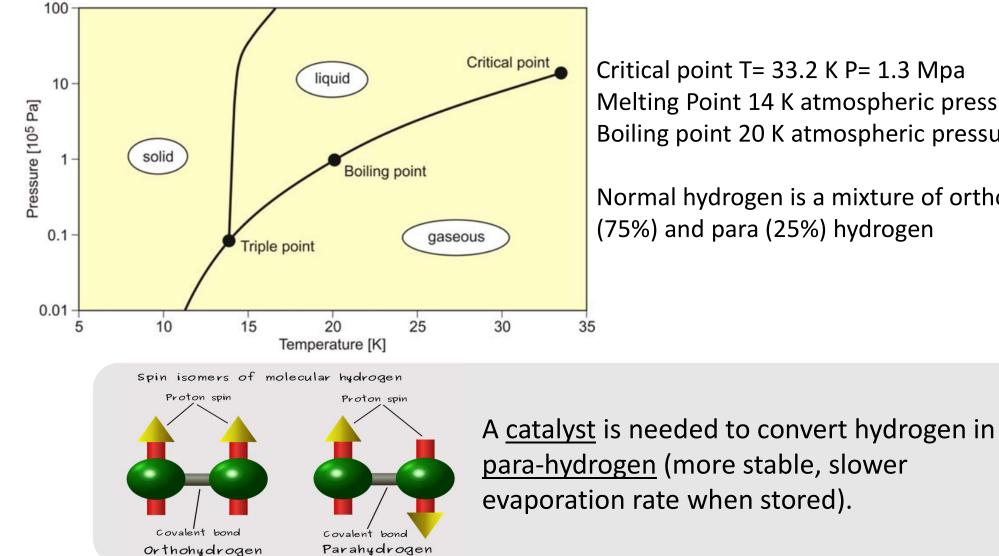
Hydrogen and fuel cells

Hydrogen properties

Draft 2024

Prof. Rodolfo Taccani


Dipartimento di ingegneria ed architettura

- hydrogen from "hydro" + "genes" meaning "water" + "to produce"
- · Most abundant element in the universe
- It is richest in energy per unit mass (LHV 120MJ/Kg)
- Hydrogen when burnt in air produces water as the by product
- Promote the use of diverse, domestic and sustainable energy resources
- Increase the reliability and efficiency of energy systems
- H₂ is widely used in existing chemical industries and refineries
- · Long term, large scale storage which can be integrated with renewables

- Found as diatomic molecule, high dissociation energy of 435 kJ/mol
- Colorless, odorless, tasteless, flammable, non-corrosive, non-toxic but can act as asphyxiant
- density of hydrogen is 0.08 kg/m³
- Diffuses faster
- Buoyancy rises fast
- Isotopes (a) Protium- mass 1.008, makes up 99.98%, (b) deuterium mass 2.014, makes up about 0.02% and(c) Tritium – mass 3.016, occurs extremely small amounts in nature
- · Low solubility in solvents, pronounced solubility in metals

Diffusivity

- In the air the
 - diffusivity for hydrogen is: 0.63 cm²/s
 - diffusivity for methane is: 0.20 cm²/s
 - diffusivity for vapours: 0.08 is: 0.63cm²/s

Critical point T= 33.2 K P= 1.3 Mpa Melting Point 14 K atmospheric pressure Boiling point 20 K atmospheric pressure

Normal hydrogen is a mixture of ortho (75%) and para (25%) hydrogen

- Hydrogen is a powerful reducing agent $(H_2 + CuO \rightarrow Cu + H_2O)$ $(3H_2+N_2 \rightarrow 2NH_3)$
- Reacts with oxides and chlorides of metals to produce free metals $(H_2+PdCl_2 \rightarrow Pd + 2HCl)$
- Reacts with salts like nitrates, nitrites and cyanides of Na or K $(NaNO_3+4H_2 \rightarrow NaOH + NH_3 + 2H_2O)$ $(H_2 + 2NaCN \rightarrow 2HCN + 2Na)$
- Reacts with both metals and non metals to form hydrides $\begin{array}{c} (H_2 + Na \rightarrow 2NaH) \\ (H_2 + S \rightarrow H_2S) \\ (H_2 + Cl_2 \rightarrow 2HCl) \end{array}$
- Reacts violently with oxidizers

