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Metal hydride (MH) thermal sorption compression is an efficient and reliable method
allowing a conversion of energy from heat into a compressed hydrogen gas. The most
important component of such a thermal engine — the metal hydride material itself —
should possess several material features in order to achieve an efficient performance in the
hydrogen compression. Apart from the hydrogen storage characteristics important for
every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage,
hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the
metal-hydrogen systems is of primary importance resulting in a temperature dependence
of the absorption/desorption pressures). Several specific features should be optimised to
govern the performance of the MH-compressors including synchronisation of the pressure
plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis,
increase of cycling stability and life time, together with challenges in system design
associated with volume expansion of the metal matrix during the hydrogenation.

The present review summarises numerous papers and patent literature dealing with
MH hydrogen compression technology. The review considers (a) fundamental aspects of
materials development with a focus on structure and phase equilibria in the metal
—hydrogen systems suitable for the hydrogen compression; and (b) applied aspects,
including their consideration from the applied thermodynamic viewpoint, system design
features and performances of the metal hydride compressors and major applications.
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1. Introduction

Metal Hydride (MH) hydrogen compression utilises a revers-
ible heat-driven interaction of a hydride-forming metal, alloy
or intermetallic compound with hydrogen gas to form MH and
is considered as a promising application for hydrogen energy
systems. This technology, which initially arose in early 1970s,
still offers a good alternative to both conventional (mechani-
cal) and newly developed (electrochemical, ionic liquid pis-
tons) methods of hydrogen compression. The advantages of
MH compression include simplicity in design and operation,
absence of moving parts, compactness, safety and reliability,
and the possibility to consume waste industrial heat instead
of electricity.

Results of more than 40 years of R&D activities in the
development of MH hydrogen compression have been re-
ported in numerous original research papers, patents, reports
and conference presentations. However, few review articles
on the topic are available. A brief review on the principle of H,
compression using MH, related R&D within the field and their
own feasibility studies of MH H, compression was published
by Lynch et al. in 1984 [1]. A detailed consideration of the
related MH-based thermodynamic engines (heat pumps) was
presented by Dantzer and Orgaz in three review papers [2—4],
1986—1987. A general approach to the development of the MH
hydrogen compressors for various applications based on
thermodynamic analysis was considered by Solovey in 1988
[5]. Rather comprehensive reviews of MH compressors and
heat pumps were published as sections of general review
papers on applications of metal hydrides, by Sandrock in 1994
[6] and Dantzer in 1997 [7]. Bowman has reviewed the devel-
opment of metal hydride compressors for the liquefaction of
hydrogen via the Joule—Thomson process [8,9]. Status of the
development of metal hydride based heating and cooling
systems was summarised in a paper by Muthukumar and
Groll [10] in 2010.

The present review summarises the state of the art of the
MH hydrogen compression technology, by considering and
discussing the relevant data in materials and systems devel-
opment, analysis of design features and performances of the
MH compressors, and their applications. For the sake of better
understanding of the processes taking place in the MH
hydrogen compressors, the first section of the review presents
relevant fundamental aspects focused on the consideration of
the suitable hydride forming materials for hydrogen
Ccompressors.

2. Metal-hydrogen systems from a
fundamental viewpoint

Applications of metal hydrides, including hydrogen
compression, utilise a reversible heat-driven interaction of a
hydride-forming metal/alloy, or intermetallic compound
(IMC) with hydrogen gas, to form a metal hydride:

absorption

M(s) +x/2 H,(g) MH,(s) + Q; (1)

desorption

where M is a metal/alloy (e.g., V or a BCC solid solution based

upon it), or an IMC (LaNis, TiFe, etc.); (s) and (g) relate to the
solid and gas phases, respectively. The direct interaction, an
exothermic formation of the metal hydride/hydrogen ab-
sorption, is accompanied by a release of heat, Q. The reverse
process, endothermic hydride decomposition/hydrogen
desorption, requires supply of approximately the same
amount of heat.

The following gas phase applications of metal hydrides use
specific features of the Reaction (1) [6—12]:

e Compact and efficient hydrogen storage is due to a very
high, about 100 gu/L, volumetric density of atomic
hydrogen accommodated in the crystal structure of the MH
metal matrix. At ambient temperatures the equilibrium of
the Reaction (1) can often take place at modest, <1—10 bar
hydrogen pressures. Thus, hydrogen storage using MH is
intrinsically safe and benefits from avoiding use of com-
pressed hydrogen gas and energy inefficient and poten-
tially unsafe liquid H,. Endothermic reverse process of
dehydrogenation according to the Reaction (1) decreases
temperature of the MH leading to decreased rates of H,
evolution; this, in turn, is an additional safety feature of
use of the MH, allowing to avoid accidents even in case of
rupture of the hydrogen storage containment.

e Simple and efficient pressure/temperature swing absorp-
tion—desorption systems. This allows not only to control
hydrogen pressure by changing temperature, but, further-
more opens possibilities for hydrogen separation and pu-
rification (including isotope separation) due to the high
selectivity of the Reaction (1).

e Reversibility and significant heat effects (>20 kJ/mol H,) of
the Reaction (1) make it possible to realise numerous en-
ergy conversion applications of MH. This includes first of
all thermally driven hydrogen compression and heat

management.

The process performances, especially for the latter appli-
cations considered in the present review, are strongly
dependent on the intrinsic features of the Reaction (1)
including its thermodynamic and kinetic characteristics (the
macro-kinetic parameters involving heat-and-mass transfer
issues are also very important), as well as composition,
structure and morphology of the solid phases (M, MH,)
involved in the process. These features, mainly related to
fundamental aspects of MH materials science, are considered
in the current section.

2.1. Phase equilibria in the metal—hydrogen systems

Equilibrium of the Reaction (1) is characterised by an interre-
lation between hydrogen pressure (P), concentration of
hydrogen in the solid phase (C) and temperature (T). This
relation (PCT-diagram) is the characteristic feature of a spe-
cific hydride-forming material determining thermodynamics
of its interaction with gaseous hydrogen. At the same time,
thermodynamic behaviour of the metal-hydrogen systems
has common characteristics, which are similar for different
materials [13].

Atlow hydrogen concentrations (0 < C < a) hydrogen atoms
form an interstitial solid solution in the metal matrix («-
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Table 1 — Equilibrium characteristics of the interaction of hydride-forming alloys suitable for H, compression with H, gas in
plateau region. The data are sorted in the ascending order for desorption plateau pressure at T = 25 °C (Py). The plateau

pressures are calculated using Equation (2); the lower (P.) and higher (Py) values correspond to the lower (T.) and higher (Ty)
temperatures, respectively, as reported in the original works.

# Alloy —AS° —AH° Temperature range [°C] Pressure [atm] Ref.
[l/(mol Hy K)] [kJ/mol Hy] T, Ty P, P, Py

1(A)  VysTiyysZr7s 145.1 52.98 30 120 002 003 347 [15]

2(B) MmNiggAly, 111.3 37.20 50 150 002 063 1666 [16]°

3 (B) LaNig 7Sno 3 112.6 36.51 25 80 0.31 0.31 3.03 [17]

4(A)  VysTisoZr7.sCrys 132.3 4223 30 120 032 043 19.90 [15]

5(B) LaNisgSnos 104.3 32.83 20 90 050 040 532 [18]°
105.0 32.80 0 240 0.55 0.16 139.9 [19]

6(B)  MmosLaosNis,Snos 111.2 33.80 25 80 077 077 644 [17]

7(B)  LaNizgAly, 101.6 30.40 50 150 096 247 3584 [l6]°

8(B)  LaNis 110.0 31.80 25 200 149 149 1719 [20,21]°

9(B) MmNiy;Feos 87.4 25.00 20 102 153 129 1214 [22]°

10 (A)  VogsTio1Feoos 148.0 42.90 ~20 100 164 008 5314 [20.23]°

11(C) TiFeosMnos 107.7 29.70 0 100 264 083 2939 [20,24]°

12 (B) LagssCeo1sNis 91.28 24.30 10 110 324 193 2850 ©b°

13 (B) MmNis,Alys 107.8 28.88 20 %0 373 305 2998 [1§]

14 (A)  VepsZiys 147.0 40.32 30 60 411 538 2271 [15]

15 (B)  Lap,YosNigeMno . 105.3 27.10 20 2 562 467 39.78 [25]

16 (D)  Zro,TiosMny" 85.0 21.00 30 150 577 663 7041 [26]°

17 (D)  Tio.eZT0.1Mn 4Cro 35Vo 2Feq 05° 106.9 25.89 25 100 1117 1117 9114 [27]

18 (B) MmNis1sFeoss 105.4 25.00 25 200 1136 1136 502.8 [20,24]°

19 (B) Lap4Ceo4Cap oNis 115.3 28.20 15 100 12.08 814 1189 [28]

20 (D) TiosZro,CrMn 108.6 24.60 ~20 50 23.06 395 49.69 [20]°

21 (B) Mm, ,Ca,Nis jALS 103.0 22.85 5 % 23.82 1228 1240 [29]

22 (B) CagoMmogNis 109.5 24.50 0 100 2675 10.83 1950 [20,24]°

23 (D)  ZrosTioFeNiogVo. 1183 26.80 20 9 3049 2535 2111 [30]°

24 (D)  TiossZroCrogsFeo,Mno2sNio 2Clo oz 93.66 19.26 20 110 3298 2888 1848 °©

25 (D)  TiCry.sMog.01 113.0 24.80 -50 % 3611 125 2164 [30]

26 (D) TiCris 122.0 26.19 ~100 30 60.77 003 7234 [31]°

27 (D) ZrFe,gCrp, 109.0 22.30 20 90 61.19 5249 306.2 [30]

28 (D)  (TiosrZro0s)11Crr6Mnos 115.0 23.40 10 99 80.80 49.00 527.9 [32]

29 (D) TiCr; sMngssFeg os© 101.6 19.32 -10 165 83.61 29.65 1009 [27]

30(D) TiCrysMno,Feos® 101.0 18.32 ~10 148 1164 4357 1008  [27]

31 (D) TiCrMn 106.0 19.60 —60 100 126.8 5.42 621.2 [34]’b

32 (D) ZrFergNios 119.7 21.50 20 % 3060 2640 1445 [30]

33 (D) TiossM0014Cl1 0 117.0 17.20 -50 % 1253 1217 4340 [30]

& Type of the alloy is specified in brackets as BCC-V solid solution (A); ABs- (B), AB- (C) and AB,-type (D) IMC'’s.

P The data are also available at the US DoE hydrogen storage materials database, http://hydrogenmaterialssearch.govtools.us; section “Hydride
Information Center (Hydpark)”.

¢ Previously unpublished experimental data by the authors of this review (ML, VY).

4 Dynamic PCT experiments.

¢ AS? fitted by ML to agree with the reported T—P conditions.

phase) with C(H) ~/P(H,) according to a Henry—Sieverts law.
When the value of C exceeds concentration of the saturated
solid solution (a), precipitation of the hydride (B-phase with
hydrogen concentration b > a) occurs, and the system exhibits
features of first order phase transition taking place at a con-
stant hydrogen pressure, P = Pp (a < C < b). This pressure is
called as plateau pressure in the diagrams of the metal-
—hydrogen systems. Further increase in hydrogen concen-
tration is again accompanied by the pressure increase
corresponding to the formation of H solid solution in the B-
phase. When the concentration approaches a certain
maximum value (C — Cpax) corresponding to the maximum
hydrogen storage capacity of the material, or the number of
interstitial sites available for the insertion of H atoms, the
equilibrium pressure exhibits an asymptotic increase, P — .

The plateau width, (b—a), is often considered as a reversible
hydrogen capacity of the material, and the equilibrium of
Reaction (1) in the plateau region is described by van’t Hoff
equation:

P\  AS® AHC
In (F) = R® tree @)
where P° = 1 atm = 1.013 bar,* AS® and AH® are the standard

entropy and enthalpy of hydride formation respectively, R is
the gas constant.

1 Often, when presenting Equation (2) in the literature, P° is
omitted. Note that in this case the Pp units are atmospheres, since
the Equation (2) refers to a standard state at P = 1 atm; T = 25 °C.
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The values of plateau pressures, Pp, at a given temperature
are thus dependent on AS° and AH® which are individual
properties of the material. For various hydride forming alloys
and IMC’s, AS° varies insignificantly around -111 + 14 J/
(mol H, K), see Table 1; that value is close for different systems
as this is the change of entropy of gaseous H, during the
Reaction (1) originating from the main/configurational
contribution (about —130 J/(mol H, K)) to the entropy from
dissociation of H,. Consequently, the plateau pressure will be
mainly determined by the reaction enthalpy, AH®, which
widely varies for different metals and is a measure of the
average strength of the M—H bond in MH, [14]. The latter is
strongly dependent on the composition and crystal structure
of the parent metallic material, including type of its compo-
nents (as regards to their affinity to hydrogen), their stoichi-
ometry and interaction energy in the alloy or IMC, type/
surrounding and size of the interstitial sites in the metal
matrix available for the insertion of the H atoms.

Since Pp increases exponentially with temperature, the
low-temperature H absorption at Py, > Pp(T;) = P, takes place
at a lower hydrogen pressure, and the high-temperature H
desorption (Py, < Pp(Ty) = Py) occurs at a higher pressure,
similar to the suction and discharge processes in a mechanical
compressor.

Table 1 presents the equilibrium properties of hydrogen
interaction with some hydride-forming alloys and IMC'’s
suitable for hydrogen compression applications. Van’t Hoff
plots for some of these materials are presented in Fig. 1;
typical requirements for the H, compression (P = 1—-400 atm,
T = 25150 °C) are shown as a rectangular area.

