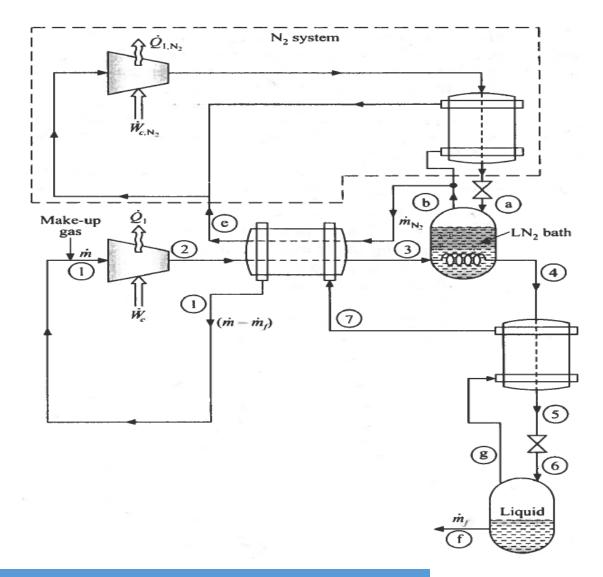


INSTALLATION OF ANACONDA AND COOLPROP


Prof. Rodolfo Taccani

Ing. Pivetta Davide

AY 2023 - 2024

Simple Linde-Hampson cycle for H2 liquefaction

Introduction to Anaconda

Working environment suitable for using the Python programming language. Anaconda is one of the most widely used environments for data science and the development of calculation models.

ADVANTAGES:

- Rapid management of libraries and tools;
- Simplified development of calculation systems;
- Contains tools for data and performance analysis;
- Contains packages for graphical representation of results.

Introduction to Anaconda

Numpy: package for scientific calculation (matrix operations, definition of functions, etc.)

Pandas: is a fast, powerful and flexible tool for the analysis and simple manipulation of data.

Matplotlib: is a comprehensive library for creating static, animated and interactive visualisations.

Spyder: is an Integrated Development Environment (IDE), used for writing, analysis, error correction, etc. (suitable for solving scientific and engineering problems).

Jupyter: is an interactive web-based development environment. It adapts to the user interface to support a wide range of workflows.

Download Anaconda

Download Anaconda:

https://www.anaconda.com/distribution/

Installation of Coolprop package

Write in powershell prompt: conda install conda-forge::coolprop

```
Anaconda Powershell Prompt (Anaconda3)

— X

(base) PS C:\Users\david> conda install -c conda-forge coolprop

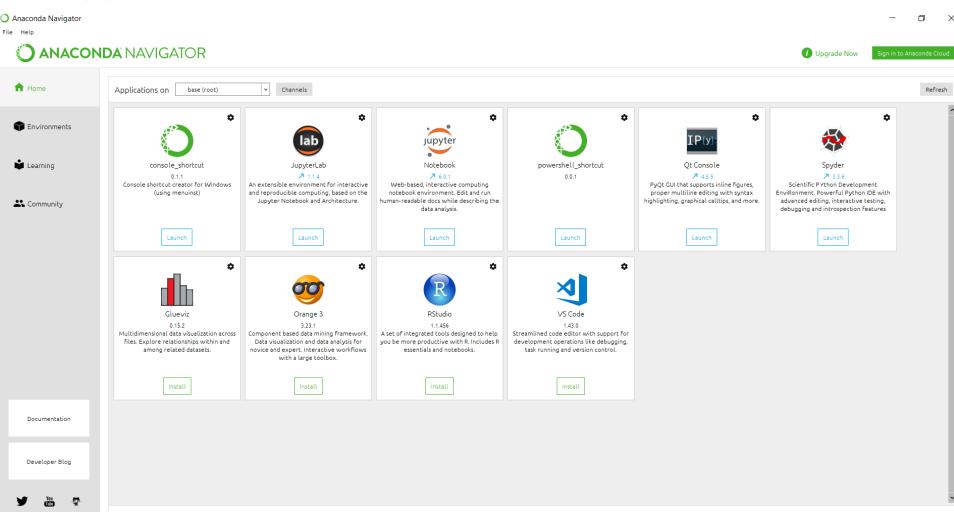
Anaconda Powershell Prompt (Anaconda3)

— X

