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HYDROGEN STORAGE

SOLAR RESOURCE MAP
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HYDROGEN STORAGE

Worldwide energy transport system capacity

HEAT PIPELINE

LIQUID/GAS PIPELINE

LIQUID/SOLID SUBSTANCE WORLDWIDE
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HYDROGEN STORAGE METHODS

Liquefaction Compression

* high-pressure, compressed in gas cylinders
* liquid, in hydrogen in cryogenic tanks

Storage s * adsorbed, on materials with a large specific surface area
Methods

* adsorbed, on interstitial sites in a host metal

Liquid Carrier Liquid Carrier

YY) * chemically bonded, in covalent and ionic compounds
:::: ° * through oxidation of reactive metals

0000

Interstitial Hydride Non Interstitial Hydride

https://wildeanalysis.co.uk/resource/time-right-for-hydrogen/
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HYDROGEN STORAGE

Hydrogen volumetric density in standard conditions: 0.083 kg m-3

Storage method Gravimetric density Volumetric density T(°C) P (bar)
(mass %) (kaH, m—3)

High-pressure cylinders 13 <40 25 800

Liquid hydrogen in Size dependent 70.8 —252 1

cryogenic tanks

Adsorbed hydrogen ~2 20 —-80 100

Adsorbed hydrogen on ~2 150 25 1

interstitial sites

Complex compounds <18 150 >100 1

Metal and complexes <40 >150 25 1

together with water
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HYDROGEN STORAGE
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UNDERGROUND HYDROGEN STORAGE

Underground hydrogen storage is a promising route to addressing the demand-supply gap caused by the characteristic
fluctuations of renewable energies.

| Depleted Fields . Salt Formations Depleted Aquifers

SALT CAVERNS
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UNDERGROUND HYDROGEN STORAGE

Underground hydrogen storage is attractive because characterized by:

Good gas tightness

High wall (sealing) thicknesses compared to tanks for conventional storage

Extensive subsurface depths, which can minimize the risks posed to safety

It is a mature technology, already used for storing natural gas and carbon dioxide in carbon capture and storage
systems.

Safe way of storage, as limits the hydrogen contact with atmospheric oxygen

Long-term storage is guaranteed (estimated: 40 + 50 years, pressurized at over than 200 bar)

High energy storage density (up to 250 Wh L1).
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UNDERGROUND HYDROGEN STORAGE

Nonetheless some aspects are still unclear, as:

Interaction of hydrogen with rock/salt walls are not known (is gas poisoning possible due to unknown reactions?
Do walls embrittle in long term storage? Can hydrogen-consuming reactions take place?)

Can eventual residuals or rock materials poison hydrogen? (in this extent presence of sulphur should be avoided)
Effects of frequent hydrogen withdraw (way of use not common for actual technology)

Risks of hydrogen leak and dispersion in atmosphere (what might it happen if the concentration of dissolved
hydrogen in the atmosphere would largely increase?)

Technological maturity needs to be adapted to hydrogen (in example in terms of the equipment to be employed,

as well as to the characteristics of the cushion gas to be used)

Some useful insights might arrive form the analysis of natural hydrogen cavities
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UNDERGROUND HYDROGEN STORAGE

Proven salt caverns for artificial
underground hydrogen storage

Potential salt caverns for artificial
underground hydrogen storage*

Salt deposit sites where natural
hydrogen has been detected
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HYDROGEN PROPERTIES
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HYDROGEN PROPERTIES

Hydrogen form Spin number,s Rotational energy level, J

J’=3 O'HZ 1 1

J=2 80

T o ¢43

-_— * The ortho-hydrogen is the molecule characterized
by the higher energy level
l I e Temperature defines the ratio among ortho-to-

Para-hydrogen Ortho-hydrogen

para-hydrogen concentration within the gas.
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HYDROGEN PROPERTIES

Hydrogen: Equilibrium profile
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Karlsson, E. (2017). Catalytic ortho- to parahydrogen
conversion in liquid hydrogen.
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For liguid hydrogen storage ortho-to-para conversion is one of the main

aspects limiting the storage time of hydrogen: in fact, the conversion

from ortho- to para-hydrogen is exothermic and inversely proportional

to temperature.
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LIQUID HYDROGEN STORAGE — PRESSURE LOADING EVALUATION
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Month-long dormancy experiment of a 10 kg tank
96% full with saturated LH2 at 2 bar.