It can be seen that, depending of the type (A—D) and
composition of the hydride-forming material, the equilibrium

TC]
227 127 60 13 23 51
E ! . ! \ :
1 29(TiCr, Mn_ Fe .) X !
100015 (v, Fe, ) \32\ 3 (Tiy Moy, Or, )
18 (LaNis)\Q%Xw j
' 161 = 3
1003 ' \\ 31 (TiCrMn)
1N \&\
E 104 : i %
£ 3 ! \\ DRSS
a7 : (TiFe, Mn, )
| \ : oMy )
14 . . ) :
3 10 (Vo.asTio.ero 05)
0.1 1 (V75Ti17.52r7 5) 4 i
0.01 . . . . ; .
20 25 3.0 3.5 4.0 45

1000/ T [K]

Fig. 1 — Van’t Hoff plots for selected hydride-forming alloys
suitable for H, compression. Plot numbers correspond to
the numbers of alloys in Table 1; plot colours correspond to
the types of the hydride-forming alloys (A — black, B — red,
G — olive, D — blue). Rectangular area limited by dash-dot
line shows target requirements for H, compression:

P = 1-400 atm, T = 25-150 °C. (For interpretation of the
references to colour in this figure legend, the reader is
referred to the web version of this article.)

hydrogen pressures vary in a very broad range, from below
1 bar to exceeding 1 kbar at room temperature. Most of the
lower-pressure H, compression alloys (P < 200 bar at
Ty < 150 °C) belong to the ABs-type intermetallic compounds
(group B in Table 1) while significantly higher, >1 kbar,
hydrogen pressures can be generated using AB,-type IMC’s
(group D).

As it can be seen from Fig. 2, hydrogen compression ratio
(Pu/P1) achieved using MH in the temperature range from
T. ~ 25 °C to Ty = 100—150 °C varies in the range 10-50 at
Py = 100 atm. The value of Py/P; has a tendency to become
smaller when Py increases, but remains quite high (5-10) even
for the H, discharge pressures >1 kbar.

It has to be noted that the presented above hydrogen
compression performances calculated on the basis of van't
Hoff Equation (2) are only rough estimates which significantly
deviate from real characteristics of metal hydride materials,
even being considered only from thermodynamic point of
view.

The major factor affecting hydrogen compression effi-
ciency of the MH materials is the plateau slope. In a multi-
component hydride-forming IMC’s (e.g., AB,) the sloping
plateaux are originated from compositional fluctuations due
to the presence of impurities randomly substituting A- and/or
B-component, or because of fluctuations of the stoichiometry
(ABj.x) within the homogeneity region [35]. The quantification
of this phenomenon by introducing statistical (as a rule,
Gaussian) distribution of P, was first suggested by Larsen and
Livesay [36] and further developed by Fujitani et al. [37],
Lototsky, Yartys et al. [38,39], Park et al. [40].

In addition to operating pressure—temperature ranges, an
important parameter of MH material for hydrogen compres-
sion is the process productivity. The simplest approach for its
estimation assumes the productivity of H, compression cycle
(per unit of weight or per number of the metal atoms) as (b—a),
i.e. plateau width, where the values of b and a are available.
The problem of this approach is that both a and b are
temperature-dependent, and the plateau width decreases
with increase of the temperature. Furthermore, at a critical
temperature, Tc, the plateau degenerates to an inflection

——T,=100°C
—— T.=150°C

100 I

P,/P,

1 10 100 1000
P, [atm]

Fig. 2 — Dependencies of hydrogen compression ratio at
T. = 25 °C for selected hydride-forming alloys (Table 1).
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Fig. 3 — Pressure—composition isotherms at T, = 20 °C (1)
and Ty = 150 °G (2) for H-Lag gsGep.15Nis system illustrating
thermally-driven hydrogen compression using MH: (a) —
idealised (flat plateaux, desorption isotherms), (b) —
idealised (sloping plateaux, desorption isotherms), (c) —
real (sloping plateaux, absorption isotherm at Ty,
desorption isotherm at Ty).

point, and at T > T, the pressure—composition isotherms are
continually sloping [14]. Hence, for a realistic estimation of the
hydrogen compression productivity it is necessary to know
temperature dependencies of a and b, or to have a quantitative

information about phase diagram of the hydrogen—metal
system. The corresponding approach for the modelling of PCT
diagrams using statistical and thermodynamic features was
suggested by Lacher for H-Pd system already in 1937 [41] and
further developed by Kierstead [42], Brodowsky et al. [33],
Beeri et al. [34], Lototsky, Yartys et al. [39].

Finally, hydrogen compression performances of the real
MH systems are significantly affected by hysteresis, as the
values of plateau pressures for hydrogen absorption/hydro-
genation are higher than the ones for hydrogen desorption/
dehydrogenation. Hysteresis is caused by stresses which
appear in the course of growth of MH nuclei inside the matrix
of the MH alloy having lower molar volume. The thermody-
namic aspects of hysteresis were discussed in detail in a
number of publications (see, e.g. Refs. [13,43,44]). The influ-
ence of hysteresis on the performance of MH hydrogen com-
pressors will be discussed in section 3.2.

Taking into account the features of phase equilibria in the
real metal-hydrogen systems described above, we can illus-
trate the process of thermally-driven hydrogen compression
using MH by the scheme shown in Fig. 3. Hydrogen is
absorbed in the MH at a lower temperature, T, following the
hydrogen absorption isotherm at T; (1); the process is
accompanied by a release of heat, Q = |AH°|. The absorption is
carried out at a lower pressure, so the system approaches
equilibrium which corresponds to the point B on the isotherm
(1). The corresponding value of hydrogen concentration (Cy) is
strongly dependent on the hydrogen pressure and, generally,
itis not equal to the lower limit, b(1) (see Fig. 3(a)), of hydrogen
concentration in B-hydride at T;.

Further heating of the system to a higher temperature, Ty,
results in the hydrogen desorption from MH which follows the
hydrogen desorption isotherm at Ty (2) and requires absorp-
tion of heat, Q. When the desorbed hydrogen is released at a
higher pressure, the system equilibrium corresponds to the
point C on the desorption isotherm (2). Similarly, hydrogen
concentration (Cy) in this point depends on the hydrogen
desorption pressure and may not be equal to hydrogen con-
centration, a(2) (see Fig. 3(a)), in the saturated a-solid solution
at TH

In the real systems, due to sloping plateau (Fig. 3(b)) and
hysteresis (Fig. 3(c)), hydrogen compression in the same
temperature range (from Ty to Ty corresponding to isotherms
1 and 2, respectively) will require higher suction pressures
(P/>P;) and lower discharge pressures (Py < Py) than the
corresponding values calculated by Van’t Hoff Equation (2)
using AS® and AH® reference data (Table 1; usually provided
for desorption). Accordingly, the compression ratio, Py//P/,
will be lower than the Py/P; estimation based on the ideal
plateau behaviour, Fig. 3(a).

Hydrogen compression from P;’ to Py carried out in the
temperature range from T, to Ty is represented by a cyclic
process involving hydrogen absorption (A) and hydrogen
desorption (D) between points B and C on the isotherms 1 (H
absorption) and 2 (H desorption), respectively.

2 Figs. 3 and 4 are made on the basis of the unpublished
experimental PCT data for Lag gsCeq 15Nis further processed by the
model of Lototsky, Yartys et al. [39].
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Independent of specific paths B — C (D) and C — B (A), the
amount of hydrogen taking part in the compression cycle (or
cycle productivity of the process) will be equal to the change of
hydrogen concentration in the solid (AC). For the specific MH
material this value will be strongly dependent on the process
conditions (T, Ty, P/’ and Py'; Fig. 3(c)). The described evalua-
tions are based on maintainingof both T; and Ty, which requires
enhancements of the heat transfer [45] due to the poor thermal
conductivity of hydride powders (see Sections 2.2 and 3.3).

Fig. 4 presents calculated values of AC for Lag gsCeg 15Nis at
T, = 20 °C and Ty = 150 °C. As it can be seen, at the suction
pressure (P;') above the midpoint of the sloping plateau of the
H absorption isotherm, the hydrogen compression produc-
tivity significantly increases. Increase of the discharge pres-
sure (Py') results in the significant loss of the productivity.
However, if the suction pressure is high enough (that corre-
sponds to B-region of the H absorption isotherm (1), see Fig. 3),
very high discharge pressures can be generated with the
productivity about 20% of the reversible hydrogen capacity of
the material at T;. This effect has its origin in (i) decrease of
the lower limit, b, of hydrogen concentration in p-hydride with
increasing the temperature, and (ii) contribution of the dis-
solved hydrogen additionally released from the B-hydride.
Increase of Ty will result in further increase of the discharge
pressure with no significant changes in productivity, due to
the lowering of the concentration, a, of the saturated a-solid
solution.

The feasibility of generating high H, pressures using quite
stable MH was mentioned by Golubkov and Yuhimchuk [46]
who reported about compression of hydrogen isotopes to
57 bar (TiH,/Ty = 700 °C), 85 bar (UH3/700 °C) and 700 bar (VH,/
250 °C).

In summary, selection of the MH materials able to provide
required H, compression from P; to Py in the available

PH /PL
0 10 20 30 40 50
1 1 1 1 1
110
140
1 8
120
2 17
= 1004
N ]
z ]
- 804
z 1 6
7, ]
o 60
< ]
40
1 5
20 \
04
I R B B AL AL L AL R A R A B
0 50 100 150 200 250 300
P,/ [bar]

Fig. 4 — Dependence of H, compression cycle productivity,
AG, for the H-Lag gsCep.15Nis system (Fig. 3) on the H,
desorption pressure, Py, at Ty = 150 °C. Gurve numbering
corresponds to the H, absorption pressure, P,’ [bar], at

T. = 20 °C. The value P,/ = 6 bar corresponds to the plateau
midpoint.

temperature range (T, to Ty) can be achieved by analysing
dependence of thermodynamic properties (enthalpy and en-
tropy) of hydrogenation/dehydrogenation, on the alloy
composition. More accurate thermodynamic estimations of
hydrogen compression performances of MH materials,
including suction (P;/) and discharge (Py/) pressures at cooling
(T1) and heating (Ty) temperatures, compression ratio (Py'/P;/)
and the process cycle productivity (AC), are possible when
considering the complete isotherms of hydrogen absorption at
T; and hydrogen desorption at Ty, taking into account plateau
slope, hysteresis and features of H-M phase diagram. This
assessment can be done by the fitting the available experi-
mental PCT data using suitable models of phase equilibria in
metal—hydrogen systems.

2.2. H sorption/desorption kinetics

Though cycle productivity of H, compression using MH can be
determined from the thermodynamic considerations (see pre-
vious section), the duration of the hydrogen absorp-
tion—desorption cycle and, correspondingly, dynamic
performances of MH hydrogen compressors depend on the
rates of the direct and reverse processes of Reaction (1), i.e. on
kinetics of hydrogen absorption and desorption which can
vary significantly from alloy to alloy. Because many interme-
tallic hydrides exhibit rather fast intrinsic hydro-
genation—dehydrogenation kinetics, the rates of H absorption
and desorption for the MH storage materials are generally more
often limited by heat transfer [45,47]. In some cases, e.g. oper-
ation at low temperatures, or in presence of gaseous impurities
inhydrogen gas, kinetic factors may become decisive [48]. Thus,
heat-and-mass transfer modelling of H, charge/discharge flow
rates in the MH should incorporate a reliable and verified ki-
netic expression of the rates of H uptake and release [49,50].

Kinetics and mechanism of hydrogen—metal interaction
were analysed in numerous original research papers and re-
view publications (see, e.g. Refs. [49,51]). The interrelation
between kinetics and heat transfer determining the eventual
rates of H, absorption and desorption in various reactors was
first considered by Goodell [47]. He concluded that, due to the
very fast isothermal H, absorption (estimated time of 75%
hydrogenation for LaNis at Py, = 2P, and T = 25 °C equals to
just 0.5 s) and poor effective thermal conductivity of the MH
powder (~1 W/(m K)), the system is quickly self-heated and
approaches equilibrium elevated temperature conditions;
these can be calculated by solving the van’t Hoff Equation (2)
taking plateau pressure, Pp, as the actual H, pressure.
Further H, absorption or desorption is limited by the rate of
cooling or heating of the MH. Consequently, the most impor-
tant kinetic aspect in the dynamic behaviour of the MH re-
actors is hydrogen absorption—desorption rate at near-
equilibrium conditions. As it was shown by Fgrde, Yartys
etal. in Ref. [49], a good approximation of the reaction kinetics
in this case can be achieved by using Avrami—Erofeev
equation:

X=1-exp[— (KD)"]; ®3)

where X is the reacted fraction, K, is the rate constant, t is
time, and n is integer or half-integer whose value (0.5...4)


http://dx.doi.org/10.1016/j.ijhydene.2014.01.158
http://dx.doi.org/10.1016/j.ijhydene.2014.01.158

5824

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 39 (2014) 5818—5851

depends on the reaction mechanism. The reaction fraction is
defined as:

Cchl‘

X=
C,—Cy’

(4)

where Cy is the actual hydrogen concentration; C; and C, is
the hydrogen concentrations at the beginning and end of the
reaction, respectively.

The value of the rate constant can be presented as a
product of the pressure-defined driving force of the process,
K(P), and Arrhenius-like pressure independent term:

K, = K(P)-Ko exp (—%) )

where E, is activation energy.

Note that the pressure driving force, K(P), depends on the
deviation of the actual hydrogen pressure from the equilib-
rium one (typical dependencies for the various reaction
mechanisms, e.g. K(P)=1In(P,/P) for the desorption, are
reviewed in Ref. [49]), and the reaction rates at the given
pressure—temperature conditions will be dependent on both
kinetic parameters and PCT characteristics of the hydro-
gen—metal system. This approach is used in the heat-and-
mass transfer modelling of the MH reactors for hydrogen
compression (section 3.3).

