̂|�i

◆
=

✓
1 0
0 0

◆
.
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The meaning of the matrix elements is that with certainty the system is in state |+i (the corresponding
diagonal element is equal to 1), and there is no quantum coherence between the two basis states |+i and
|�i (the o↵-diagonal elements are null).

1.2 The physical meaning of the density matrix elements

From the previous discussion, it is clear that the diagonal elements of the density matrix have a direct physical
interpretation as probabilities of outcomes of suitable measurements, see Eq. (1.5). On the other hand, the
o↵-diagonal elements in general are complex numbers and as such they cannot be directly associated to an
observable. The following two examples provide a better understanding of the physical meaning of the o↵-
diagonal elements of the density matrix.

Example 1.3
Consider a mixture in which the state of the system is in

|0i with probability 1/2, and |1i with probability 1/2.

The corresponding statistical operator is

⇢̂ = 1
2 (|0ih0| + |1ih1|) ,

and the associated density matrix with respect to the basis {|0i, |1i} is:

⇢ij =
1

2

✓
1 0
0 1

◆
.

The diagonal elements indicate that the probability of finding the system in state |0i or |1i is 1/2, consistently
with the mixture associated to the density matrix. The fact that the o↵ diagonal elements are 0 indicates
that no quantum coherence among the two basis states can be observed, since the system is never in a
quantum superposition of |0i and |1i.

Example 1.4
Consider the following statistical mixture, which is physically di↵erent from that of Example 1.3:

|+i =
1p
2

(|0i + |1i) with probability 1/2,

|�i =
1p
2

(|0i � |1i) with probability 1/2.

Now, a straightforward calculation shows that the statistical operator is the same as that in Example 1.3:

⇢̂ =
1

2
(|0ih0| + |1ih1|) ,

and therefore also the associated density matrix with respect to the basis {|0i, |1i} is the same

⇢ij =
1

2

✓
1 0
0 1

◆
.
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Accordingly, the physical interpretation of the diagonal and o↵-diagonal elements is also the same: no
quantum interference is detected in spite of the fact that each state contributing to the statistical mixture
is in a superposition.

The physical situations described in the two Examples above are quite di↵erent. In Example 1.3, the system
is not in a superposition of the basis states |0i and |1i, while it is in Example 1.4. Nevertheless, the density
matrix is the same in both cases. These two Examples teach us something important: the statistical operator
formalism is a many-to-one map between the set of statistical mixtures and the set of statistical operators:
di↵erent statistical mixtures can be associated to the same statistical operator.

1.3 Propriesties of the Statistical Operator

The statistical operator as defined in Eq. (1.3), i.e. ⇢̂ =
P

k pk | ki h k|, shares three important properties.

1. It is a linear operator; given two vectors | i , |�i 2 H and two coe�cients a, b 2 C, one has:

⇢̂ (a | i + b |�i) =
X

k

pk | ki h k| (a | i + b |�i) ,

=

 
a
X

k

pk | ki h k| i + b
X

k

pk | ki h k|�i
!
,

= a⇢̂ | i + b⇢̂ |�i .

(1.7)

2. It is a positive operator:

h |⇢̂| i =
X

k

pk h | ki h k| i =
X

k

pk| h | ki |2, (1.8)

which is non-negative for every | i since pk � 0.
3. The trace is 1; given a basis {|�ni} of the Hilbert space, we have:

Tr [⇢̂] =
X

n

h�n|
 
X

k

pk | ki h k|
!

|�ni ,

=
X

k

pk

 
X

n

|h�n| ki|2
!
,

=
X

k

pk|| k||2 =
X

k

pk = 1,

(1.9)

where in the last line we used the fact that the vectors | ki defining the statistical mixture associated to the
statistical operator are normalized, and that the probabilities pk sum to 1.