Losses can be observed already after one week of
inactivity. Long periods of inactivity can thus lead
to loss of fuel from the tank.

Within the same experiment it was shown as
driving about 8 km/day (that is extracting about
2.5 kg of H, in one month), helps in avoiding
evaporative losses, due to the fact that hydrogen
extraction induces isentropic expansion, helping
in further cooling down the reservoir.

Acevas S.M., et al., International journal of hydrogen energy , 38, (2013), 2480 — 2489
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HYDROGEN EMBRITTLEMENT

Hydrogen embrittlement constitutes one of the main problems in materials in contact with hydrogen. It consists in a
premature crack of the steel due to hydrogen atom dissolution and trap in the material crystallites.

In hydrogen embrittlement, the hydrogen enters through the process of diffusion in the grain boundaries and combines
with the carbon found in the alloy with iron, which generates the formation of methane gas. Due to the formation of
methane gas, a huge increase in pressure is generated, which reduces ductility and strength, and promotes the initiation

of the cracks.

H atoms

,:{\:,

H, molecule ‘ O o

Intergranularl
Cra

Figure 6.7 Example of failure due to hydrogen embrittlement.

Figure 6.6 Absorbed hydrogen atoms by carbon steel alloys.

HE index = a P™"
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HYDROGEN EMBRITTLEMENT
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Fig. 2 — (a) Ductility degradation in a hydrogen-charged Fe-18Mn-0.6C TWIP steel. (b) Scanning electron micrograph
showing an intergranularly fractured surface [24]. The initial strain rate is 5.1 x 107> s~ *. Alloy composition is in weight %.
“Reproduced with permission from Corros. Sci., 54, 1 (2012). Copyright 2011, Elsevier.”
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HYDROGEN EMBRITTLEMENT — DETECTION METHODS

At a research degree, to investigate the most proper
materials to face hydrogen embrittlement, several
techniques can be used to detect the presence of hydrogen
inside materials. Three of them will be highlighted, able to
measure different aspects of hydrogen absorption.

1. Thermal desorption spectroscopy

The material to be tested is inserted in a vacuum chamber.
Material temperature is scanned: by increasing the
temperature, molecules bound to the surface are released
into vacuum and discriminated via a Quadruple Mass

Spectrometer according to their mass-to-charge ratio (m/z).
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Ogura, S., Fukutani, K. Thermal Desorption Spectroscopy.
(2018). Springer.
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HYDROGEN EMBRITTLEMENT — DETECTION METHODS
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HYDROGEN EMBRITTLEMENT — DETECTION METHODS

2. Secondary ion mass spectroscopy

It is a surface sensitive chemical probing method which
allows to perform both spatially-resolved as well as cross-
sectional analysis. But results can be contaminated by: (i)
hydrogen present on moisture or hydrocarbons deposited
on the sample surface, (ii) background hydrogen in ion
chamber since (hydrogen exists even under excellent ultra
high vacuum conditions), (iii) diffusion and desorption of
hydrogen during the measurement in steels, (iv) effects
associated with sputter direction, crystallo- graphic texture

and surface topology (also referred to as matrix effects).
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HYDROGEN EMBRITTLEMENT — DETECTION METHODS

3. Kelvin probe microscopy

It is a surface sensitive technique which constitutes in
scanning the material surface and measuring the surface
potential, which decreases when hydrogen atoms are embed
in the structure. The main advantage relies in combining
spatially-resolved and temporal-resolve analyses, allowing to

monitor both adsorption and release.
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HYDROGEN EMBRITTLEMENT — DETECTION METHODS