2.3.  Materials challenges and their solution

Hydrogen compression applications pose the following
requirement to MH materials [11,48]:

e Tuneable PCT properties allowing to achieve required

hydrogen compression ratio (P to Py) in the available

temperature range (T;, to Ty);

High reversible H storage capacity to minimise the amount

of MH and to reduce the energy consumption and the heat

losses associated with thermal swings;

Fast kinetics of hydrogen exchange to achieve higher

productivities;

e Low plateau slope of the H absorption and desorption
isotherms;

e Low hysteresis, Pa/Pp;

Cycle stability when operating at high temperatures and H,

pressures;

Tolerance of H sorption performances to the impurities in

Hy;

Scaleability of the synthesis of MH alloys and their hy-

drides, and affordable costs.

The following section briefly describes challenges appear-
ing in the course of the development of MH materials for
hydrogen compression and reviews the possible ways of their
solution.

2.3.1. Tuning of the thermodynamic properties

Asitwas shownin section 2.1, hydrides of the alloys and IMC’s
form and decompose in a broad range of equilibrium decom-
position pressures. Taking into account the non-ideal behav-
iours reflected in the shape of the pressure—composition
isotherms (primarily, plateau slope and hysteresis), the

achievable compression ratio at a reasonable cycle produc-
tivity/reversible H capacity is low and seldom exceeds 5—10 at
(Ty — T1) = 100K, Thus, a multistage compression (see section
3.1) is required to reach higher eventual compression values.
The multistage operation approach introduces more strict
requirements to the tuneability of the PCT characteristics,
since in this case the H desorption isotherm at Ty for the
previous stage and H absorption isotherm at T, for the next
stage must be synchronised. The problem of coupling of the
MH materials used in the consecutive hydrogen compression
stages resembles selection of “high-temperature“ and “low-
temperature” MH for the heat management applications
[3,10]. However, in case of hydrogen compression, special
attention has to be paid to the operating pressures, in addition
to the thermal properties of the corresponding systems.

Altering of the hydrides stability can be achieved by the
variation of the composition of the parent alloys. The existent
hydride-forming alloys allow very broad, from —70 to —20 kJ/
mol H,, variation in AH® that corresponds to the H, plateau
pressures from millibars to kilobars at room temperature [12].
As applied to the commonly used types of hydride-forming
alloys and IMC’s, the variation in composition offers the
following opportunities described in Table 1 and in Fig. 1.

ABs-type intermetallics, the most rugged materials for the
MH applications, allow variation of the lower/suction pres-
sures from <1 to 20—30 bar at Ty = 25 °C, and the higher/
discharge pressures from 15-20 to ~200 bar at
Ty = 100—150 °C. The variations of the thermodynamic sta-
bility of the ABs-based hydrides can be achieved by substitu-
tion of lanthanum in LaNis by cerium or mischmetal® (this
lowers the stability and increases the H, dissociation pres-
sures), and by substitution of nickel with cobalt, aluminium,
manganese, or tin (increasing the stability, and decreasing the
H, pressures). The ABs-type IMC’s have rather small plateau
slope and hysteresis, however, increasing with the increase in
cerium/mischmetal, and/or aluminium content [16,52].
Introduction of aluminium also results in decrease of the
reversible hydrogen capacity [16]. However, Al substitution
significantly enhances the durability of the hydride phase
during extended absorption/desorption cycling as has been
demonstrated for several ABs-type alloys [53—56].

Industrial-scale manufacturing of ABs-type alloys for
hydrogen compression, as well as influence of the
substituting components (Ce, Co, Al) in LaNis on the oper-
ating performances of the MH materials has been studied by
Baichtok et al. [57]. The application of (La,Ce)Nis for
industrial-scale hydrogen compression was reported by
Bocharnikov et al. [58].

AB,-type intermetallics cover much broader range of the
operating pressures. The most stable ZrV,H ., is characterised
by thermodynamic parameters of f—o transition as
AS® = —88.4 J/(mol H, K) and AH®° = —78 kJ/mol H, [59] that

® Mischmetal is an alloy of rare earth metals in naturally
occurring proportions and is available in two modifications, as a
lanthanum mischmetal containing 58.0 wt.% La, 28.6 wt.% Ce, 5.
8 wt.% Pr and 7.5 wt.% Nd (produced by Norsk Hydro and used in
Ref. [17]), or as a cerium mischmetal containing ~50% cerium and
~25% lanthanum, with the rest divided between neodymium and
praseodymium as in Ref. [16].
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corresponds to plateau pressure below 107° mbar at room
temperature and just around 3 mbar at T = 300 °C. At the same
time, hydride of ZrFe, (AS° = —121 J/(mol H, K); AH® = —21.3 kJ/
mol H,) has plateau pressure above 300 bar at room tempera-
ture. A 20% substitution of Zr by Ti results in further destabili-
sation of the hydride doubling the plateau pressure (this
hydride has, however, a huge hysteresis between the pressures
of H absorption and desorption) [30]. Since calculated hydro-
genation enthalpy of TiFe, is around —3.6 kJ/mol H, [60] and
assuming AS® = —100 J/(mol H, K), this will result in a plateau
pressure about 40 kbar at a room temperature. Consequently, in
the AB,-type IMC’s the operation at higher hydrogen pressures
canbe achieved by increasing Ti/Zr ratio and Fe content on the,
correspondingly, A- and B-sites. The lowering of the operating
pressures is achieved by introducing such B-elements as V and,
in a lesser extent, Mn and Cr. The multicomponent AB,-type
hydrides appear to show rather high plateau slopes and a pro-
found hysteresis, especially, for higher Fe contents [27,30].
Furthermore, the AB,-type alloys are much more sensitive to-
wards poisoning by the traces of active gases, oxygen and water
vapour, when present as admixtures in hydrogen gas [48].
Vanadium-based BCC solid solution alloys form another
type of the materials suitable for MH hydrogen compression.
Vanadium forms two hydrides [61], VH;_x and VH,_, where
the transition between the mono- and dihydride is charac-
terised by a reversible hydrogen storage capacity of about
1.9 wt.% H at near-ambient conditions and has a steep tem-
perature dependence of hydrogen equilibrium pressure,
associated with unusually high values of entropy and
enthalpy of the formation of vanadium dihydride. Due to this
reason, the BCC vanadium alloys are attractive candidates for
the MH hydrogen compressors [62,63]. Introduction of
<17.5 at.% of titanium into V alloys allows significant variation
of the plateau pressure, approximately from 0.2 to 10 bar at
T =60 °C [15]. Similar variations (0.1—20 bar at T = 80 °C) were
achieved by introduction of 0—7.5 at.% Fe in (Vo oTio.1)1-xFex
[64]. Use of some V-based alloys allows for H, compression
from 20 bar (T = 10 °C) to 150—200 bar (T = 150 °C) with
reversible H capacity exceeding 150 cm®/g STP. Minor addi-
tives of Zr (7.5 at.%), together with Ti (0—17.5 at.%) and 3d
transition metals (Cr, Mn, Fe, Co, Ni; up to 7.5 at.%), signifi-
cantly improve hydrogenation/dehydrogenation kinetics, and
the variation of the hydride stability can be achieved by
changes in the amount of Ti and the transition metals [15].
The main disadvantage of the usage of BCC-V alloys for H,
compression is in quite high hysteresis and significant sloping
of the H, absorption isotherms; increased H, absorption
plateau pressures lead to significant hysteresis; hysteresis
increases during H absorption—desorption cycling [65].
TiFe-based AB-type intermetallics can offer advantage of
low costs that makes them an attractive option for the appli-
cations of MH. The first heat-driven hydrogen compressor was
patented in 1970 by Wiswall and Reilly [66] and used TiFe to
compress H,. However, limited possibilities for the element
substitution in TiFe does not allow one to easily vary the sta-
bility of its hydrides, as compared to the alloys considered
earlierin the review. The other drawbacks of TiFe as a hydrogen
compression alloy include presence of two plateaux on the
pressure—composition isotherms, high hysteresis, difficulties
in activation, and sensitivity to the presence of minor

impurities of O, and H,0 resulting in a strong deterioration of
the hydrogen storage performance. Some improvements can be
achieved in the course of alloying of TiFe with Mn or V, addition
of deoxidisers (RE metals), as well as variations in the pro-
cedures of the material preparation and treatment [48,67].

2.3.2.  Tolerance to the impurities in H,

Tolerance of the hydride-forming materials towards impurities
in H, is a very important property, especially for such “open-
ended” MH applications as hydrogen compression. Depending
on the alloy—impurity combination, hydrogen storage proper-
ties can deteriorate as a result of various types of damages [6,48]:

(1) poisoning: H storage capacity quickly decreases without
a concurrent decrease of intrinsic kinetics;

(2) retardation: slowing down of the kinetics of hydrogen
exchange without a loss of ultimate storage capacity;

(3) corrosion;

(4) innocuous damage: no surface deterioration takes
place, but there can be pseudo-kinetic decreases due to
inert gas blanketing.

The mechanism of the deterioration of hydrogen absorption/
desorption performances is determined by interaction of the
impurity with MH surface (1-3), as well as by slowing down of
the gas diffusion (4). Influence of the gas impurities can be
quantified by empirical equations; their numerical constants
depend on the specific “MH—impurity” combination and have to
be determined experimentally [68]. The most important impu-
rities for MH H, compression process are oxygen and water
vapour which are present in hydrogen produced by electrolysis,
or traces of carbon dioxide and monoxide in hydrogen produced
from carbonaceous feedstock. Moderate concentrations of
these impurities (except of CO) are normally not a serious
concern for the ABs-type alloys, but for titanium-based AB,- and
AB-type ones impurities cause problems [48,67]. Presence of
even ppm-scale amounts of CO results in a strong poisoning of
even most tolerant to the impurities ABs-type alloys [67—70].

There are several possibilities in addressing the poisoning
problem. Importantly, MH poisoned by the admixtures can be
reactivated by vacuum heating [6,48]. Secondly, addition of
deoxidisers can help as well. One example of the MH hydrogen
compressor [71] implies usage of TiFe doped by 2 wt.% of
mischmetal. An efficient method of eliminating poisoning is
in a surface modification of hydride-forming alloys, for
example, by chemical treatment with a fluorine-containing
aqueous solution [72]. The coating of the MH surface by
transition metals, particularly with platinum group metals,
also improves poisoning tolerance and facilitates reactivation
procedure; this method combined with the fluorination en-
ables operation in CO-contaminated hydrogen [69,70]. Re-
views on the surface modification techniques increasing the
poisoning tolerance of the MH materials were published by
Uchida [73] and Lototsky et al. [69]. Introduction of noble
metals into MH particles is a part of MH hydrogen storage and
compression technologies by Ergenics, Inc. [74]. Surface
modification of vanadium, by acidic leaching followed by ball
milling with 20 wt.% LaNis was also used by Hu et al. [75] for
the preparation of the MH material suitable for the second
stage of high pressure hydrogen compressor.
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Fig. 5 — Crystal structures of parent and hydrogenated alloys used for MH H, compression.

2.3.3. Degradation

In addition to the cycle stability issues caused by impurity of
hydrogen gas, hydrogen storage capacity can be lost during
extended cycling in pure H, because of the side hydrogenation
process dictated by thermodynamics of the metal-hydrogen
interactions. A degradation of the reversible H storage ca-
pacity is caused by a disproportionation of the intermetallic
alloy to form a stable binary hydride [68]. As example, in case
of LaNis, the reversible hydrogen absorption and desorption
reaction:

LaNis + 3H2 p= LaNis He (6)

is less thermodynamically favourable as compared to the
irreversible at the same operation conditions disproportion-
ation process:

LaNis + H, — LaH, + 5Ni @)

Some intermediate processes take place between
Reactions (6) and (7) and include amorphisation, formation of
lattice defects and H-trapping sites. For the IMC’s enriched
with A-component which forms stable binary hydrides (e.g., Y
in YNiy), the disproportionation also results in the formation
of intermetallics enriched with the non-hydrided component
B (Ni in YNis). Because the disproportionation requires diffu-
sion of the metal atoms, it is strongly retarded at lower tem-
peratures, where a reversible formation—decomposition of

the intermetallic hydride according to (6) prevails. However,
the degradation processes of the type (7) quickly accelerate
when temperature and hydrogen pressure increase. That is
why the problem of MH intrinsic cyclic stability becomes the
most important issue in the course of development of high-
pressure MH hydrogen compressors.

The most extended experimental studies of degradation
effects during the cycling (up to 90,000 thermal cycles under
H, pressure; T = 40—200 °C) were presented in work of M. Groll
et al. [76,77]. The reversible H capacities as a function of
number of cycles were determined for several ABs- and AB,-
type alloys. Various investigations (pressure—composition
isotherms, TDS, XRD, magnetisation, laser granulometry,
SEM/EDS) were performed in order to determine the degra-
dation and regeneration mechanisms involved. The reversible
storage capacity of the ABs alloys (A = La or Mm; B = Ni, Al, Mn,
Co, Sn) decayed during the cycling. This effect is stronger at
higher temperatures and pressures. However, the original
capacity of the materials could be recovered by heating to
~400-500 °C in vacuum leading to the decomposition of bi-
nary hydrides and recombination of intermetallides. Bowman
et al. [78] observed nearly full recovery of highly degraded
LaNi, 7SN 2, hydride following a nominal 3 h annealing at
~675 K under circa 1-bar hydrogen pressure. In contrast, the
AB; alloys (A =Ti, Zr; B = Cr, Mn, Fe, V) showed no degradation
after 42,400 cycles [76]. Iosub et al. [79] observed little or nearly
isotropic broadening of the X-ray diffraction peaks of AB, al-
loys that they attributed to the reduced defect formation upon
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the hydrogen absorption compared to the behaviour of the
ABs hydrides. This may account for the greater stability
exhibited by hydride phases of the AB, intermetallics.

