SPECTROSCOPIC IDENTIFICATION OF R-PROCESS NUCLEOSYNTHESIS IN A DOUBLE NEUTRON STAR MERGER

JOURNAL CLUB – 04 - 2023

CORSO DI ASTROFISICA NUCLEARE

APRILE 2023

GW170817/GRB170817A

- GW170817/GRB170817A is the first event of associated detection of a gamma-ray burst (GRB) and a gravitational wave event (GW).
- The source of event is a double neutron star merger (NS-NS).

JOURNAL CLUB

GW170817/GRB170817A

• GW170817 was detected on Aug 17, 12:41:04 and two seconds later Fermi-GBM and Integral SPI-ACS detected a sGRB.

- Connected to this event is present a transient optical /near infrared source, SSS17a.
- This transient, named kilonova, is powered by radioactive decays of the heavy elements syntetisized via rapid neutron capture.

- The ejecta, associated with kilonova, has speed 0,2c and reaches a radius of 50 UA in 1,5 d.
- In the spectra appeare absorbtion lines associated with atomic species produced by nucleosynthesis.

JOURNAL CLUB

- Following the grb/gw detection, was reported a new point-like optical source
- Coordinates : RA = 13:09:48,09, DEC -23:22:53,3 at 17 arcsec from the center of a SO galaxy, NGC4993, at 40Mpc from Earth.
- In optical field and near infrared, REM (Rapid Eye Mount) Telescope and ESO-VST detected the new source in the field of NGC4993 12,8 h after GW/GRB.

- Following the detection of this source, it's started an imaging and spectroscopic campaign at optical and NIR wawelenghts.
- For image: REM, ESO-VST and ESO-VLT
- For spectra: VLT/X-shooter (3200-24800 A°), VLT/FORS2 (3500-9000A°), GeminiS/CMOS (5500-9000A°)
- Period: Aug18-Sep 03 2017, 1 at day.

FIRST SPECTRUM

- The first X-shooter spectrum of the transient shows a bright, blue continuum across the entire coverage.
- Maximum: 6000A°, total luminosity: 3,2E41erg/s.

JOURNAL CLUB

FIRST SPECTRUM ANALYSIS

- It's compatible with a black-body of temperature 5000 pm 200 K and spherical equivalent radius of 8E14 cm.
- Because it is after 1,5 days from GW/GRB trigger, this implies an expansion velocity of ejected material of 0,2c.
- It's colder than 20 hours earlier (8000K)
- In top of this spectra are presents absorbtion features similar to those suggested in merger ejecta simulation.

FIRST SPECTRUM ANALYSIS

- The main important deviation are two absorbition like lines at 8100 and 12300 A°.
- All deviation from a black-body in the first spectrum are below 10% from 3500 to 20000 A°.
- The first spectrum is also similar to that of early, broad line, core collapse Sne.

SECOND SPECTRUM

- In the second epoch, one day later, spectrum only covers the optical range (T = 3300K)
- Longer wavelenghts equal lower temperature.
- Expansion speed of 0,2 c is compatible with the width of the absorbtion line we observe in the second spectrum

- In third epoch is present a radiation at NIR and peak is at 10700A° and 16000 A°.
- Overall spectral shape is different:
- Photosphere is receding
- Ejecta are becoming increasily transparent
- More lines become visible
- This variation can be compatible with kilonova and not with supernova

- In the following week the temperature derived from the optical continuum seems to remain roughly constant and the peak at 10700 A° drifts to longer wawelenghts (11200 A° at day 6) and decreases in intensity until at ten days from discovery.
- The dominant feature is a broad emission centered about 21000A°.

Time evolution of spectra

JOURNAL CLUB

Black-body fit to SSS2017a spectra

JOURNAL CLUB

15

NUCLEAR REACTIONS

- Idenfification of kilonova atomic species is not secure.
- Neutron-rich environment of the progenitors suggests r process nucleosynthesis as the mechanism responsable for the elemental composition of the ejecta.
- Various nuclear reaction networks are considered and included in modles of radiative transfer of kilonova spectrum fondation

NUCLEAR REACTIONS

- Part of this atoms are radioactive: when they decade, they radiate thermally.
- All atomics species in the ejecta are excitated and ionizated and they absorb the contnuum and form the lines.

NUCLEAR REACTIONS

 In kilonova nucleosynthesis takes place in different regions with different neutron excess and ejecta velocities.

A MODEL OF KILONOVA

- We compare the spectra with a scenario where these three components
- Lantanide-rich dynamical ejecta region with a proton fraction in the range Ye = 0,1-0,4, v=0,2c
- Ye = 0,25 and mixed (lanthanide rich and free) composition (green)
- Ye = 0,30 and lanthanide-free
- All spectra falls luminisity in factor 2.

A MODEL OF KILONOVA

With a rescale of this model () is possible estimated ejected mass (0,03 – 0,05 Ms)

AFTERGLOW

- Nine days after GW/GRB, an X-ray source was discovered by Chandra at a position consistent with the kilonova.
- This source could be delayed X-ray afterglow emission from GRB, produced by a off-beam jet.
- The optical afterglow predict is much fainter than the kilonova.

THE DUST EXTINCTION

- We extimated the intervening dust extinction toward the source using the Na ID doublet line at 5896A°.
- E (B-V) = 0,06 mag.

Spectrum of sodium

POSITION IN THE HOST GALAXY

Image of NGC 4993 galaxy with OT (blue circle)

JOURNAL CLUB

THE TANAKA'S MODEL

- The X*shooter spectra was compared with kilonova models from Tanaka et al.
- The models use calculation for Se (34), Ru(44), Te (52), Ba (56), Nd (60) and Er (68) to construct the atomic data for a wide range of r process elements.

THE TANAKA'S MODEL

- Thise elements are selected because Lanthanides has high opacity in ejecta and:
- 1. Ba is an open s shell element
- 2. Se and Te are open p-shell elements
- 3. Ru is an open d-shell element
- 4. Nd and Er are open f-shell elements (Lanthanides).
- Are considerated only neutral atoms and singly and doubly ionized ions.

COMPARIZATION WITH MODEL

- Atomic structure calculations returned uncertanties in the opacity by a factor of up to 2.
- We apply the multiwavelenght radiative transfer to predict a possible variety of kilonova emmission
- In this model, Ye is homogeneous in the ejecta (in reality high Ye in polar region and low Ye in equatorial region).
- Energy released is proportional to $t^{-1}/3$ (related to radioactive decays of various nuclei).

COMPARISON WITH MODEL

Comparing the spectrum with dynamical ejecta (Ye = 0,1-0,4, orange) Wind polar region Ye = 0,3, blue Wind polar region, Ye = 0,25 green Sum of this, red

JOURNAL CLUB

27

COMPARISON WITH MODEL

- We have not attempted a real fit of this model to our X*shooter spectra but have rather locked into an interpretation that was in reasonable agreement.
- The match is satisfactory only for the first spectrum and not completly satisfactory for the following three.
- For this reason is not present a light curve model. THANK FOR YOUR ATTENTION