 $(\mathrm{H_2}{+}\mathrm{O_2} \rightarrow \mathrm{H_2O})$

Density -

0.08 kg m⁻³ at NTP (7% of the density of air) Liquid hydrogen density 70.8 kgm⁻³ (7% of that of water)

Energy Content -

Gasoline 48.6 MJ/kg, diesel 44.8 MJ/kg Hydrogen 141.8 MJ/kg (HHV), 120 MJ/kg (LHV) Volume basis – Gasoline 31,150 MJ/m³, diesel 31,435.8 MJ/m³ Liquid Hydrogen 8,491 MJ/m³ At 15°C, 1atm 10.05 MJ/m³ 200 bar, 1,825 MJ/m³ 690 bar, 4,500 MJ/m³

• Flammability range

In air at ambient conditions:

- Hydrogen 4-75%
- Gasoline 1-7.6%
- Explosive range 15-59% In terms of equivalence ratio:
 - hydrogen: 0.1<f<7.1
 - gasoline 0.7<f<4

- Ignition energy of hydrogen is 0.02 mJ Gasoline 0.24 mJ
- Low electrical conductivity
- Prompt ignition even for leaner mixtures.
- Hot spots or hot gases can serve as means of ignition premature ignition and flashback.

Autoignition Temperature

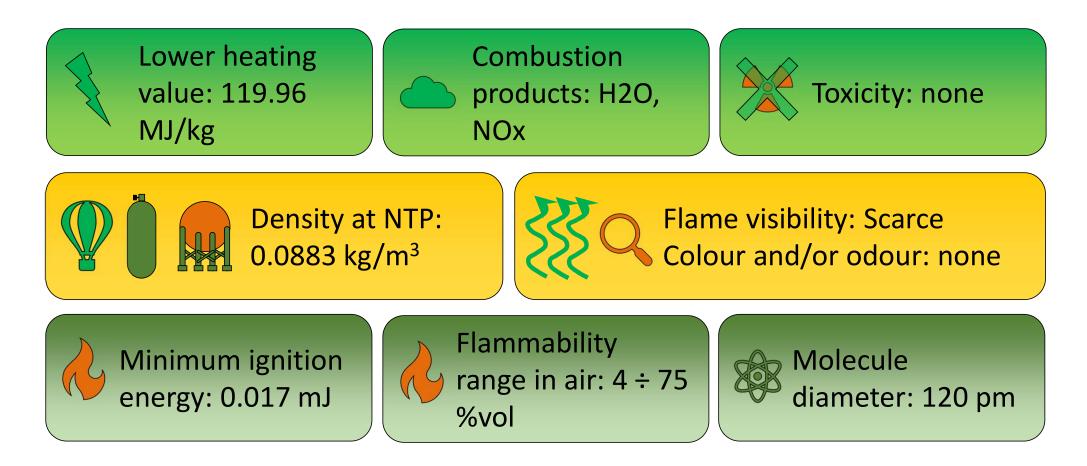
- Autoignition temperature of hydrogen is 585°C, Gasoline 240-460°C
- Difficult to ignite hydrogen air mixture on basis of heat alone without some additional ignition source

Flame Speed

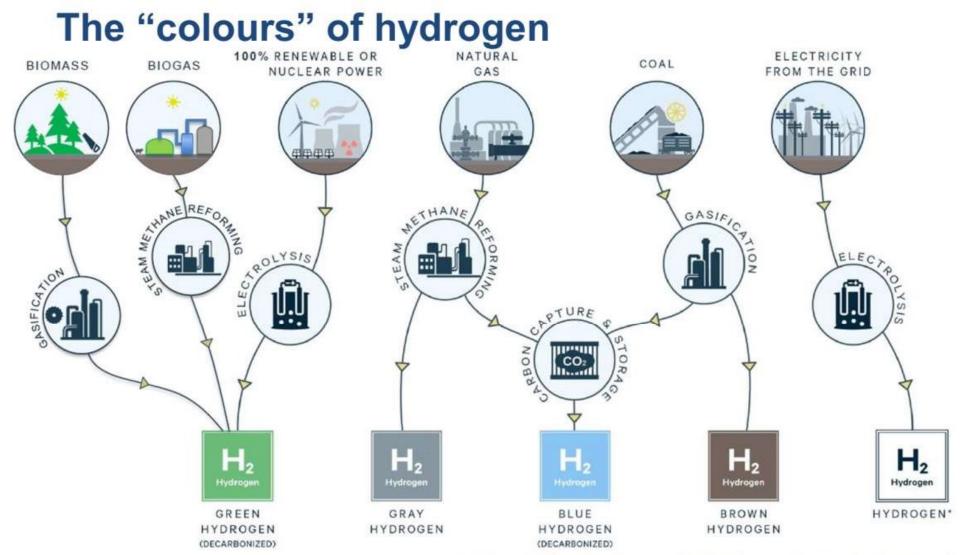
- At stoichiometric ratio, hydrogen flame speed is 3.46 m/s
- Gasoline 0.42 m/s