The prolonged H sorption—desorption cycling can impair
hydrogen sorption properties even for the systems which do
not undergo the disproportionation. Indeed, a 20% reduction
in H sorption capacity accompanied by increase of hysteresis
was observed for vanadium hydride [65] during 1000 absorp-
tion—desorption cycles performed between 24 and 135 °C. The
most probable reason for that was assumed to be sintering
effects accompanied by grain growth and strain relaxation. In
chemically related V—Ti—Fe BCC alloys a 40% total decrease of
the reversible H capacity was observed after 400 cycles at
10 bar H, and 20—600 °C. The cycling was accompanied by a
BCC—BCT transition and by the formation of amorphous
phase in the MH matrix [80].

During the last decade the material degradation issues for
the MH compression materials were studied by Golben and
DaCosta [81], Bowman et al. [82—84], Laurencelle et al. [85], Li
et al. [86,87]. It was shown that disproportionation resistance
of ABs-type intermetallides increases with increase of the
binding energy between the metal atoms, and with introduc-
tion of the additives strengthening this interaction (e.g., tin-
substituted LaNis_,Sny), thus resulting in the improvement
of the cycle stability [88].

2.3.4. Structure and morphology
Although structural and morphological features of hydride-
forming alloys and hydrides are mostly considered as funda-
mental properties of the MH materials, some of these prop-
erties are directly related to the MH compression applications.
Fig. 5 presents the structures of typical hydrogen storage
alloys following their classification shown in Table 1. As it can
be seen from the last column, the hydrogenation is accom-
panied by a significant volume increase of the solid materials;
the lattice expansion, AV/Vy, typically varies from 15 to >30%.
Accordingly, the cyclic hydrogen absorption and desorption is
accompanied by the periodic changes in the volume of MH
material loaded into a container for hydrogen compression.
It is known that insufficiently high filling fraction of the
powdered MH material in the MH container results in increase
of the “dead space” that significantly decreases H, compres-
sion productivity, especially, at high discharge pressures [89].
In addition, the increase of the MH packing density is expected
to result in the enhancement of the hydride effective thermal
conductivity [90]. On the other hand, too high filling density,
exceeding 61% of the material density in the hydrogenated
state, is detrimental for the operation safety as the lattice
expansion during hydrogenation can generate high stresses in
the MH bed and, in turn, deform or destroy the container [91].
Fig. 6 illustrates the deformation of a stainless steel vessel
following extended absorption—desorption cycling of powder
LaNiy 7651022 hydride between ~295 K and 465 K. Thus, the
filling of MH material into container for hydrogen compres-
sion is always a compromise between achieving the best
operation performance and fulfilling safety requirements. The
data describing lattice expansion during the hydrogenation
(AV/Vy) is very important for the optimisation. Since hydrides
used for the H, compression are unstable at ambient condi-
tions, their structural analysis requires use of in-situ neutron

Swelling!

Fig. 6 — Swelling of a 316L stainless steel reactor vessel
produced by pressure—temperature cycling of 15 g of
LaNi, 78Sno 2oH, [R.C.Bowman, Jr, previously unpublished].

powder diffraction (NPD) and in-situ synchrotron X ray
diffraction (SR XRD) allowing to directly monitor phase
transformations during the hydrogenation—dehydrogenation.
In-situ NPD and SR XRD were successfully applied in the
detailed studies of a number of hydride systems including
ones based on IMC’s suitable for high-pressure hydrogen
compression [92,93]. Conventional XRD of starting alloys and
their hydrides can also be used for the determination of their
structural properties, including real (crystal) densities, but its
application to probe the unstable hydrides requires their sta-
bilisation by, e.g., exposure to CO, SO, [52], or air at liquid ni-
trogen temperature [94].

Evolution of particle size and shape distribution in the
course of cyclic H absorption—desorption processes is a very
important factor which determines effective thermal con-
ductivity (ETC) of the powdered MH beds. Recent findings
using granular effective medium theory [90] allowed quanti-
fying the interrelation between the morphological features of
hydrogenated AB,-type alloy and heat transfer characteristics
of the corresponding MH beds. It opens perspectives for the
optimisation of the MH containers for hydrogen compression
towards increase of the ETC and, in turn, improvement of
their dynamic performances (see also section 3.3.1).

Recently, there were published the data of the detailed
experimental study of the influence of cyclic swelling of MH
bed on the basis of Ti—V—Cr BCC alloy on the mechanical
stresses in the containment, as well as on the changes in MH
porosity and their evolution during cyclic hydrogenation/
dehydrogenation [95].

3. Applied aspects
3.1. General layout

Overviews of the general layouts (Fig. 7) of the MH hydrogen
compressors were presented in patent descriptions by the
authors of the present review [96,97].

The simplest apparatus realising thermally driven
hydrogen compression using MH is shown in Fig. 7(a). Metal
hydride material (A) thermally coupled to a heat supply/
removal accessory (B) is placed into a pressure container (C)
comprising a gas pipeline (D) which allows supply or removal
of hydrogen gas to/from MH (A). The gas pipeline (D) can have
a built-in filter element (not shown) which provides a uniform
hydrogen distribution within the MH bed, and also prevents
contamination of gas pipelines with fine powder of the MH.


http://dx.doi.org/10.1016/j.ijhydene.2014.01.158
http://dx.doi.org/10.1016/j.ijhydene.2014.01.158

5828

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 39 (2014) 5818—5851

(a) $ (b)

Q@T Q@ Ty
A

- Step1

» Step 2

Q@T. Q@Ty - Q@T. +Q@ Ty

Fig. 7 — General layouts of MH compressor: (a) — periodically operated, (b) one-stage continuously-operated, (c) — two-stage

continuously operated.

The assembly A—-D called the metal hydride compression
element, or generator-sorber, provides periodic suction of
low-pressure hydrogen (H, @ P;) when the MH is cooled (—Q)
down to the lower temperature, Ty, followed by a discharge of
high-pressure hydrogen (H, @ Py) in the course of heating (+Q)
of MH to the upper temperature, Ty. This solution first
patented in 1970 by Wiswall and Reilly [66] allows periodically
operated hydrogen compression that restricts its application
from the continuous technological processes.

The simplest continuously-operated metal hydride
hydrogen compressor (Fig. 7(b)) comprises two compression
elements (A1-D1, A2—D2) similar to the one shown in Fig. 7(a).
The gas pipelines D1 and D2 are connected to a gas distrib-
uting system (E) equipped with a port (F) for the supply of
hydrogen at low pressure, P;, and a port (G) for the output of
hydrogen at high pressure, Py. The operation of the
compressor includes two steps, 1 and 2. During Step 1 the heat
supply/removal accessory (Bl) of the first compression
element provides heat removal (—Q) from the MH (A1) at a
lower temperature level, T;; simultaneously, the accessory
(B2) of the second compression element provides heat supply
(+Q) to the MH (A2) at a higher temperature level, Ty. During
the next Step 2 the heating/cooling modes of the accessories
B1 and B2 are reversed, so that B1 operates in the heat supply,
and B2 in heat removal mode. Thus, a periodic reversal of the

operating modes of the heat supply/removal accessories Bl
and B2 synchronised with switching gas flows by the gas
distributing system (E) provides the continuous operation
resulting in the suction of low-pressure hydrogen to the port F
and the release of high-pressure hydrogen from the port G.

An approach to generate high H, pressures at modest
operating temperatures is the use of multi-stage hydride
compressors, a concept developed at Ergenics Inc. [98]. The
multistage compressor uses a series of two or more alloys
differing by thermal stabilities of their hydrides. Fig. 7(c)
shows an example of layout of two-stage MH compressor. The
alloy forming the most stable hydride is placed in the
compression elements of the first stage (A1.1, A1.2), and other
MH are loaded to the compression elements belonging to the
next stages, in the order of decrease of their thermal stability
(A2.1, A2.2). The multistage operation allows achievement of
higher overall compression ratios using the same or smaller
temperature swing. For example, five-stage MH compressor
developed by Ergenics allows H, compression from 7 to
250 bar in the temperature range 30—90 °C with water as a
heating/cooling agent [99].

The gas distributing system (E) can be made as a one-way
(check) valve arrangement (see Fig. 8 as an example); the pe-
riodic heating/cooling of heat supply/removal accessories (B)
is conveniently controlled by timing relays [100—102].


http://dx.doi.org/10.1016/j.ijhydene.2014.01.158
http://dx.doi.org/10.1016/j.ijhydene.2014.01.158

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 39 (2014) 5818—-5851

5829

Q@ Ty
Step 1 '

¥
Q@ T

Q@ T,
Step 2 2

Fig. 8 — Operation of one-stage continuously operated MH compressor (Fig. 7(b)) when gas-distributing system (E) is made as
a check valve arrangement. Opened and closed check valves are shown as empty and filled symbols, respectively.

The basic engineering approach described above is pre-
sented in a number of publications and patents. Before
considering the details of its implementation (section 3.3), we
would like to present thermodynamic analysis of the MH
compressors as heat engines (next section), and to discuss
efficiency of the compression.

3.2, MH H, compressors as heat engines

A detailed thermodynamic analysis of an MH hydrogen
compressor (MHHC), or MH thermal sorption compressor (MH
TSC), as a heat engine has been performed by Solovey
[5,103,104]. Influence of various factors on thermodynamic
performances of the MH TSC’s was also considered in Refs.
[57,89,105—110].

Hydrogen compression in an ideal MHHC/MH TSC (Fig. 9) is
achieved by sequential processes which include:

(a) isobaric—isothermal absorption of low-pressure
hydrogen (P, = P;) at a lower temperature, Ty, (1-2);

(b) polytropic heating of the MH from lower (T;) to higher
(Tw) temperature (2—3);

(c) isobaric—isothermal desorption of high-pressure
hydrogen (P, = Py) at higher temperature, Ty (3—4);

(d) polytropic cooling of the MH from Ty to T; and isobaric
cooling of high-pressure hydrogen from Ty to T,
(4—5-1).

When pressure—temperature dependence for H, absorp-
tion/desorption is described by the van’t Hoff Equation (2), the
heat, Q, will be transformed to compression work, W, with the
efficiency of Carnot cycle (nc) realised within the same tem-
perature range:

TH—T]_.

w- QT &)
W _Tu-Ti,
ne=g = s (&)

where Ty and Ty are the temperatures of heat supply and heat
sink, respectively.

Equation (8b) gives the upper limit of the MH TSC effi-
ciency. The efficiency of the real engine will be reduced by two
groups of factors described below.

A ; :
T Py=Py} iP=P

TH """"""""

T\Q
2

7

Fig. 9 — Entropy (for both metal hydride and hydrogen
gas)—temperature diagram of the operation of an idealised
MH compressor [104].
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e The first group includes intrinsic factors characterising
physical-chemical behaviour of the real system of
hydrogen gas with hydride-forming materials. These are
reversible hydrogen sorption capacity, plateau slope, hys-
teresis, and dilatation.

The second group is related to the design and technological
performance of the specific MH TSC’s and their compo-
nents (mainly, MH containers). These include rates of heat
exchange between the heat transfer fluid and the MH bed,
volume of the dead space (void fraction in the MH bed),
material consumption of the MH container (containment/
MH material weight ratio), and efficiency of heat recovery.

Reversible hydrogen storage capacity, AC, is a difference
between hydrogen concentration in the MH at suction, C(Tt,
P/’), and discharge, Cy(Ty, Py), conditions (Fig. 3). It is deter-
mined by direct measurements of the pressure—composition
isotherms for the MH alloy at T, and Ty. If the detailed
experimental PCT data for the MH are available, they can be
fitted using a model for the PCT diagrams, and then the values
of AC for different operating conditions can be easily evalu-
ated (see Section 2.1). This factor influences the MH TSC effi-
ciency both directly and, furthermore, via such engineering
factors as dead space and material consumption. Increasing
reversibility of the hydrogen storage capacity leads to the
smaller differences between the MH TSC efficiency and its
ideal (Carnot) value. These two values converge for a
completely reversible H absorption—desorption.

The thermodynamic properties of the MH—hydrogen sys-
tem are important both for adjusting hydrogen suction/
discharge pressure to the available temperature range and for
the achieving of the best possible efficiency of the MH TSC.
First of all, this concerns the specific heat Q = |AH?| of
hydrogen sorption/desorption which determines thermal en-
ergy consumption during hydrogen compression. Specific
heat capacity, c,, of the MH alloy is also very important.

It should be noted that the correct calculations of the high-
pressure MH TSC parameters should also take into account
fugacity of hydrogen and temperature variation of the differ-
ences in heat capacities of the reagents participating in the
Reaction (1). Neglecting these important features can intro-
duce large errors when using the Van’t Hoff Equation (2)
values for the discharge pressures; these deviations can be
up to 30% higher than the correct ones [89].

As briefly mentioned in the Section 2.1, in the plateau re-
gion the equilibrium pressure of hydrogen absorption exceeds
the equilibrium pressure of hydrogen desorption. This factor,
sorption hysteresis, is expressed quantitatively by a difference
in free energy [13]:

AGhx =RTIn(}) or ©)

—In(Ba) — A%mst
6T—ID<PD>— RT

where Pp and P, are, respectively, desorption and adsorption
hydrogen equilibrium pressures measured at the same tem-
perature, and ¢r is isothermal hysteresis factor. This value is
the characteristic of a specific MH—hydrogen system and
should be determined experimentally. As it was shown in Ref.
[103], hysteresis causes additional energy consumption

required to close the thermodynamic cycle of an MH TSC. It
causes losses in hydrogen compression work and, therefore,
reduces the efficiency of hydrogen compression. In thermo-
dynamic calculations of the MH TSC efficiency the hysteresis
can be described by isobaric factor, 6 which can be expressed
as:
1 1 ASY—ASS,

C A PR 1o
where index A corresponds to absorption, index D for
desorption and Qs = —AH®, = —AHC,.