These three conditions turn out to be not only necessary but also su�cient conditions to characterize a
statistical operator. As a matter of fact, let us consider a linear and positive operator ⇢̂ over finite dimensional
Hilbert space H. Then, ⇢̂ is self-adjoint (this follows from its positivity), and therefore it admits a spectral
decomposition in the form

⇢̂ =
X

k

�k | ki h k| , (1.10)

where { �k } are non-negative eigenvalues and { | ki } are orthonormal eigenstates of ⇢̂. The trace condition
implies that

P
k �k = 1, meaning that the coe�cient { �k } can be interpreted as probabilities. This allows to

call ⇢̂ a statistical operator.
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Note that, while the decomposition of the statistical operator as an ensemble of state in general in not
unique (as discussed in the previous section), the spectral decomposition instead is unique. Moreover, for a
generic statistical mixture the states need not to be orthogonal, while for the mixture associated to the spectral
decomposition they are.

1.4 Pure states and statistical mixtures

There are two important classes of statistical operators, which are called respectively pure states and statistical
mixtures.

- Pure states: A statistical operator represents a pure state when it corresponds to a unique vector in the
Hilbert space. In such a case, it can be represented as

⇢̂ = | i h | . (1.11)

Here, one has maximal knowledge about the states of the system, compatibly with the rules of quantum
mechanics (the indeterminacy principle still applies).

- Statistical mixture: When the state is not pure, we have a statistical mixture reading

⇢̂ =
X

k

pk | ki h k| , (1.12)

where, of course, more than one probability pk is di↵erent from zero.

Given a density matrix, it is not always straightforward to understand if it corresponds to a pure state or to
a statistical mixture. A first criterion to discriminate between the two is based on the purity of the state. For a
pure state one has that

⇢̂2 = ⇢̂. (1.13)

Exercise 1.1
Prove that the relation in Eq. (1.13) holds for pure states.

This result can be summarized in the following theorem.

Theorem 1.1. A statistical operator ⇢̂ is pure if and only if ⇢̂2 = ⇢̂, otherwise it is a statistical mixture.

When the dimension of the Hilbert space is large, it is not computationally easy to compare ⇢̂ with ⇢̂2, and
a simpler criterion is desirable. The following theorem is easy to prove.

Theorem 1.2. Let ⇢̂ be a statistical operator. Then, in general one has that

Tr
⇥
⇢̂2
⇤

 1, (1.14)

where the equality holds if and only if ⇢̂ is a pure state.

Exercise 1.2
Prove that the relation in Eq. (1.14).

Computing the trace of a matrix is computationally easier than comparing two matrices, as the first operation
scales with the dimension of the Hilbert space and the second with its square. Therefore, Theorem 1.2 is that
commonly used to verify the purity of a state.
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1.5 The Bloch Sphere

Two dimensional quantum systems are the easiest example of quantum systems, and they are typically used
to set the ground for studies of more complex systems. Moreover, they are particularly relevant since they can
encode the qubit, the unit of quantum information. Let us then consider a two dimensional Hilbert space H and
its computational basis { |0i , |1i }, which is commonly known as the computational basis. A density matrix ⇢̂
on H when represented on a basis becomes a 2 ⇥ 2 matrix of the form

⇢ =

✓
a b
c d

◆
, with a, b, c, d 2 C. (1.15)

In principle, these four coe�cients represent 8 degrees of freedom. However, one can show that the density
matrix can be written in terms of three real numbers as follows

⇢ =
1

2

✓
1 + rz rx � iry
rx + iry 1 � rz

◆
,

=
1

2

✓
1 0
0 1

◆
+ rx

✓
0 1
1 0

◆
+ ry

✓
0 �i
i 0

◆
+ rz

✓
1 0
0 �1

◆�
,

=
1 + r · �

2
,

(1.16)

where � = (�x,�y,�z) are the Pauli matrices and r = (x, y, z) three real coe�cients, where |r|  1. We see that
the density matrix is fully controlled by the three-dimensional vector r, which is called the Bloch vector.

Exercise 1.3
Prove that, by imposing i) ⇢̂† = ⇢̂, ii) Tr [⇢̂] = 1, iii) ⇢̂ � 0, one can describe a two dimensional density
matrix as in Eq. (1.16).