Quenching Distance

- Hydrogen has a quenching distance of 0.64 mm , Gasoline of 2 mm
- Hydrogen flames are difficult to extinguish.
- Tendency of backfire.


Hydrogen Embrittlement

 Factors affecting are hydrogen concentration, purity, pressure, temperature, type of impurity, stress level, stress rate, metal composition, metal tensile strength, grain size, microstructure, heat treatment history etc.


Hydrogen Leakage

• Low density, high diffusivity, dispersion of hydrogen much faster than gasoline.

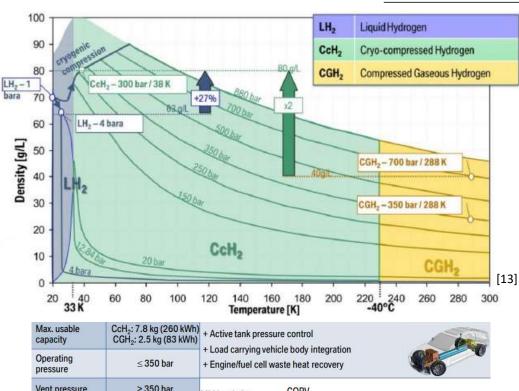
Hydrogen properties - Summary

- Properties of hydrogen makes it different from other conventional fuels
- Studied properties of hydrogen have their own advantages and disadvantages while considering its use as fuel

Adapted from: https://www.rff.org/publications/issue-briefs/investment-tax-credits-hydrogen-storage/

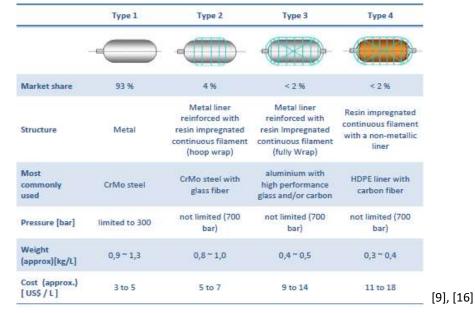
Hydrogen production today is estimated at 70 Mt/yr (million tons):

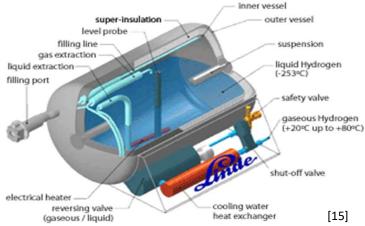
- 76% is based on the use of natural gas in steam methane reforming plants.
- The use of electrolyzers accounts today 2% of stock.

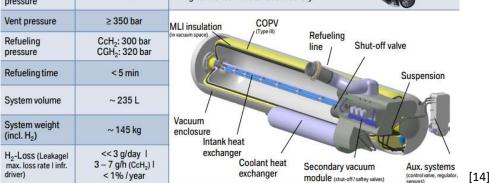


Review

An Extensive Review of Liquid Hydrogen in Transportation with Focus on the Maritime Sector


Federico Ustolin ^{1,*}, Alessandro Campari ¹ and Rodolfo Taccani ²


- ¹ Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology NTNU, 7034 Trondheim, Norway
- ² Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
- * Correspondence: federico.ustolin@ntnu.no