2 3
Length (pm)

Figure 14. Time-dependent variation of the hydrogen distribution analysed by SKPFM in a Fe-18Mn-1.2C twinning-induced-
plasticity steel (wt-%) covered with a palladium buffer layer [25]. Surface potential images taken at exposure times of (a) 6, (b) 67, (c)
300 h, respectively. (d) Line profiles of the detected surface potential corresponding to the white lines in (a-c). The black arrows indi-
cate hydrogen segregation at deformation twins. ‘Reproduced with permission from J. Electrochem. Soc., 160, C643 (2015). Copyright
2015, The Electrochemical Society'.
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CRYOGENICS

Conventional born of
cryogenics

Diffusion of cryogenics in the industrial sector

n
»

documented effect of

first refrigeration liquefied :
machine oxygen and nitrogen ) Cryogenic temperatures on modern
1883 materials by NASA
| ‘ 2 l—‘—
!
- A
1855 1893 1940 1980 2022
1872 liquefied hydrogen 1908 He

vacuum flask for cooling material H.

Adapted from: Patricia Jovi¢evi¢-Klug, PhD thesis, Mechanisms
and Effect of Deep Cryogenic Treatment on Steel Properties, 2022
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CRYOGENICS

To date there are only few companies manufacturing cryogenic vessels on a large scale
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CRYOGENIC VESSELS FOR LIQUID HYDROGEN STORAGE

Cryogenic vessels can be either classified according to the type of
insulation provided or depending on their application:

- trailers for large scale transportation (by road, railroad or sea)

rlou IED HYD&{OGEN |
WP:90PSIG ¢

- vessels for small scale transportation (<1000 L, used for industrial or
medical supply to the end users)
- storage on production site

- storage at end-user site
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CRYOGENIC VESSELS FOR LIQUID HYDROGEN STORAGE

Liquid hydrogen needs to be kept at about 20 K. For this sake vessels are normally

. . . Protection of
vacuum-insulated and composed of an inner pressure vessel and an external protective ﬂ W,e,;,cmﬂ

jacket. As thermal insulators, perlite (powder structure) or super insulation (wWrapping yesses e

with layers of aluminium films) can be also used. support T
/ﬂ\ e X
Outer Vessel Top Hat s l«——Outer Vessel _ S ‘?_4 Je Inner
Lifts if outer vessel is pressurised Carbon Steel TS A V% vessel
L ——Inner Vessel Pressure
Stainless Steel relief
Annular Space — device
Evacuated and filled with —— Cryogenic Liquid
Superinsulation (Foil) Outer
Jacket
R
Insulation \ Transfer
\_ Pipe
https://h2tools.org/bestpractices/liquid-storage-vessels
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THERMAL INSULATION IN LIQUID HYDROGEN VESSELS

The significant temperature difference among liquid hydrogen and the surrounding environment, is
another source for the boil-off phenomenon.

Gas boil off induces an increase of hydrogen pressure within the tank, and the evaporated hydrogen needs
to be vented at the outside, producing a loss.

Thus maximizing thermal insulation is mandatory in order to reduce heat leakages .

Category Active Passive
Approach A refrigerator is used to re-condense the Use insulating materials designed in order to
evaporated hydrogen gas reduce as much as possible the heat transfer

Characteristics Low efficiency, expensive (also in terms of They don’t require external energy supply.
design, and overall for large volumes) They can be further classified into: multilayer,
spray on foam, fibrous, and powder insulators

Nowadays thermal insulators are characterized by a thermal conductivity about 10® + 10° W m K1
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THERMAL INSULATION IN LIQUID HYDROGEN VESSELS

Powder Insulation
Powder fillings often used for cryogenic application include perlite,

aerogel powder/beads and glass bubbles/microspheres.