Anaconda Powershell Prompt (Anaconda3)

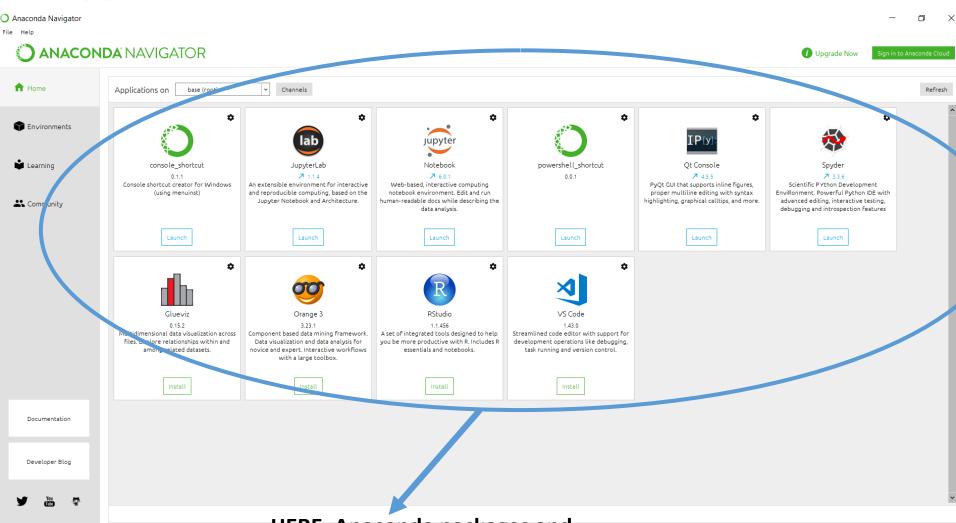
Anaconda Powershell Prompt (Anaconda3)

— X

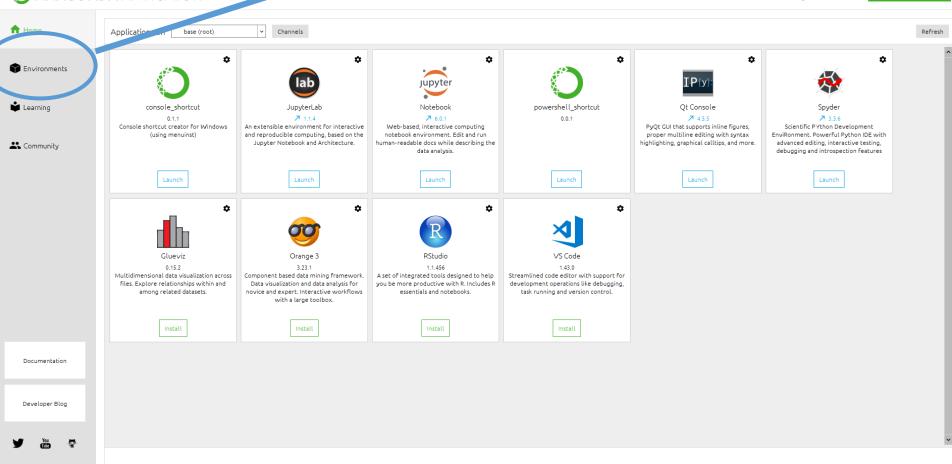

Anaconda Powershell Prompt (Anaconda3)

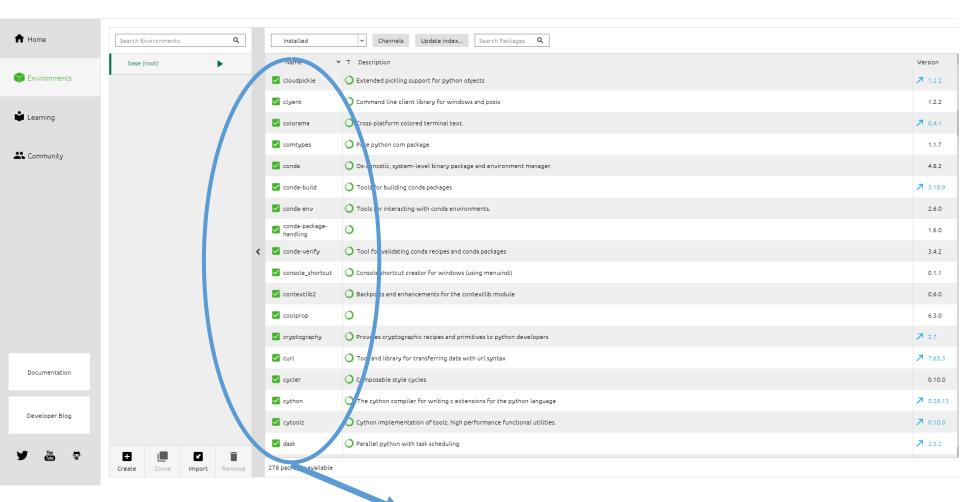
Anaconda Powershell Prompt (Anaconda3)

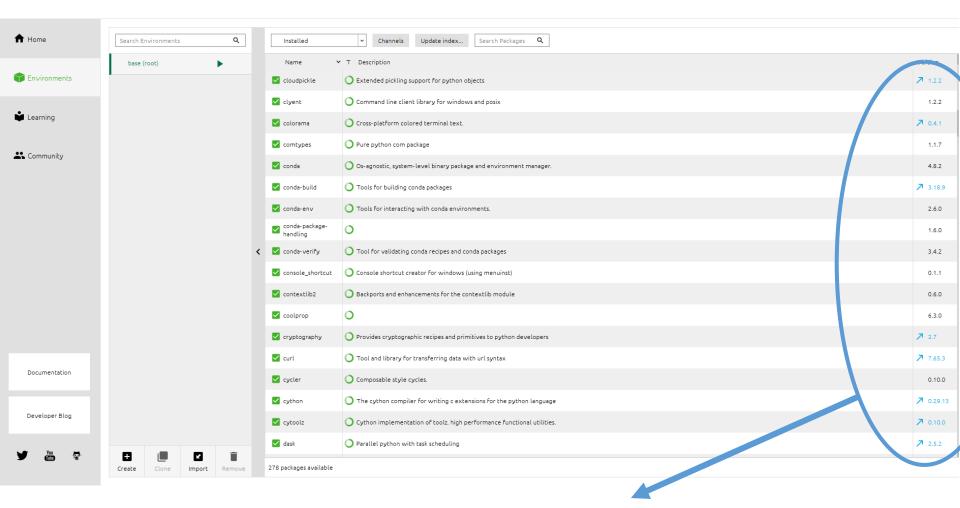
Anaconda Powersh
```