Another intrinsic factor indirectly influencing on the effi-
ciency of the MH TSC is dilatation that is relative volume
change resulting from expansion of the parent metal lattice in
the course of the MH formation (see Section 2.3.4). The typical
values of the dilatation coefficient, « = AV/Vy, are of 10—-30%
[6], see also Fig. 5. Dilatation causes changes in the MH density
that influences on the value of the dead space in the MH TSC
(see below) and, on the other hand, results in swelling of the
MH bed that affects safety and reliability of MH containers.

The rate of heat transfer between the heat carrier and the
MH bed is the most important design and technological factor
affecting both the efficiency and productivity of the MH TSC.
In efficiency calculations this factor is taken into account by
taking Ty below the heating temperature and T; above the
cooling one; the differences are calculated starting from the
effective overall heat transfer coefficients [105].

The disperse structure of the powdered MH bed, as well as
presence of voids filled by gas in the MH container and gas
distribution system determine the effect of the dead space,
which negatively influences the MH TSC efficiency and pro-
ductivity [45]. This negative influence increases with
increasing discharge pressure. For example, at output pres-
sure of 300 bar and typical value of a dead space of 0.25 cm?
per 1 g of the MH alloy having hydrogen sorption capacity
~140 cm®/g STP, the fall in both productivity and efficiency
reaches 30% [89].

Influence of the dead space on the efficiency of MH TSC can
be taken into account by introducing dimensionless coeffi-
cient Ky:

my(0) — my(l

ke =" (11)
where my(0) and my(i) are the weight (or number of moles) of
H, in the dead space at output (discharge) and input (suction)
conditions, respectively, and my(MH) is the weight (or number
of moles) of H, in the metal hydride (equal to the reversible
hydrogen sorption capacity multiplied by the weight of the
MH). Ky depends on conditions of hydrogen suction and
discharge and, also, on the real and packing densities of the
MH. Decreasing the dead space can be achieved first of all by
increase of the MH bed packing density, taking into account
safety requirements originated from swelling.

An important design factor affecting the MH TSC efficiency
is material consumption of the MH container. It includes
pressure containment and heat exchanger; these, being peri-
odically heated/cooled, cause heat losses and decrease the MH
TSC efficiency. The material consumption can be taken into
account by introducing coefficient Ky, equal to the ratio of the
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total weight of the empty container to the weight of the MH
therein. The negative influence of the material consumption
can be partially mitigated by the heat recovery.

The quantification of the influence of the above-mentioned
factors on the efficiency of the MH TSC, 7, was derived by
Solovey [5,103] as:

Q(nc — 0pTL)(1 - Ky)
QL —Ky) + (1 o)l 2K (T — Ty) + QKv]

Here the numerator represents the net heat required for
hydrogen compression, and denominator is the total supplied
heat. Q is the net heat required for hydrogen desorption from
the MH; 7 is the Carnot efficiency (Equation (8b)); ép is isobaric
hysteresis factor (Equation (10)); Ky is the dead space coeffi-
cient (Equation (11)); o is heat recovery efficiency; cy is the total
heat capacity of the MH container with MH bed; K, is material
consumption coefficient, and AC is reversible hydrogen sorp-
tion capacity expressed as hydrogen weight fraction in the
MH.

Efficiencies of the MH TSC calculated using Equation (12) at
various heat recovery efficiencies are shown in Fig. 10. The
figure also contains our estimations of the efficiency range of
industrial mechanical compressors produced by RIX In-
dustries [111]. These compressors having the productivity of
50—100 m*/h and compression ratio of 50—350 are charac-
terised by the efficiency of 40—45%. This is superior to the
efficiency of the MH compressors (below 25% at Ty ~ 150 °C).
However, mechanical compressors also require significant
investments from their operators and require much more
directly generated electrical energy than the concept of the
MH TSC that is based on utilisation of the waste thermal
energy.

Calculations presented above assume that the energy in-
puts for the MH H, compression are associated only with the
heating of the MH material from T;, to Ty, and the cooling from
Ty to Ty is a spontaneous process of the heat dissipation into
environment. If the cooling requires additional energy input

n= (12)
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Fig. 10 — Efficiencies of MH TSC using LaNis at T, = 30 °C
and different heat recovery efficiencies, ¢: AC = 1.4 wt.%;
Q = 31 kJ/mol H,, or 217 kJ/kg (MH); 6P = 2-10"* K™%

Ky = 0.1; Ky = 1.0; cs = 0.51 kJ/K.
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Fig. 11 — Exergy efficiency of single- (1) and two-stage (2)

MH compressor and mechanical H, compressor (3) as
function of heat source temperature [106].

(e.g., when a heat pump is used), the amount of consumed
energy will be higher resulting in a decreased efficiency. Cal-
culations by Kelly and Girdwood [110] for the H, compression
from P; = 130 bar (T = 30 °C) to Py = 414 bar (Ty = 130 °C)
yielded the efficiency of the process (related to the isothermal
compression work) as 2.9%, or 11.6% of the Carnot efficiency.
According to our calculations using Equation (12) (no heat
recovery) and parameters presented in Ref. [110], the corre-
sponding values are 7 and 28%, respectively. The origin of the
difference is in the accounting of the energy input used for the
cooling (about 51% of the total energy consumption) applied in
Ref. [110].

Low energy efficiency is a common feature of heat engines
operating in a narrow temperature window (Equation (8)).
Various energy losses in the real MH compressors result in
further decrease of their efficiency. Finally, as it was shown in
the previous paragraph, the efficiency further decreases
because of additional energy inputs. Therefore, the MH
hydrogen compression can become beneficial either for some
special applications, or when the energy inputs are associated
only with low-grade waste heat.

Analysis of the value/exergy of primary energy inputs
consumed in the thermally driven MH H, compression can be
a useful tool in the comparison of this method with conven-
tional compression technologies.

Fig. 11 shows calculated exergy efficiencies of the MH and
mechanical electrically driven hydrogen compressors [106].
There the single-stage MH TSC based on LaNis intermetallic
compound, and two-stage MH TSC using LaNis for the first
stage and CegsLagsNis for the second one were considered.
The total heat capacity of the containment was assumed to be
equal to the heat capacity of the MH (K = 1), and the effi-
ciency of heat recovery (¢) was assumed to be 0.5. It can be
seen from Fig. 11 that MH hydrogen compression can provide
the efficiency gain over mechanical one at the temperatures
below 200 °C for a single-stage MH TSC and below 100 °C for a
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two-stage MH TSC. For these conditions a significant energy
benefit in comparison with mechanical compression takes
place. It also can be seen that an increase in the number of
stages of an MH compressor results in a significant decrease of
its efficiency. Thus, the number of compression stages for
large-scale industrial applications should be minimised.

The contribution of factors influencing the exergy effi-
ciency of the MH compressors is shown in Fig. 12 [104]. The
efficiency of heat transformation into the energy of the com-
pressed H, was found to be about 0.58 that corresponds well to
the data for one stage MH compressor at Ty ~ 100 °C (Fig. 11).
It was also noted in Ref. [104] that if to consider exergy effi-
ciency of electrically-driven mechanical compressors starting
from the heating value of a fuel burnt at a thermal power plant
(efficiency about 0.4) then the efficiency will be about 0.18, or
3.2 times lower.

As can be seen from Fig. 12, the major factors contributing
to the decrease of the efficiency of MH compressors are
transient losses (1) and losses caused by heat transfer (2).
Reduction of these losses is the main objective of further im-
provements in design and operation features of the MH
hydrogen compressors which will be considered in the next
section.

3.3. Design features and performances

Improvement of the basic engineering approach in the
development of MH hydrogen compressors (section 3.1)
mainly concerns:

(i) Optimisation of the hydride-forming alloys;
(ii) Design of compression elements;
(iii) Methods and accessories for heat supply/removal;
(iv) Number of compression elements, their gas connec-
tions and the sequence of operation of the associated
heat supply/removal accessories.

The approach to the selection/engineering of the MH ma-
terials, mainly related to the adjustment of the required
operating pressures over the available temperature range, was
considered in section 2. The present section will consider the

Fig. 12 — Exergy balance (in % to the exergy of heat at Ty) for
H, compression using MH [104]: 1 — losses in transient
process; 2 — losses caused by heat transfer; 3 — losses for
dead space; 4 — losses due to heat transfer with the
environment; 5 — losses in gas distribution system; 6 —
useful exergy.

engineering solutions of MH containers to be critical compo-
nents of the MH compressors (section 3.3.1) and system fea-
tures followed by a brief overview of state of the art in the
international development of MH compressors (3.3.2).

3.3.1. MH containers/compression elements

A proper design of the containment for the MH material for H,
compression, together with the associated H, gas and heat
supply/removal accessories, has two main objectives. First of
all, it aims at the achievement of high hydrogen char-
ge—discharge rates to provide shorter cycle time and higher
productivity of the compressor. Secondly, it has to provide
higher efficiency of hydrogen compressors by reducing the
losses (see Fig. 12).

The main problem to be solved for the achievement of both
goals is the intensification of heat transfer between the heat
supply/removal accessories and the MH material. The main
factor limiting the H, charge/discharge dynamics of the MH
containers is the low thermal conductivity of the powdered
hydride beds [45]. Moreover, its value is strongly related to both
design and technological parameters (geometry, MH packing
density, as well as the wall heat transfer resistance), and on the
operation conditions. Usually, the effective thermal conduc-
tivity of a powdered MH bed can vary in the range of 0.13—2.3 W/
(mK) while the thermal conductivity of a bulk alloy is more than
order of magnitude higher, e.g. 30 W/(m K) for LaNis [7].

Optimisation of the MH bed heat transfer performances
requires their modelling and verification by comparison with
experimental data. The MH bed heat transfer modelling (with
a subtask of hydrogen mass transfer) was developed rather
intensively during the last three decades. Various computa-
tion and experimental approaches are presented, for example,
in Refs. [47,50,90,112—126].

A conventional way to improve the heat transfer charac-
teristics of the MH bed is in increase of the surface area of heat
exchange and reduction of the characteristic heat exchange
distances. It can be done, for example, by using long tubular
MH containers of a small diameter used in the compressor
where simultaneously heated/cooled containers are
immersed into one heating/cooling jacket [101]. The “shell-
and-tube” solution can be used for both separation/purifica-
tion and compression of hydrogen [127]. Application of
tubular containers, 12—25 mm in outer diameter filled with
150—900 g of MH powder allows to achieve a reasonable
duration of H, absorption/desorption (half-cycle time),
5—10 min [58,75,128]. The necessary hydrogen storage capac-
ity can be achieved by connecting several containers in par-
allel; as example, compression element of industrial scale MH
compressor (up to 14 kg of MH) comprises of sixteen tubular
MH containers immersed into a common heating/cooling
jacket [58]. Additional intensification of the heat exchange
between the heating/cooling fluid and the external surface of
the MH containers is achieved by use of fins [75], or thermally
conductive metal blocks [128].

Effect of the aspect ratio of the tubular MH containers on
their performances was studied in Ref. [124]. The issues of
modelling and optimisation of multi-tubular MH beds were
considered in Ref. [117]. A typical engineering solution of
hydrogen storage and supply device composed of tubes filled
with MH is presented in a patent [131].
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Fig. 13 — 1/16” OD hydride tube ring manifolds (a), the manifolds stacked into hydride heat exchanger (b), the placement of
the heat exchanger in MH compression element (c), and two-element 3-stage MH compressor assembly (d). Adopted from

Linde—MRT—Ergenics joint presentation [135].

Apart from a decrease of characteristic heat transfer dis-
tance, the decrease of the diameter of the tubular MH
container allows to reduce the material consumption because
a pressure vessel with a smaller diameter can have a thinner
wall for the same pressure rating. This results in a significant
increase of the efficiency, due to reduction of transient losses
for periodic heating/cooling of the containment (see section
3.2).

The best realisation of the approach described above was
achieved by Ergenics [129,130,132—136]. Metal hydride mate-
rial is loaded into a tubular containment having a small outer
diameter, down to 1/16”, or 1.588 mm. The intensification of
heat exchange between the outer surface of the hydride tube
and heating/cooling fluid can be achieved by fins formed by
steel wire wound and soldered onto the hydride tube
[132—134]. It allows hydride beds to be thermally cycled at a
rapid rate (<1 min) resulting in high productivities. The outer
“spring” formed by the wound wire also reinforces the hy-
dride/hydrogen containment allowing for its safe operation at
high pressures. Alternative solutions [129,130] include place-
ment of the “spring” inside the cylindrical containment, so the
MH becomes located in between the inner surface of the cyl-
inder and the outer surface of the spring; thus allowing
compensation of the MH swelling effects during the
hydrogenation.

A plurality of the hydride tubes can be assembled in an MH
reactor combining features of the hydrogen manifold and heat
exchanger (Fig. 13). The designs of the reactors are modular,
resulting in a high volume low cost production.

Intensification of heat transfer in the larger MH containers
can be achieved by a placement of the MH material within a
heat transfer matrix inside the containment. The MH con-
tainers have built-in heating and cooling accessories ther-
mally coupled with the heat transfer matrix, as well as the

pipelines for supplying hydrogen gas to and receiving
hydrogen gas from the MH. These elements are present in
numerous developments of the MH containers.

A typical approach is shown in Fig. 14. It is used for the
medium-scale MH-based hydrogen storage and compression.
The MH container is made as a cylindrical gas-proof
containment equipped with end caps. The MH material is
placed inside the containment (1) into a heat transfer matrix
to form a metal hydride bed (2). Hydrogen input/output (3) is
provided by an axial pipe (3.1) installed at one end cap and
usually ended by an inline gas filter (3.2). Heating and cooling
is provided by a heat transfer fluid (e.g., water) running
through either external heating/cooling jacket (A) or core tube
of the inner heat exchanger (B) (4).