It is hard to have a complete and uniform geometric description of

powder conductivity due to the variation in particle size (R;) distribution —
Glass ¥
and packing structure: Bubbles 1%
R, 4 R. —
ksg (T) ER_ks(T) > ksg(T) = = (1 = ¢p)CE = ks(T) _
p VA RP Perlite
. ] ] . Powder
Where: R.: radius of the contact area, C: coordination number, §: particle ~600pm
surface roughness, ¢: porosity, ks: conductivity of the solid material. Aerogel : g %
Beads L
AIP Conference Proceedings 985, 152—159 (2008) saik s A
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LIQUID HYDROGEN STORAGE — APPROACHES OF THERMAL INSULATION

Aerogel

Glass foam

Yatsenko E.A. Et al., Int J.

Hydr. Ener. 47 (2022) 41046- Aerogel/expanded perlite
41054

Jia G., et al., Journal of Non-
Crystalline Solids 482 (2018)
192-202
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THERMAL INSULATION IN LIQUID HYDROGEN VESSELS

Spry-On Foam Insulation

SOFI systems are generally produced by gaseous
expansion of organic solids, creating a highly porous,
but continuous solid structure, and is characterized by
low cost and ease of fabrication. The low bulk density
of foam insulation is helpful in reducing solid phase
heat conduction, but removing the residual gas can be
difficult and time-consuming, and the resulting.

Polymer materials such as polyurethane, polystyrene

and polyimide are popular solids for foam insulation.
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THERMAL INSULATION IN LIQUID HYDROGEN VESSELS

Foam thermal conductivity depends on the structure of the
cell, the size of struts and walls, in particular is dependent on
the bulk (p) and solid (ps) material densities, the conductivity
of the solid material (ks), and the mass or volumetric fraction

of the structure (f;):

ksg (T) = (2 — fs) ﬁks (T), fi= Mstructures

3 S Mgtructures + Myalis
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LIQUID HYDROGEN STORAGE — APPROACHES OF THERMAL INSULATION

Fibrous Insulation

Combine flexibility and easy handling with vibrations
and shocks could be transmitted to the cryogenic
system. They can be viewed as crossing fibres arranged
regularly in layered planes perpendicular to the heat
flow direction. Typically, the fibre layers are oriented
randomly, while the fibre rods in each layer may have
uniformed distance: L = nD/[4(1—¢)], with ¢

porosity and D fibre diameter.

Vo . UNIVERSITA - Dipartimento d
‘ﬁf\ﬂ};_‘ DEGLI STUDI Ingegneria
“sZ=s’ DITRIESTE I a e Architettura

HEAT FLOW

J-LO,QJ-

Hydrogen and fuel cells
Prof. Marco Bogar
2023-2024


https://doi.org/10.1016/j.ijhydene.2022.11.130

LIQUID HYDROGEN STORAGE — APPROACHES OF THERMAL INSULATION

Heat transfers through fibre rods contacting points. In

absence of deformation the conductibility can be

modelled in function of
32(1 — ¢)?
kSE(T) = T ks(T)
T [3 + —]
4(1-¢)
For elastic materials the model can be refined including B i HEAT FLOW
the fibre elasticity, the Poisson ratio and the external LLO,ZJ;

pressure applied to the fibre layer:

kSE(T) = f(E; v, ¢r P)kS(T)
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LIQUID HYDROGEN STORAGE — APPROACHES OF THERMAL INSULATION

Multilayer insulation

It offers the best performances, but it is subjected to vacuum changes. As a consequence, on
the long-term, as the vacuum gradually deteriorates, thermal insulation performance drops
significantly. The shields are typically made by alternating materials with high reflectance and
spacers.