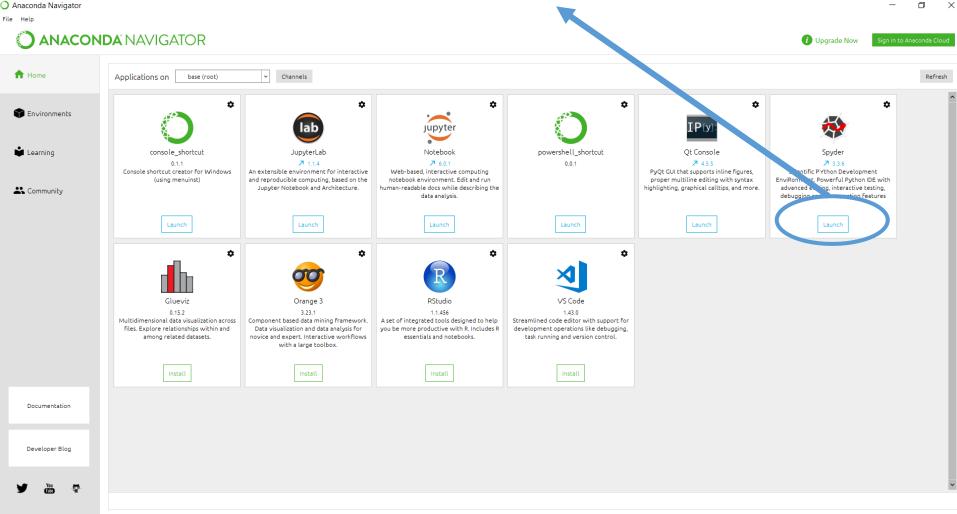
HERE, Anaconda packages and tools




HERE you can view, update and download Python libraries and tools



HERE find installed package


HERE installed packages and their version number

Using spyder

Now open Spyder

Thermodynamic properties and units

Parameter	Units	Input/Output	Trivial	Description
DELTA, Delta		Ю	False	Reduced density (rho/rhoc)
DMOLAR, Dmolar	mol/m^3	Ю	False	Molar density
D , DMASS , Dmass	kg/m^3	Ю	False	Mass density
HMOLAR, Hmolar	J/mol	Ю	False	Molar specific enthalpy
H , HMASS , Hmass	J/kg	Ю	False	Mass specific enthalpy
P	Pa	Ю	False	Pressure
Q	mol/mol	Ю	False	Mass vapor quality
SMOLAR, Smolar	J/mol/K	Ю	False	Molar specific entropy
S, SMASS, Smass	J/kg/K	Ю	False	Mass specific entropy
TAU , Tau		Ю	False	Reciprocal reduced temperature (Tc/T)
T	K	Ю	False	Temperature
UMOLAR, Umolar	J/mol	Ю	False	Molar specific internal energy
U, UMASS, Umass	J/kg	Ю	False	Mass specific internal energy
ACENTRIC, acentric		0	True	Acentric factor
ALPHA0 , alpha0		0	False	Ideal Helmholtz energy
ALPHAR, alphar		0	False	Residual Helmholtz energy
A, SPEED_OF_SOUND, speed_of_sound	m/s	0	False	Speed of sound
BVIRIAL, Bvirial		0	False	Second virial coefficient

http://www.coolprop.org/coolprop/HighLevelAPI.html#propssi-function

Thermodynamic properties and units

Thermodynamic properties	Mark	Unit
Enthalpy	Н	J/kg
Entropy	S	J/kg/K
Temperature	Т	K
Pressure	Р	Pa

http://www.coolprop.org/coolprop/HighLevelAPI.html#propssi-function

Fluids in CoolProp

All the fluids included in CoolProp

Name	EOS	c_{p0}	λ	η	melt	σ
1-Butene	[17]					[18]
Acetone	[19]					[18]
Air	[10]		[20]	[20]		
Ammonia	[21]		[22]	[23]		[18]
Argon	[24]		[20]	[20]	[24]	[18]
Benzene	[25]		[26]	[27]		[18]
CarbonDioxide	[28]		[29]	[30]	[28]	[18]
CarbonMonoxide	[19]				[31]	[18]
CarbonylSulfide	[19]					[18]
CycloHexane	[32]			[33]	[34]	[18]
CycloPropane	[35]	[35]				[36]
Cyclopentane	[37]		[38]	[39]		[36]
D4	[40]					[36]
D5	[41]					[36]
D6	[42]					[36]
Deuterium	[43]					[18]
Dichloroethane	[40]					
DiethylEther	[44]					[36]

http://www.coolprop.org/fluid_properties/PurePseudoPure.html#list-of-fluids

Tips and useful links

COOLPROP:

- http://www.coolprop.org/
 (General information)
- http://www.coolprop.org/coolprop/HighLevelAPI.html#propssi-function
 (Propsi funtions and input table)
- http://coolprop.org/fluidproperties/PurePseudoPure.html#list-of-fluids
 (Fluids available)

Anaconda/Python:

- https://conda-forge.org/
- https://github.com/

For any questions: Davide Pivetta — <u>davide.pivetta@phd.units.it</u>

Thank you for the attention!