The main solutions utilising such an approach include:

e Type of the heating/cooling:

o flow of heat transfer fluid for both heating and cooling
[97-100,108-110,137,138]; this solution is used in most
cases [58,75,101,129—-134];
electric heating, in combination with convective (natural
or forced) air cooling [66,139—-141];
electric heating, liquid cooling [71,102,128,139,140];
electric heating, cooling using a cold radiator thermally
coupled with MH bed through a gas-gap thermal switch
[142,143];

o heat-pumping systems including thermoelectric (Peltier)

modules [96,144];

o heat pipes, in combination with electric heaters or cat-
alytic combustors (heating) and flow of liquid or gaseous
heat transfer fluid (cooling) [145,146].

e Placement of the heating/cooling means with respect to
the containment:

o external [58,75,96,109,117,118,137,140];

o]

o

[}
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4

Fig. 14 — Typical layouts of the MH containers with
external (A) and internal (B) heating/cooling by a flow of
heat transfer fluid: 1 — gas-proof containment; 2 — metal
hydride bed (MH material + heat transfer matrix); 3 — H,
in/out line: 3.1 — H, inlet/outlet pipeline, 3.2 — gas filter; 4 —
heating/cooling jacket (A) or core tube of inner heat
exchanger (B): 4.1 — input and 4.2 — output of heat transfer
fluid.

o internal [94—97,125,126,145,146];
o combined [102,128,140—142].

e Type and layout of the heat transfer matrix, including:
o heat-conductive fins [10,94,97,125,126,137,145—152];
o coiled tube heat exchanger [126,147,153];

o metal foams [10,124,138,142,154,155] or honeycomb
metallic structures [122]; an alternative arrangement of
the metal foams with the fins was shown to be very

efficient [10];

o a simple and efficient method of the forming of the MH
bed is in the compacting of the powders of an MH and a
heat-conductive material, including porous metals
[109,156—158] or expanded natural graphite, ENG
[159—162]. An alternative arrangement of the MH/ENG
compacts with the fins was patented in Ref. [163]. Sig-
nificant improvement in effective thermal conductivity
in MH—carbon composites was recently observed in a
course of direct deposition of single-wall carbon nano-
tubes on the surface of particles of the hydride-forming
alloy [164]. The details on the preparation of the MH/
ENG compacts on the basis of AB,-type alloys suitable for
high-pressure applications were recently reported in Ref.

[165].

It has to be noted that performances of the metal hydride
compressors and its main element, metal hydride container,
are strongly dependent on numerous factors that include the

following conflicting trends [97,137]:

e The reduction in the size (diameter) of the container, re-
sults in better hydrogen absorption/desorption dynamic
performances, and, in turn, in the shortening the operation
cycle time. Correspondingly, the specific productivity per
unit of weight of the MH material is increased. At the same
time, due to kinetic limitations (see section 2.2), this
improvement has a maximum limit, and it seems unfea-
sible to achieve the half-cycle time shorter than 1-2 min.
Thus, high total output productivity for smaller containers
can be achieved by the increase of their number in a
compression element. However, large increase in the
number of the hydride containers will result in the increase
of the number of joints in the corresponding gas manifolds
and will also increase the probability of leaks that has a
drawback from the safety and reliability viewpoints.
Although shortening of the cycle time increases the pro-
ductivity of the MH compressor, it has a negative influ-
ence on the operation lifetime, due to the degradation of
the MH (section 2.3.3). The service life of an MH material
at specified pressure/temperature conditions is deter-
mined by a number of hydrogen absorption/desorption
cycles (~10* when operated in pure hydrogen at
T < 200 °C and Py, < 200 bar), and for the shorter times of
the operation cycle the lifetime of the compressor will be
decreased.

The required total output productivity can be also
increased by the increase of the amount of MH material in
the compression element, particularly, by the increase of
the size of the MH container. However, the drawback is a
longer operation cycle. Introduction of special heat distri-
bution means/heat transfer matrix results in an increase of
the material consumption and, in turn, the total heat ca-
pacity of the MH container. The same effect has the in-
crease in the diameter of MH container itself, since to
withstand the operating pressure the containment should
have thicker walls that results in the increase of the total
heat capacity. It significantly increases transient losses and
reduces the efficiency (section 3.2). Reducing the weight of
the high-pressure containment can be achieved by the
application of a “hybrid” solution where MH material is
distributed inside a composite cylinder having a light-
weight multilayer structure. Usually, this solution is used
for weight-efficient hydrogen storage [166,167], but modi-
fications that can be adopted for MH hydrogen compres-
sion are also known [137,145,146]. Mainly the adaptations
are related to the reduction of the dead space in the inner
volume of the MH container.

Decrease of the dead space is very critical for increasing
efficiency of high-pressure hydrogen compression appli-
cations [89]. First of all, it is achieved by the increase of the
filling fraction for the MH material. However, due to the
“swelling” effects, there exists an upper limit (61% of the
density of the hydrogenated material) of the filling density
to provide safe operation (see section 2.3.4). The secondary
effect is in further pulverisation of MH in the course of
hydrogen absorption/desorption cycling that causes con-
centration and agglomeration of MH particles in the lower
parts of the containment [168]. The common way to miti-
gate this effect is to keep rather large length/diameter ratio
and to place the container horizontally.
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Fig. 15 — Cross section (top) and general view of MH container/compression element for space applications [142].

In summary, we can conclude that any particular realisa-
tion of MH containers/compression elements strongly de-
pends on the specific application requirements.

For the smaller-size applications, operation performances
(first of all, productivity) are most important, and the corre-
sponding solutions envisage forced heating and cooling of
thin (<10 mm) MH beds incorporating MH material and heat
distribution means (metal foams/fins). Fig. 15 presents an
example of the MH container developed by Jet Propulsion
Laboratory/NASA as a compression element for 0.6—-50 bar,
260 L Hy/h hydrogen compressor for hydrogen sorption cry-
ocooler used in on-board hydrogen Joule—-Thomson cry-
ocoolers for the ESA Planck mission [142]. The compression
element provides fast desorption of the high pressure H, due
to electric heating of the MH bed (615 g of LaNis;gSno2»
dispersed in aluminium foam). The cooling is provided by a
cold (<0 °C) radiator thermally coupled with the outside of the
container via 0.75 mm thick gas gap heat switch. The latter
couples or isolates the bed with the radiator, by the variation
of the pressure of H, gas (~10°-1072 Pa) using periodic H,
desorption—absorption by ZrNi intermetallic alloy. Further
intensification of the MH cooling can be achieved by, for
example, use of thermoelectric coolers/Peltier modules [96].

For the medium- and large-scale applications efficiency
and manufacturing cost become crucial. It poses a motivation
for the usage of the available waste heat sources such as
steam and hot water. The corresponding solutions, as a rule,
include quite large MH containers (>10 kg MH) heated/cooled
by a flow of heat transfer fluid (hot/cold water or oil, steam/

water, etc.). Typically, heat distribution is provided by heat
conductive fins disposed within the MH powder
[94,97,137,145,146, etc.]. Fig. 16 presents an example of the MH
container for H, compressor (up to 200 bar) that comprises of
12-15 kg of MH powder (1500 to 2000 L H, STP storage ca-
pacity) and uses wet steam (up to 140 °C) or super-heated
water (up to 180 °C) for the heating [94,97] providing up to
200 bar H, output pressure and hour productivity up to 1000 L
H, STP. The container showed satisfactory hydrogen
compression performances when typical half-cycle duration
(H> absorption or desorption) was about 30 min [97]. Further
increase of the size of MH container for H, compression (about
1 m long, 200 mm internal diameter, MH load 45 kg) was
shown to result in significantly longer (>1 h) H, desorption
time because of the less efficient H, mass transfer inside the
container [169].

3.3.2. Integrated compression systems

Table 2 presents summary of design features and perfor-
mances of the MH compressors developed since the publica-
tion of the first patent [66] describing application of MH for H,
compression.

Main design features of the MH compressors include
type(s) of the used hydride-forming material(s), mode of
operation (periodic or continuous), as well as number of
compression stages.

Integration of MH containers for H, compression (Section
3.3.1) into compressor assemblies realises one of the general
layouts schematically shown in Fig. 7. The corresponding
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Fig. 16 — Metal hydride container for medium-to-large scale H, compression applications.

engineering solutions are mainly related to (i) selection of
number of stages and proper MH material(s) allowing to ach-
ieve the required H, compression in the available heating/
cooling temperature range; (ii) design of the gas-distributing
system; (iii) management of periodic heating and cooling of
the MH containers; (iv) control and automation of operation;
and (v) solutions aimed at the increase of compressor’s
efficiency.

As a first step of the selection of MH material, the ther-
modynamic approach described in Section 2.1 can be used. It
should be noted that the selection has to foresee a certain
margin in the material’s performances, i.e. for the compres-
sion stage operating between T, and Ty, the value of P, should
be lower and the value of Py higher than H, suction and
discharge pressures, respectively. This will provide a driving
force necessary to achieve acceptable rates of the H absorp-
tion and desorption processes. Further evaluation of charge/
discharge dynamic performances of the selected design of MH
container (see previous section) will allow one to determine
required number of the containers in an assembly, and to
estimate important performance characteristics, like cycle
productivity, cycle time, consumption of power or heating/
cooling fluids, etc.

One-stage periodically operated MH compressors usually
comprise one (Fig. 7(a)) or several connected in parallel MH
containers/compression elements. They normally have a
simple gas-distributing system on the basis of shut-off valves
which provides connection of a gas manifold of a cooled
compression element to low-pressure H, input and, when the
compression element is heated up, to high-pressure H, output
port of the compressor. Due to its simplicity and flexibility,
this solution found numerous applications (see Table 2),
mainly in laboratory practice. In combination with electric
heating to moderately high temperatures (~500 °C), it can
provide generation of very high hydrogen pressures, up to
5 kbar [179]; another option to generate kilobar-range H,
pressures is in a combination of MH compression (first stage,
up to 400 bar) with the cryogenic cooling—heating cycle (sec-
ond stage) [176].

In a multistage periodically-operated MH compressors gas
manifolds of the stages are connected sequentially in the
ascending order; opening and closing of the valves is
synchronised with the alternate periodic heating and cooling
of the compression elements, e.g. stages 1, 3 < stage 2 for the
three-stage compressor (see example in Ref. [138]).

The gas-distributing systems of continuously-operating
MH compressors provide switching of H, flow passing from
a low-pressure input port to gas manifold of the cooled
compression element(s) of the first stage, further from gas
manifolds of the heated compression elements to the cooled
compression elements of the next stage, and, finally, from gas
manifold of the heated compression elements of the last stage
to the high-pressure H, output port (see Fig. 7(b, c)). The
switching can be provided by manual or remotely actuated
shut-off valves whose operation must be synchronised with
periodic heating and cooling of the compression elements. A
commonly-used solution which allows to simplify the
compressor assembly and to reduce its cost is in the usage of
one-way (check) valves (Fig. 8) which automatically provide
flowing of H, from higher pressure manifolds to lower pres-
sure ones, so that the operation of the compressor can be
achieved only by thermal management (see, e.g. Refs.
[100—-102]). The check valve solution is similar to the one
conventionally applied in mechanical compressors. However,
the heat-driven MH compressors significantly differ from
their mechanical analogs by much slower rate of pressure
increase/decrease when passing from charge to discharge
mode and vice versa. Typical duration of the charge/discharge
cycle in MH hydrogen compressors varies from ~1 to >30 min
that is much longer than the duration of the conventional
mechanical compression cycle («1 s). This fact increases the
probability of malfunction of the check valves resulting in an
H, backflow. Thus, when introducing check valves in gas-
distributing system of MH compressor assembly, special
attention has to be paid to the measures decreasing a proba-
bility of the backflow. According to the authors’ experience,
the problem can be addressed by a proper selection of the
check valves (non-rotating stem and high enough cracking
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Table 2 — MH H, compressors developed in 1970—2013.

Year Design features Performances Developer; notes Ref.
Operation  # of # of Hydride-forming Ty P, Ty [°C] Py [bar] Productivity Half-cycle Efficiency
stages containers material [°C] [bar] [m3/h STP] duration [%]
per stage [min]
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1970 Periodic 1 1 TiFe (60 g) 20 35 137 (200) 255 (690) No data US Atomic Energy Commission; electric [66]
heating, convective cooling
1971 Periodic 1 1 VH, (100 g) 18 7 50 24 0.072 1 No data Brookhaven NL (US); water heating/  [62]
cooling®
1979 Continuous 1 2 LaNis (700 g) 20 2.5 80 20 No data 2 7.7 National Chemical Laboratory for [170]
Industry (JP); water heating/cooling,
28 W mechanical power output
1980 Periodic 1 1 LaNi, g3Al 37 (1.5 kg) 23 1.2 68 2.1-3.3 No data 3—-16 1.6-2.4 Sandia NL (US); water heating/ [171]
cooling, water pump:/15 L per cycle
1983 Periodic 1 19 LaNis (19 x 0.91 kg) 27 3 90° 18 21.6 3 14.2° Tsukuba Research Centre (JP); used [148]
for desalination by reverse osmosis,
water heating/cooling (30 L/min)
1990s Continuous 4-6 No data  ABs 25 1-4 85 40—200 Up to 2.5 2 No data Ergenics Inc (US); commercial [172]
series, 20 years life time
1993 Continuous 1 3 TiFe + 2 wt.% Mm 20 10 250 100 0.42 15 4-7 Universidade Estadual de Campinas [71]
(3 x 1kg) (BR); water cooling—water/
electric heating
1995 Periodic 1 3 LaNis (3 x 1.5 kg) 25 10 370 150 1.4 45 3.9¢ Inst. Probl. Mech. Eng. (UA); electric [139]
heating (3 kW in total), convective
cooling; 106 dm? volume; 46
kg weight
1995 Periodic 1 7 LaNis (7 x 1.4 kg) 25 10 370 300 0.7 120 0.92° Inst. Probl. Mech. Eng. (UA); [139]
electric heating (8 kW in total),
convective cooling; 170 dm?
volume; 142 kg weight
1996 Periodic 3 1 1 — ZrNi (0.225 kg) 25 0001 1-280 1-1 N/A NASA-JPL. (US); Electric [173—175]
2 — LaNig gSngp, (0.92 kg) 2-95 2-3 heating (245 W), radiator cooling;
3 — LaNig gSno 5 (1.5 kg) 3—-240 3—103 hydride beds mass 57 kg, Space
Shuttle flight.
1998 Continuous 2 30 1 — LaNig sMng s 25 3 250 150 10 35 4.48° Inst. Probl. Mech. Eng. (UA); [141]
(30 x 1.33 kg) electric heating, forced air
2 — LaNis (30 x 1.33 kg) cooling (27 kW in total); size
2350 x 1150 x 1050 mm; 700
kg weight
1999 Periodic 1 1 MmNis (1.6 kg); 15 25 327 400 0.24 60 2.44°¢ Inst. Probl. Mech. Eng. (UA); [176]