Let us consider the square of ⇢̂

⇢̂2 =

 
1̂ + r · �̂

2

!2

,

=
1

4

0

@1̂ + 2r · �̂ +
X

ij

rirj �̂i�̂j

1

A ,

=
1

4

0

@1̂ + 2r · �̂ + ||r||2 + i
X

ij

rirj✏ijk�̂k

1

A ,

(1.17)

where we used the relation �̂i�̂j = �ij 1̂ + i
P

k ✏ijk�̂k with ✏ijk indicating the Levi-Civita symbol (described by
having ✏123 = 1 and being odd for any permutation of two indexes). It follows that

Tr
⇥
⇢̂2
⇤

=
1

2

�
1 + ||r||2

�
. (1.18)

Given the results of the previous section, the condition Tr
⇥
⇢̂2
⇤

 1 implies that ||r||2  1, where the equality
holds only for pure states. This leads to a rather natural way of representing the Bloch vector as a point of a
sphere of radius 1, which is called the Bloch sphere. Each point inside the sphere or on its surface represents a
density matrix. If the point lies on the surface, it represents a pure state. If it is inside, it represents a statistical
mixture.
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Example 1.5
The maximally mixed state is ⇢̂ = 1̂/2. In this case r = 0, which corresponds to the center of the Bloch
sphere.

A (pure) state vector can be written as | i = a |0i+ b |1i, where its normalization implies that |a|2 + |b|2 = 1.
Given such a constraint on the norm, it also admits a Bloch representation

| i = cos
✓

2
|0i + ei' sin

✓

2
|1i , (1.19)

which is unique, up to an unimportant global phase. The associated density matrix reads

⇢ =

✓
cos2 ✓

2 e�i' cos ✓
2 sin ✓

2
e�i' cos ✓

2 sin ✓
2 sin2 ✓

2

◆
, (1.20)

whose Bloch vector is
r = (sin ✓ cos', sin ✓ sin', cos ✓) , (1.21)

and represents, in spherical coordinates, a point on the surface of the Bloch sphere (indeed, here we have
||r|| = 1). We see that the Bloch sphere representation of a pure state is the same whether ones considers the
representation of the state vector or that of the corresponding density matrix, as it should be. The computational
basis vectors |0i and |1i, which are also eigenstates of �̂z, correspond to the intersection between the Bloch sphere
and the z axis. Similarly, the eigenstates of �̂x correspond to the intersection with the x axis, and those of �̂y
with the axis y, see Fig. 1.1.

Out[6]=

general qubit state

8q,f<
8q =1.037, f =5.906< »qubit\=K 0.869

0.461 - 0.182 ‰ O

»0\= 1
0

»1\= 0
1

1

2

1
‰

1

2

1
-‰

1

2

1
1

1

2

1
-1

Fig. 1.1: Representation of the state |qubiti in the Bloch sphere (red arrow). The eigenstates of �̂i, i = x, y, z,
are also explicitly represented.
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Exercise 1.4
Prove that the Bloch vector r appearing in Eq. (1.16) can be obtained from r = Tr [�̂⇢̂].

1.6 Quantum Mechanics in the Density Matrix formalism

It is quite straightforward to rewrite the axioms of QM in density matrix formalism. The rules are the following.

States. To every physical system, an Hilbert space H is associated. The state of the system is represented by a
statistical operator ⇢̂. We remind that they admit the following decomposition

⇢̂ =
X

k

pk | ki h k| , with
X

k

pk = 1, (1.22)

where the states | ki are normalized.

Evolution. Since each state | ki evolves according to the Schrödinger equation, it follows that the evolution of
⇢̂ is given by

i~ d

dt
⇢̂t =

X

k

pk

✓
i~ d

dt
| ki

◆
h k| + | ki

✓
i~ d

dt
h k|

◆�
, (1.23)

which amounts to

i~ d

dt
⇢̂t =

h
Ĥ, ⇢̂t

i
, (1.24)

to be solved with the initial condition ⇢̂0 = ⇢̂. This is known as von-Neumann-Liouville equation. It should be
clear that its dynamics content is equivalent to that of the Schrödinger equation.

