
Appendix A

Solutions of the exercises

A.1 Solution to Exercise 1.1

This is straightforward to verify Eq. (1.13) using Eq. (1.11). Such a relation does not apply to a statistical
mixture. Indeed, by considering its spectral decomposition, we have
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(A.1)

A.2 Solution to Exercise 1.2

Let us consider the spectral decomposition of ⇢̂2
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which was derived in Eq. (A.1). Then, it follows that its trace is
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where we exploited the triangular inequality. For a pure state, the inequality becomes an equality, since there
is only one coe�cient equal to 1.

A.3 Solution to Exercise 1.3

Starting from
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◆
, with a, b, c, d 2 C, (A.4)

we impose i) ⇢̂† = ⇢̂. This gives that
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a⇤ = a, d⇤ = d, c⇤ = b, (A.5)

thus giving
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where ↵ = a 2 R, �, � 2 R such that b = � + i� and � = d.
We impose ii) Tr [⇢̂] = 1, which gives

↵+ � = 1, (A.7)

thus imposing
� = 1 � ↵. (A.8)

Finally, iii) ⇢̂ � 0 is equivalent (this holds only for two dimensional systems) to

Tr [⇢̂] > 0, det[⇢̂] > 0. (A.9)

The first is already covered, while the second gives

det[⇢̂] = ↵(1 � ↵) � �2 � �2. (A.10)

By defining
rx = 2�, ry = 2�, rz = 2↵� 1, (A.11)

we obtain
det[⇢̂] = 1

4 (1 � r2x � r2y � r2z). (A.12)

The latter expression givers det[⇢̂] > 0 only if the vector r = (rx, ry, rz) has ||r||2  1. This covers the exercise.

A.4 Solution to Exercise 1.4

Consider the expression
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(A.13)

Here, the Pauli matrices obey to the following rules:

[�̂i, �̂j ] = 2i✏ijk�̂k, and {�̂i, �̂j} = 2�ij 1̂, (A.14)

whose sum gives
�̂i�̂j = �ij 1̂ + i✏ijk�̂k. (A.15)

By applying this expression to Eq. (A.13), we get
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However, the Pauli matrices are traceless, while Tr
⇥
1̂
⇤

= 2. Thus, one has

Tr [�̂⇢̂] = (rx, ry, rz) = r, (A.17)
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