electric heating (1 kW), air
cooling

(continued on next page)
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Year Design features Performances Developer; notes Ref.
Operation  # of # of Hydride-forming Ty P, Ty [°C] Py [bar] Productivity Half-cycle Efficiency
stages containers material [°C] [bar] [m3/h STP] duration [%]
per stage [min]
1 2 3 4 5 6 7 8 S 10 11 12 13 14
1999 Periodic 2 1 1 — Hydralloy C2 (AB)) 20 12—-18 60 85—-110 No data 40—-60 No data Helsinki Univ. of Technology [177]
3 1 2 — Hydralloy CO 20 30 60 200 (FI); water heating/cooling;
(TiMn; sVp 4sFeo 1) combined compressor and
3 — TiCrMng ssFeg30Vo.15 heat pump, medium
1kgeach temperature ~30 °C heat
upgrade/thermal efficiency
1.3-1.5.
2000s Continuous No data 25 0.8 100 300 1 No data Industrial Technology Research [178]
Inst. (TW); Commercial series
2001 Periodic 1 1 VH, 20 100 527 5000 No data Russian Federal Nuclear Center; [179]
air cooling/electric heating;
research facility for H, and
D, compression
2001 Continuous 1 No data  ABs 25 20 400 345 0.33 16 No data Ergenics Inc (US); air cooling/ [133]
electric heating; prototype;
dimensions of heat exchanger
in MH bed D250 x 500 mm
2002 Continuous 1 6 LaNiy 755102, (6 x 615 g) -7 06 197 50 0.26 60 8.68° NASA—JPL (US); chiller plate [142]
cooling/electric heating (410
W); used for the cryo-cooling
on-board of Planck spacecraft;
MH bed ~500 x 51 x 51 mm;
lifetime ~20,000 cycles
2004 Continuous No data 1 No data 350 No data 15 Ergenics Inc (US); heating by [134]
natural gas
2005 Periodic 1 1 MmNiy gAlg 4 (0.4 kg) 20 5 95 43.8 0.34 4.2 7.3 Indian Inst. of Technology; liquid [151]
heating/cooling (13 L/min)
2006 Periodic 3 1 1 — LaNis gSng o, 20 1 80 20 0.02 8—20 5 Institut de Recherche sur [138,180]
2 — LmNig oSng 4, I’'Hydrogene (CA); water
3 — MmNiy 7Alp 3 (25 g each) heating/cooling;
pre-compression of H,
from alcaline electrolyser
2007 Periodic 1 1 Mmyg ;Cag sLag 1(Nis 95Alo o5), 25 40 170 450 24 15 No data Zhejang University (CN); oil [181]
1000 L H, capacity heating/cooling
2 1 1 — Mmyg ,LagsCap oNis 25 40 99 450 1.2 15 Zhejang University (CN); water
2 — Tiy1Cry sMng Vo1 heating/cooling
2008 Continuous 3 No data 20 (?) 0.5 90 (?) 100/435¢ 15 50s 69" Ergenics Inc (US); liquid [135,136]
heating/cooling; module
productivity >215 L/m*®
2009 Continuous 2 4 1 — (La,Ce)Nis (160 g); 15 7 110 200 0.06 10 1.6 Univ. Western Cape (ZA); [128]

2 — (Ti,Zr)(Fe,Mn,Cr,Ni),
(120 g)

electric heating (400 W),
water cooling
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2009 Periodic 2 1 1 — LaNig »5Al0 75 (3.5 kg) 50 16...0.2 175 33 1.02 30(ABS)

2 — LaNig gSng » (45 kg) 190(DES)
2009 Periodic 3 1 1 — LaNig gsAlg 15, 20 2 80 56 0.3 2

2 — LaNig oCug 1,

3 — MmNiy osFeg.o5;

120 g each
2010 Periodic 2 1 1 — Lag 35Cep.45Cag oNig 95A19 05 25 50 150 700 2 60

2 — Tip gZ1( 2Cro.9sFe0.05Vo.1 27

kg in total
2011 Periodic 1 3 LaNis, CaggMmg 4Nis, 10 13—40 90 100—150 No data

Cagp,Mmg gNis.

2 3 1 — LaNis; 2 — LaNis, 10 7 125 100—160

CagsMmg 4Nis,

Cap,Mmg gNis.
2012 Continuous 2 6 1 — LaNis (6 x 14 kg); 10-15 2-5 150 150-160 15 10

2 — LagsCeqsNis (6 x 10 kg)
2012 Continuous 2 2 1 — (La,Ce)Nis (2 x 15 kg); 20 10 120 200 1 30

2 — (Ti,Zr)(Fe,Mn,Cr,Ni),

(2 x 12 kg)
2012 Periodic 1 1 1 — Lag4YoeNisgAly, (594 g) 20 20 175 350 0.19 6

2 1 2 — V/LaNis (594 g) 20/80" 20 95/175" 380 0.28

2012 Continuous 2 1 1— ABs; 2 — AB, 50 160 190 600 No data 40
2013 Continuous 2 3 1— ABs; 2 — AB, 30 10-30 120 200 5-10 No data

2.3

No data

No data

No data

No data

No data

Tech. Univ. of Lodz (PL); oil
heating/cooling; 1/13 model
of compressor necessary for
operation of H, hardening
furnace

Nat. Inst. for R&D of Isotopic
and Molecular Technologies (RO);
water heating/cooling

Zhejang University (CN); oil heating/
cooling”

Joint US—KR team; water heating/
cooling; MH: compacts of Cu-
encapsulated IMC particles (5/3 g)
with Sn binder (0.5/0.3 g), 170—200
bar compacting pressure.

Russian Acad. Sci; Spec. Design &
Engineering Bureau in Electrochemistry
(RU); water cooling, steam heating.
Univ. Western Cape (ZA); water
cooling, steam or overheated
water heating.

Inst. of Refrigeration and Cryogenics
Eng., Shanghai Jiaotong Univ. (CN);
water cooling, water/oil' heating.
Univ. of Birmingham (UK); oil
heating, water cooling

HYSTORSYS AS (NO); oil
heating/cooling

[182]

[183]

[184]

[158]

[58]

[94]

[75]

[185,186]

[187,188]

a

b

Adopted for pumping hydrogen and tritium mixture by pressure transmission via mercury U-tube.

86 °C at the output, the value of ATy was used for the estimation of the consumed heat for efficiency calculations.

¢ The efficiency has been calculated by the authors of this review starting from the performance data.

4 Up to 4000 bar using the second, cryogenic stage.

¢ Planned.

f As presented in the original works, most probably, this is % of Carnot efficiency (19.3% for the specified temperature range).
& Miniature hydride heat exchangers retain hydride alloy within 1/16” OD Tubes.

b Stage 1 — capacity 2000 L, Stage 2 — capacity 1000 L. 300—400 bar at 1st stage (separate collection to the receiver).

! For stages 1/2.
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Fig. 17 — Medium-to-large scale MH compressors: A — Institute for Mechanical Engineering Problems of the National
Academy of Sciences of Ukraine (1998, 3—150 bar/10 m>/h) [141]; B — Institute of Problems of Chemical Physics/Russian
Academy of Science, Special Design Engineering Bureau in Electrochemistry, Russia (2012, 2—160 bar/15 m>/h) [58]; C —
South African Institute for Advanced Materials Chemistry/University of the Western Cape (2012, 10—200 bar/1 m3/h) [94]; D —

HYSTORSYS AS, Norway (2013, 10—200 bar/10 m3/h) [188].

pressure), as well as by elimination of possibility of gas
contamination by the MH powder. Bowman et al. [193] have
conducted extensive cycling tests of Nupro “CW-type” check
valves showing no degradation after over 43,000 cycles as well
as evaluated porous stainless steel filters to retain hydride
powder while allowing sufficient H, flow rates.

Suction/H absorption mode of the MH containers/
compression elements is provided by the cooling using natural
[66,139,179] or forced [133,141] air convection, or flow of cooling
fluid (water [62,148,172, etc.] or oil [181,182,184,187]). Some so-
lutions envisage the cooling using a chiller plate [142], or
thermoelectric/Peltier modules [96]. To provide high-pressure
hydrogen discharge, the MH containers are heated up using
electric heaters [66,71,128,133,139,141,142,173—176,179], ther-
moelectric modules [96], or flow of a heating fluid (hot water at
Ty < 100 °C [62,135,136,138,148,151,170,171,177,180,181,183], oil
[181,182,184—188|, overheated water [94,158] or steam
[58,94,153] at the higher temperatures). One solution by
Ergenics uses heating of the MH containers by the burning of
natural gas [134].

The operation of permanently operating MH compressors
is usually controlled by time relays which provide a periodic
switching of the MH containers between suction/absorption
and discharge/desorption modes. As a rule, both absorption
and desorption time setpoints are the same that allows to

simplify system layout. At the same time, it was noted that in
most cases the desorption time is shorter than the absorption
one [108,118,126].

UOUOW
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Fig. 18 — A 3-stage metal hydride (LaNig sAlg s, LaNig 0Alg 1,
and TiCr, g) compressor fabricated at the tritium facility of
the Savannah River Site (Aiken SC USA) for compression of
hydrogen isotopes to pressures of ~620 bar.
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Fig. 19 — JPL 10 K sorption cryocooler hydride compressor
bed assembly. (1) Fast absorption hydride bed

(LaNi, gSno 2); (2) low pressure hydride bed (ZrNi); and (3)
high pressure hydride bed (LaNis gSng ).

It has to be noted that the operating parameters of the MH
compressors mostly influence their productivity while the
working pressure—temperature ranges are mainly deter-
mined by the thermodynamic properties of the selected MH
material(s) (see section 2.1). First of all, the productivity de-
pends on the variations of the H, suction pressure, cooling
temperature, cycle time, and, in a lesser extent, heating
temperature and H, discharge pressure [94,108]. This influ-
ence is especially pronounced in a multistage layout when the
combination of the factors specified above mainly affects on
hydrogen flow rate between the stages which often becomes a
step limiting the total productivity of the compressor [94].

The importance of heat recovery for the increase of MH
compressors efficiency was underlined in a number of studies,
see, e.g. Refs. [104,106]; the corresponding engineering solu-
tions can be found in patents [189—-192]. However, only few
system developments known to the authors realise this
approach. An attempt to apply the heat recovery by the cir-
culation of water between hot and cold MH containers/
compression elements after completion of H, absorp-
tion—desorption cycle was undertaken by South African co-
authors of the present review [94,97]. The solution was
shown to be feasible; moreover, its application provided more
stable operation of the compressor using water for the cooling
and steam for the heating. At the same time, the introduction
of the additional circulation loop results in the complication of
the system layout and in the increase of its cost. It also results
in the decrease of the system productivity.

Examples of medium-to-large scale permanently operated
MH compressors are presented in Fig. 17.

3.4.  Applications of MH H, compressors

Since Reilly et al. [62] described a hydride compressor that used
VH, in 1971, a number of possible applications has proposed.
Some examples are cited by Sandrock [6,68], Dantzer [7],
Bowman and Fultz [11]. However, the most diverse collection of

ydride Compressor Assemblies

Fig. 20 — Photograph taken during the integration of the
hydrogen sorption cryocoolers onto the support structure
of the Planck satellite.

hydride compressors and potential applications can be seen in
the literature by Ergenics [81,98—102,133,134,172].

This section briefly presents the most important applica-
tions of MH compressors including historical summary, and
an overview of the recent developments.

3.4.1. Isotope handling
Metal hydrides have been used internationally in the research
laboratories, nuclear energy and defence industries for de-
cades to store and process hydrogen isotopes, protium,
deuterium, and tritium [194,195]. Prior to 1970 the binary hy-
drides of titanium, zirconium, palladium, and uranium were
only utilised [196]. Often these metal hydrides served con-
current roles of collecting, storing, purifying, transporting,
and isotope separation rather than to serve as explicit
compression applications. However, several organisations in
the U.S. Nuclear Defence industry that included Los Alamos
Scientific Laboratory (Alamos NM) [197], the Mound Labora-
tory (Miamisburg OH) [196] and the Savannah River Site (Aiken
SC) [198] generated and supplied highly purified tritium gas at
pressures of several bar (typically <5 bar) by heating storage
beds of uranium powder to circa 650 K and higher tempera-
tures that can be regarded as a single step MH compressor.
There were issues of tritium inventory control and manage-
ments due to enhanced permeation of this radioactive gas
through the stainless steel bed walls at these elevated tem-
peratures [198,199]. In the mid-1980s, the Savannah River Site
(SRS) started the development [200—-202] of an enhanced
tritium processing facility where several metal hydrides based
upon the ABs and AB, alloys were employed in various roles
including as compressors to replace conventional mechanical
compressor technology. Using two or three stage compression
and different alloys, compression of hydrogen isotopes up to
the pressures of 620 bar were achieved for maximum bed
temperatures of around 460 K [203]. A photograph of an
example 3-stage compressor built at SRS is shown in Fig. 18
where the alloys were LaNigsAlys (Stage-1 to 14 bar),
LaNi, 9Alp ; (Stage-2 to 200 bar), and TiCr; g (Stage-3 to 620 bar).
These compressors provided safe and reliable operation dur-
ing more than 20 years of their use [203].