The formal solution of the von-Neumann-Liouville equation is provided by

⇢̂t = Ût⇢̂0Û
†
t , with Ût = exp

h
�iĤt/~

i
, (1.25)

where, for simplicity, we are considering the case of a time independent Hamiltonian. Due to the cyclic property

of the trace (Tr
h
ÂB̂Ĉ

i
= Tr

h
ĈÂB̂

i
), and since Ût is unitary, one has

Tr [⇢̂t] = Tr
h
Ût⇢̂0Û

†
t

i
= Tr

h
Û†
t Ût⇢0

i
= Tr [⇢̂0] = 1, (1.26)

indicating that trace is preserved, as it should be. Physically, it means that the probabilities are conserved.
This is a property inherited from the Schrödinger equation. Also the trace of the square of the density matrix
is conserved:

Tr
⇥
⇢̂2t
⇤

= Tr
h
Ût⇢̂0Û

†
t Ût⇢̂0Û

†
t

i
= Tr

h
Ût⇢̂0⇢̂0Û

†
t

i
= Tr

⇥
⇢̂20
⇤
. (1.27)

This means that pure states are mapped into pure states. Again, this is not a surprise, since a state vector re-
mains a state vector under the Schrödinger evolution. Similarly, statistical mixtures are mapped into statistical
mixtures: our ignorance about the state of the system propagates (linearly) during the evolution.

Observables. Observable quantities are represented by self-adjoint operators on H. This axiom does not change
with respect to the usual one.

Measurements. Since we are working within the quantum formalism, the possible outcomes of a (ideal) measure-
ment of an observable A correspond to the eigenvalues an of the corresponding self-adjoint operator Â, whose
spectrum is assumed to be discrete for simplicity. The outcomes are randomly distributed according to the Born
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rule. In the language of the density matrix, these statements translate as follows. Given the state

⇢̂ =
X

k

pk | ki h k| (1.28)

one has that the probability of having an as an outcome of the measurement is given by

P[an] =
X

k

pk| han| ki |2 =
X

k

pk han| ki h k|ani = han|⇢̂|ani , (1.29)

where the first equality encodes the Born rule (| han| ki |2) with an average over our ignorance about the state of
the system (the sum over k with weights pk). Let us consider the projection operator P̂n = |ani han| associated
to the eigenvalue an. It is quite simple to see that an equivalent way of writing Eq. (1.29) is

P[an] = Tr
h
P̂n⇢̂

i
. (1.30)

In a similar way, one can show that the expectation value of an observable is

hÂi = Tr
h
Â⇢̂

i
. (1.31)

State collapse. The density matrix allows to describe two di↵erent types of measurements, with associated state
collapse. The first type is called selective measurement, and corresponds to that usually described in textbooks.
Assuming that the outcome of the measurements of the observable Â is an, then the state collapses to the
corresponding eigenstate, whatever the initial state was. In the density matrix formalism, this corresponds to:

⇢̂before ) ⇢̂after = |ani han| , (1.32)

which can be rewritten as

⇢̂before ) ⇢̂after =
P̂n⇢̂P̂n

Tr
h
P̂n⇢̂

i . (1.33)

Note that the e↵ect of the collapse is nonlinear, and it cannot be deduced from the Schrödinger equation, which
is linear. Notably, an initially mixed state becomes pure, indeed one has that (⇢̂after)2 = ⇢̂after. This property
of the collapse is well known, and it is important as it gives the means to prepare a system in a given state.

The other possibility is a non-selective measurement, where all outcomes are retained and distributed ac-
cording to the Born rule. Correspondingly, one has

⇢̂before ) ⇢̂after =
X

n

pn
P̂n⇢̂P̂n

Tr
h
P̂n⇢̂

i , (1.34)

with pn = P[an] = Tr
h
P̂n⇢̂

i
. Note that, conversely to the previous case, this operation is linear since the above

equation can be trivially expressed as

⇢̂before ) ⇢̂after =
X

n

P̂n⇢̂P̂n. (1.35)

Finally, we note that a non-selective measurement can turn an initially pure state into a statistical mixture.
Indeed, one has that



1.6 Quantum Mechanics in the Density Matrix formalism 11

Tr

2

4
 
X

n

P̂n⇢̂P̂n

!2
3

5 = Tr

"
X

n

P̂n⇢̂P̂n⇢̂

#
=
X

n

Tr
h
P̂n⇢̂P̂n⇢̂

i
,


X

n

⇣
Tr

h
P̂n⇢̂

i⌘2

 
X

n

Tr
h
P̂n⇢̂

i!2

= 1.