Liquid hydrogen

Wall (inner. outer)
Inner material

MLI (low~high density)
Gap (high vacuum)

Kang, D. et al., Energies 2022, 15, 4357.
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Therm. Cond. (mW/m-K)

Markers: Experimental
Solid lines: Dual pore

Pressure (Pa)

15 Layers Fabric/Foil (18.7mm)
40 Layers MLI (22.3mm)

MLI Foil Paper (21,80)

Fiber Glass (49,2,16)

Glass Bubbles (25,1,65)

MLI Mylar — Net (16,40)
Aerogel Blanket (23,2,133)

Spray — On Foam BX — 265 (25,1,42)

Cryogenic H,
MLI

! Heat flux

lr{s'ulaﬁén

Cryogenic H,

@
Heat flux

Insulation

Jiang W. et al., Int. J. Hydr. En., 47 (2022) 8000-8014
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LIQUID HYDROGEN STORAGE — SOME PROPOSALS FOR THE MARKET

Figure 7.5 Linde hydrogen refuelling station in Munich. (Reprinted by kind permission of Figure 74 Llinde mobile refuelling unit. (By kind permission of Linde AG, Garmany.)
Linde AG. Germany.)
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LIQUID HYDROGEN USE

I.lquld Hydrogen

A

-a
?

o

N

&@I@II

Liquid H, Tank  Cryogenic Compressor
Pump Evaporator

Truck delivery Dispenser

Storage/
buffer tanks

Mayyas A., Mann M., International Journal of Hydrogen Energy 44 (1029) 9121 — 9142

Liquid hydrogen r‘\i
Shut-off valve l D

Electrical heater l

Bearing
Super insulation

Inner vessel

Filling level sensor

Gaseous hydrogen U
‘ I . .\\ — Filling pipe
Safety vaive S T Gas extraction
= &
& Heat shield

. Y )
Filling port ﬂ‘»

Cooling water heat

exchanger
Gaseous extraction
valve | z
Liquid extraction

valve
Liquid refill valve

Quter vesel

Liquid extraction

f \
. . Electrical in tank

heater

Schematic of a cryogenic hydrogen tank (source: Linde®)

= Dipartimento di
Ingegneria
I a e Architettura

% UNIVERSITA
DEGLI STUDI
DITRIESTE

_.~ Economizer vapor line
"\ — Topfill line
~~ Lifting lug
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Ambient air — Outer tank, carbon steel
! vaporizer .. Insulation evacuated to
| 5 a high vacuum
" Liquidtank
Gauges \ 9
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[\ Control valve
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| Check
valve
Topfill__ :
valve -
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Figure 32.4 Typical bulk liquid storage system with cryogenic storage tank, ambient air
vaporizer, and control manifold [23].
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CRYOGENIC VESSELS FOR LIQUID HYDROGEN STORAGE - STANDARDS

ISO 21009-1:2022

Cryogenic vessels Main target:
Static vacuum-insulated vessels Specify the requirements for the design, fabrication,

Part 1: Design, fabrication, inspection and tests inspection and testing of static vacuum-insulated
cryogenic vessels designed for operating at P, > 50 kPa.

Status : Published (To be revised)
@ This standard will be replaced by ISO/AWI 21009-1

ISO 21009-2:2015

Cryogenic vessels Main target:

Static vacuum insulated vessels . . . .
. . Specify the operational requirements for static vacuum

Part 2: Operational requirements .
insulated vessels (P, > 50 kPa).

Status : Published (To be revised)
@ This standard was last reviewed and confirmed in 2021. Therefore this version remains current.

© This standard will be replaced by ISO/DIS 21009-2
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LIQUID HYDROGEN STORAGE — ADVANTAGES AND DRAWBACKS

Technical specifications

Advantages

Disadvantages / Limitations

* Convenient for large storage volumes (>
60000 L).

* During hydrogen refill and withdraw is
mandatory to avoid air entering the system
to avoid the formation of an explosive
mixture (nitrogen purge of the system is
required).

* Downstream conversion plant to cryogenic
or compressed gas is needed before use.

* Efficient (in terms of mass of hydrogen
stored).

« Difficult to store over long periods due to
evaporation losses.

* Challenging to be handled from the
materials point of view: few materials
(Austenitic steel, aluminium, brass) can be
used for handle cryogenic hydrogen
(polymers have bigger glass transitions,
below which they lose elasticity).

* Discharge kinetics have still to be improved
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