Similar development which uses one-stage MH compres-
sion for the supply of hydrogen isotopes (hydrogen,
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deuterium, tritium, or their mixture) at very high, up to 5 kbar,
pressures was reported by Russian Research Institute of
Experimental Physics. The periodically operated compression
system uses decomposition of vanadium dihydride at
T < 360 °C. It is intended for the use in various experimental
studies, including muon-catalysed fusion [179].

3.4.2. Cryogenics/space

In 1972, van Mal was the first to report that metal hydride
compressors could be used to form liquid hydrogen via Jou-
le-Thomson (J-T) expansion [204,205]. Subsequently, a
number of laboratory demonstrations of hydrogen liquefac-
tion using metal hydride compression were done as previ-
ously reviewed by Bowman [8,9] and presented in a number of
original developments, see, e.g. Refs. [206—208].

A 3-stage hydride compressor was developed and built by a
team at NASA Jet Propulsion Laboratory (JPL) and Aerojet
Electronic Systems Division (Azusa CA USA) that periodically
formed solid molecular hydrogen (s-H,) at temperatures
below 10 K from 100 bar H, gas [173] when integrated with a
J—T capillary tube and three Stirling cryocoolers operating at
T > 60 K [174]. The overall H, compression ratio from these
hydride beds was 8.3 x 10°. The hydride compressor assembly
is shown in Fig. 19. This cryocooler was operated in earth orbit
on-board the Space Shuttle Orbiter Endeavour during May
1996 and successfully generated s-H, at 10.4 K on its first cool
down cycle [175]. However, small metallic particles that were
free floating in the storage volume at zero gravity were swept
into control valve preventing J-T valve from fully sealing
during subsequent space flight tests [175]. Consequently, only
liquid hydrogen at the temperature 18—21 K could be obtained.
When these particles were removed from the damaged valve
seat at JPL following the space flight, the repaired cryocooler
operated normally and was again able to generate s-H, at
temperatures between 9.4 K and 10.0 K during post-flight tests
in the laboratory [175].

Starting from 1997, JPL developed and fabricated two
completely redundant 20 K sorption cryocoolers for the Eu-
ropean Space Agency (ESA) mission Planck [209] aiming at
mapping and measuring the Cosmic Microwave Background
(CMB) radiation with higher resolution and sensitivity than
any prior study. Comprehensive descriptions of the Planck
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Fig. 21 — Schematics of HyNor Lillestram hydrogen
refuelling station for FC vehicles.

Mission and the thermal control systems for its satellite are
given in Refs. [209,210], respectively. Details on the develop-
ment and prior-to-launch testing of the sorption cryocoolers
and metal hydride (i.e., LaNig7gSno,,H,) compressors are
available in Refs. [142,143] and the various papers cited
therein. The Planck satellite was launched in May 2009 with
the two sorption cryocooler operated in a serial fashion.
Excessive degradation in performance of the first unit was
noted after less than one year of flight operation and it was
switched off. The second flight unit operated within required
performance levels for over three years until completion of
the Planck flight mission in October 2013. Reasons for this
difference are not yet identified, but the extensive flight data
files are being reviewed to detect potential causes. Fig. 20
displays the two compressor assemblies being integrated on
the support mounting of the Planck satellite. The individual
metal hydride beds are mounted onto radiator plates on the
outer panels of the satellite. An overview of the performance
of the sorption cryocoolers during the first year of space flight
operation is given by Ade et al. [211].

3.4.3. Utilisation of low-grade heat

As it was already mentioned, the main advantage of MH
hydrogen compressors is in the conversion of waste heat
(T < 200 °C) into the energy of compressed hydrogen which
can be further utilised.

In 1979 Nomura et al. [170] developed and successfully
tested a piston engine which used one stage MH compressor
on the basis of LaNis and operated at 20—80 °C providing ef-
ficiency of energy conversion of 7.7%, or about 50% of the
Carnot efficiency. A year later the first prototype of MH-based
(LaNig 63Alp 37) water pump operating in the same temperature
range was developed at Sandia National Laboratories [171].
Use of MH compressors for water pumping driven by solar
heat was intensively studied in the early 2000s [212—214]. The
systems were shown to be promising in distributed stand-

@ MH material

B MH containers
O Control system
0 Other hardware
B Labour

8 MH material

® MH containers
O Control system
O Other hardware
B Labour

Fig. 22 — Cost breakdown (in %) for prototype MH
compressors: A: 10—200 bar/1 m*/h, South Africa (Fig. 17C);
B — 10—200 bar/10 m3/h, Norway (Fig. 17D; the data were
provided by Dr. Jon Eriksen, HYSTORSYS AS). The labour
costs relate to system integration only.
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alone applications capable of daily pumping up to 3000 L of
water over a height of 15 m using 1 m? solar collector area
[214].

Demonstration of a metal hydride heat engine developed
by Ergenics was able to convert the heat from e.g. solar hot
water into electricity and can be found in Ref. [215]. The issues
of upscaling similar solutions, by integration of MH
compressor with radial-axial turbine expansion engine were
recently considered by Rusanov et al. [216]. Analysis of per-
formances of energy conversion using MH hydrogen
compression in comparison with conventional organic
Rankine cycle [217] showed that the MH compression is more
promising, due to lower operation cost, higher exergy effi-
ciency and thermal COP, higher output power, and acceptable
capital costs. The advantages are especially pronounced for
the utilisation of waste industrial heat.

3.4.4. Thermally driven actuators

Developments of pneumatic actuators on the basis of MH
hydrogen compression were considered in earlier reviews of
MH applications [6,68]. Their advantages include compact-
ness, ability to develop high forces, smooth actuation, silent
and vibration-free action, simplicity in design and operation.
Since the late 1980s Japan Steel Works has carried out inten-
sive R&D of the MH actuators, which were used in various
types of rehabilitation equipment [218—-220]. As a rule, the
actuators are driven by thermoelectric/Peltier elements used

for heating and cooling of the MH; pressure transmission from
compressed H, to mechanical or hydraulic actuating mecha-
nism is provided by bellows. The developed devices have an
impressive performance: for example, use of 12 g of
(Ca,Mm)(Ni,Al)s alloy allows to lift 50 kg load by 5 cm [220].

The data about development of MH actuators over last
decade can be found in Refs. [220—224] and references therein.
The developments are mainly focused on the integration of
MH with pneumatic McKibben actuators/“artificial muscles”
[222,223], as well as study of feasibility of usage of low-grade
(e.g. solar) heat to drive the actuators [224].

3.4.5. Hydrogen refuelling stations
Hydrogen refuelling infrastructure takes a significant part of
the capital investments for the introducing fuel cell powered
vehicles and must be taken into account in the assessment of
their economic feasibilities. Despite a certain number of
hydrogen refuelling stations operating worldwide, they are
not introduced broadly enough, mainly because of their high
costs ranging between $500,000 and $5,000,000 per installation
[225]. The most expensive H, refuelling components originate
from: (i) on-site hydrogen production and (ii) hydrogen
compression. According to techno-economic analysis pre-
sented in Ref. [226], the contribution of hydrogen compression
to the total station cost is about 20%.

Cost—performance optimisation of the H, refuelling infra-
structure can be achieved by the improvement of hydrogen


http://dx.doi.org/10.1016/j.ijhydene.2014.01.158
http://dx.doi.org/10.1016/j.ijhydene.2014.01.158

5844

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 39 (2014) 5818—5851

compression technology. A promising way for that is the
application of thermally-driven metal hydride hydrogen
compressors characterised by simplicity in design and oper-
ation, reliability and minimum maintenance, with potentially
low price and ability to utilise waste heat, instead of elec-
tricity, for the H, compression. An example of the integration
of MH compressor in hydrogen refuelling infrastructure is
presented in patent [227].

Fig. 21 presents features of the HyNor Lillestrgm hydrogen
refuelling station in Norway [228,229]. The station uses on-site
produced hydrogen and has three H, storage tanks (200, 450
and 1000 bar) on the basis of high-pressure composite cylin-
ders. H, compression is carried out using metal hydride (see
Fig. 17(D)) and mechanical (membrane) hydrogen compres-
sors. Hydrogen is dispensed to the FC vehicles at the pressure
of 700 bar.

3.5. Economic estimations

For understandable reasons, the available information about
prices for MH hydrogen compressors is scarce. However,
there are indications that even the prototype costs for
medium-to-large scale MH compressors can be comparable
with the prices for commercially available mechanical com-
pressors. So, the estimated cost of the 10—100 bar/0.42 m%/h
prototype built in Brazil [71] was reported as $23,000 versus
$27,000 for PPI mechanical compressor (1989). The cost of
3—150 bar/10 m*/h MH compressor built in Ukraine in 1997
(Fig. 17(A); [141]) was estimated as $32,500—%$39,000; the in-
vestments could be returned in 5-6 months, due to high
price difference between low- and high-pressure hydrogen.
The capital costs for 0.5—430 bar MH compressor estimated
by Linde North America, MRT and Ergenics in 2009 [136] were
about $66,000.

Fig. 22 presents costs breakdown (in %) for the prototype
MH compressors recently developed with participation of
South African and Norwegian co-authors of this review. It can
be seen that the most expensive part of the compressor is
metal hydride containers/compression elements, and opti-
misation of their design and manufacturing technology could
result in the significant price decrease.

It is expected that maintenance cost for the MH compres-
sors will be significantly lower than for their mechanical an-
alogues. Thus, the implementation of MH compressors has
clear economic advantages.

4. Concluding remarks

Analysis of the reference data summarised in the present
review shows a stable growth of the R&D activities in the
development of the metal hydride hydrogen compression
technology as illustrated by Fig. 23(A) where the total
numbers of bibliographic entries explicitly focused on the MH
H, compression technology are shown. Significant intensifi-
cation of the R&D on MH hydrogen compressors was
observed recently (after 2008) making the present review very
timely.

While early works (i.e., during the 1970s—1980s) mainly
dealt with the proof of concept and outlining possible

applications of the MH compressors on the basis of general
features of hydrogen—metal systems, further R&D in this field
became more focused, including special research of the MH
compression alloys, as well as optimisation of system layout
towards improvement of its performances (extension of the
operating pressure range, increase of productivity and effi-
ciency, etc.). Many works, especially those published in the
last decade, are aimed at the alignment of the material and
system features with the requirements of specific applications
(Fig. 23(B)").

Commercial competitiveness of the metal hydride
compression in comparison with alternative hydrogen
compression technologies is justified by both technical and
economic considerations.

Use of the waste industrial heat is a major winning argu-
ment for use of the MH compression to dramatically decrease
its operational costs. Furthermore, costs of the selected MH
materials and their availability have a primary importance for
a broad application of the technology.

Efficient metal hydride compression process requires

a high compression ratio (small slope of the isotherms, low
hysteresis and appropriate thermodynamics of the metal-
—hydrogen system);

high productivity and efficiency (low number of compres-
sions steps, fast kinetics of hydrogen exchange, efficient
heat transfer, low transient heat losses);

long and reliable operation (high cycle stability of metal
hydride materials at the operating conditions, efficient
system design).

Optimisation of the performances of the MH compressors
strongly depends on finding a compromise between a number
of contradicting factors, which could be divided into three
groups (Table 3).

The first group (A) concerns the development of MH
materials for the H, compression. These should assure
matching specified pressure and available temperature
ranges, having maximal reversible sorption capacity, mini-
mal dilatation and heat capacity, in addition to the factors
mentioned above in this section. Furthermore, cyclic stabil-
ity and poisoning resistance of an MH alloy should be taken
into account.

The second (B) and third (C) groups of factors are related to
the optimisation of the design of the MH compressor, tech-
nology of its manufacturing, and operation conditions (i.e.
addressing and resolving the engineering problems without
adversely impacting system mass/volume values, component
manufacturability or assembly, or reliability during long term
temperature/pressure cycling).

Finally, successful implementation of metal hydride
hydrogen compressors is strongly dependent on their
manufacturing costs of which the most expensive items are
metal hydride containers/compression elements. Optimi-
sation of the manufacturing will result in the cost

* Most of the publications appeared after 1990 have wide scope
usually covering various aspects of MH compressor development
in one work. That is why the total number of entries specified in
Fig. 23(B) exceeds the number of corresponding publications.
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Table 3 — Factors influencing the performances of metal hydride hydrogen compressors.

Performances
Grotp) gactoy Suction pressure Discharge pressure Efficiency Productivity Saf.ety.a.nd
reliability
Entropy of hydride formation, |AS"| Strong increase Strong increase
Enthalpy of hydride formation, |AH"| Increase
Reversible H sorption capacity, AC Increase Strong increase
A . Hysteresis, & Increase Decrease Decrease
Properties Do
of MH
alloy Heat capacity, ¢ (for high Decrease Decrease
pressures)
Dilatation, AV/V, Decrease Decrease _
Sorption / desorption kinetics, K, Increase Increase
Overall heat transfer coefficient, K}, Increase Strong increase
Overall mass transfer coefficient, K, Increase
Des]?gn / E?ead space, K_v Decrease Decrease Strong increase
technology Material consumption, Ky Decrease Increase Strong increase
Heat recovery efficiency, ¢ Increase Decrease
Number of stages, n Decrease Increase Decrease Decrease Decrease
C Lower temperature level, T, Decrease Decrease
Operating Upper temperature level, Ty Strong increase Increase Increase
conditions Cycle duration, tc Decrease Increase Increase _E

reduction and, accordingly, will secure the commercial
success of the metal hydride hydrogen compression
technology.
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