(1.36)

To summarise, selective measurements are nonlinear operations which generate pure states, while non-selective
measurements are linear operations which generate statistical mixtures.

Example 1.6
Consider a two dimensional system whose Hamiltonian is Ĥ = �̂z, where we set ~ = 1 and in the compu-
tational basis �̂z is represented by

�z =

✓
1 0
0 �1

◆
.

In the Bloch representation, the von Neumann-Liouville equation d
dt ⇢̂ = �i

h
Ĥ, ⇢̂

i
reads

ṙ · �̂
2

= � i

2

⇥
�̂z, 1̂

⇤
� i

2

X

k

rk [�̂z, �̂k] .

Given that
⇥
�̂z, 1̂

⇤
= 0 and [�̂z, �̂k] = 2i

P
j ✏zkj �̂j, and that the set of matrices

�
1̂, �̂x, �̂y, �̂z

 
is a basis

of space of 2 ⇥ 2 matrices, we obtain three equations for the coe�cients of the Bloch vector

ṙx = �2ry, ṙy = 2rx, ṙz = 0,

whose solution is
rx = cos 2t, ry = sin 2t, rz = const.

The Hamiltonian �̂z makes the Bloch vector rotate around the z axis of the Bloch sphere, both for pure
states and for statistical mixtures. Similarly, �̂x makes the Bloch vector rotate around the x axis and �̂y
around the y axis.


	The Statistical Operator
	Statistical Operator and Density Matrix
	The physical meaning of the density matrix elements
	Propriesties of the Statistical Operator
	Pure states and statistical mixtures
	The Bloch Sphere
	Quantum Mechanics in the Density Matrix formalism

	The Reduced Density Matrix
	Open Quantum Systems, Partial Trace and the Reduced Density Matrix
	Quantum operations and the Kraus-Stinespring theorem
	Quantum operations on qubits

	Quantum Dynamical Semigroups
	Strongly Continuous Semigroup
	Quantum Dynamical Semigroup
	Microscopic derivation of the Born-Markov master equation
	Born approximation
	Markov approximation

	Lindblad evolution in Quantum Information theory
	Unravelling formalism for noises

	Circuit model for quantum computation
	Qubit gates
	Hadamard test

	No-cloning theorem
	Dense coding
	Quantum teleportation
	Quantum Phase estimation
	Single-qubit quantum phase estimation
	Kitaev's method for single-qubit quantum phase estimation
	n-qubit quantum phase estimation

	Harrow-Hassidim-Lloyd algorithm

	Variational Quantum Algorithms
	The Ising model
	Mapping combinatorial optimisation problems into the Ising model
	Adiabatic Theorem
	Quantum Annealing
	Quantum Approximate Optimisation Algorithm (QAOA)
	Variational Quantum Eigensolver (VQE)

	Noisy Intermediate-Scale Quantum (NISQ) computation
	Noise and error action on a single qubit circuit
	Miscalibrated gates
	Projection noise and sampling error
	Measurement error
	Environmental noise
	Global noise action


	Quantum Error Correction and Mitigation
	Quantum Error Correction
	Classical error correction
	Quantum information context
	The 3-qubit bit-flip code
	The 3-qubit phase-flip code
	The 9-qubit Shor code
	On the redundancy and threshold

	Stabiliser formalism
	Inverting quantum channels
	Correctable errors
	Stabilisers
	Normalisers and Centralisers
	Stabiliser code

	Surface code
	Detecting errors

	Quantum Error Mitigation
	Zero noise extrapolation
	Probabilistic error cancellation


	Solutions of the exercises
	Solution to Exercise 1.1
	Solution to Exercise 1.2
	Solution to Exercise 1.3
	Solution to Exercise 1.4
	Solution to Exercise 2.1
	Solution to Exercise 3.1
	Solution to Exercise 4.1
	Solution to Exercise 4.2
	Solution to Exercise 4.3
	Solution to Exercise 4.4
	Solution to Exercise 7.1
	Solution to Exercise 7.2

	Index