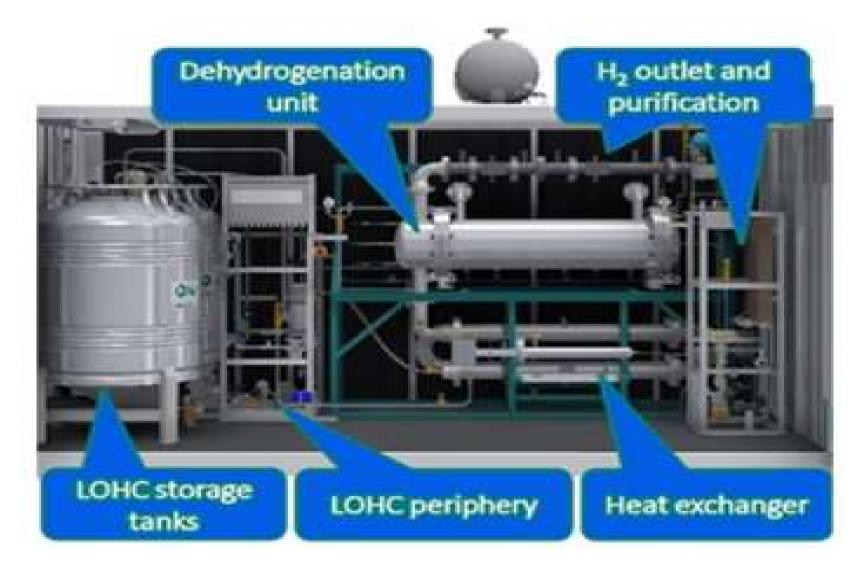


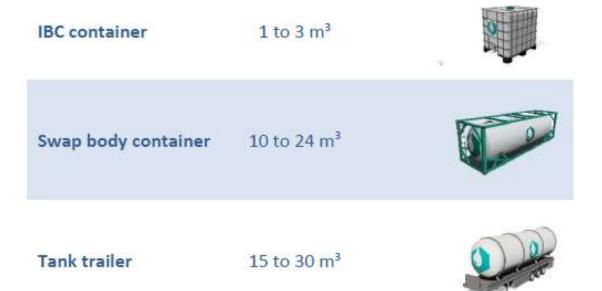
HYDROGEN STORAGE

sensors)

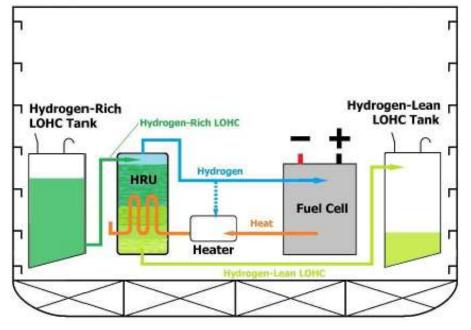
Example of a tube trailer in a 40-foot container half height [49]

Multiple Element Gas Container (Calvera company)




Series of 16X50 L cylinder packs proposed by the Calvera company

LIQUID ORGANIC HYDROGEN CARRIER



LOHC plant example

HYDROGENIOUS LOHC STORAGE SOLUTIONS [48]

Schematic representation of a LOHC plant producing hydrogen for the fuel cell [1]

LOHC	TOL/MCH	NEC/H12-NEC	DBT/H18-DBT	BT/H12-BT
H ₂ – lean form	\bigcirc	ϕ	000	00
H ₂ – rich form	Q	$\frac{1}{2}$	000	00
Chemical formula (H ₂ – lean form)	C ₇ H ₈	$C_{14}H_{13}N$	C21H20	$C_{14}H_{14}$
Chemical formula (H ₂ – rich form)	C7H14	C14H25N	C21H38	C14H26
Melting point (Hz – lean form) [°C]	-95	68	-34	-30
Boiling point (H2 – lean form) [°C]	111	270	390 ^{a)}	280
H ₂ – capacity [wt. %]	6,1	5,8	6,2	6,2
Energy content [kWh/kg]	2,01	1,91	2,05 ^{b)}	2,05
Heat of hydrogenation [kJ/mol _{Hz}]	68,3	55	65	65
Cost [€/kg] (1 ton scale)	About 1	About 40	About 4	About 4

a) Diesel: 170-390

b) Li-ion battery: ca. 0,15

CHARACTERISTICS PROPERTIES OF MOST STUDIED LOHC [17]