
16 2 The Reduced Density Matrix

2.2 Quantum operations and the Kraus-Stinespring theorem

In the previous chapter we showed that the density matrix of a closed quantum system evolves according to
the von Neumann-Liouville equation (1.24), which underlies a unitary evolution. From the previous examples
it should be clear that the same is not true in general for the reduced density matrix of an open quantum
system. Indeed, consider two systems A and B, initially in two factorized and pure states: ⇢̂AB = ⇢̂A ⌦ ⇢̂B, with
⇢̂2A = ⇢̂A and ⇢̂2B = ⇢̂B. They interact with each other and after some time become entangled. While the reduced
density matrix ⇢̂(A) of subsystem A initially is a pure state (since ⇢̂(A) = ⇢̂A, see Example 2.1), at later times

it becomes a statistical mixture ((⇢̂(A))
2 6= ⇢̂(A), see Example 2.2). A unitary evolution cannot transform pure

states into statistical mixtures, therefore the dynamics governing the evolution of the reduced density matrix
must be of a di↵erent kind. The Kraus-Stinespring theorem, which is stated below, gives a first characterization
of an open quantum dynamics. Before going through the theorem, with the following example we present an
argument which quickly reproduces the final result.

Example 2.3
Consider two interacting quantum systems A and B, whose initial state is factorised. Let ⇢̂A be the initial
state of system A and ⇢̂B the initial state of B, with spectral decomposition:

⇢̂B =
X

n

pn
���Bn

↵ ⌦
�Bn

�� .

The combined state evolves with the unitary quantum dynamics Ût and after some fixed time t the two
system become entangled. The reduced density matrix of system A at time t is:

⇢̂(A)(t) = Tr(B)
h
Ût(⇢̂A ⌦ ⇢̂B)Û†

t

i
,

=
X

m,n

pn
⌦
�Bm

�� Ût

���Bn
↵
⇢̂A

⌦
�Bn

�� Û†
t

���Bm
↵
,

=
X

m,n

Êmn⇢̂AÊ
†
mn,

where we have defined the operators Êmn =
p
pn

⌦
�Bm

�� Ût

���Bn
↵
, which act on B(HA), and are called Kraus

operators. Since the dynamics Ût is unitary, it follows that:

X

m,n

ÊmnÊ
†
mn = 1̂.

The results above present the general form of the map of an open quantum system, as summarized by the
Kraus-Stinespring theorem.

Consider an open quantum system, whose associated Hilbert space H has dimensionality N . Let ⇢̂ describe
its state at a given initial time, and let ⇢̂0 be the state after some fixed time. Let T : B(H) ! B(H) be the map
connecting these two states. The first observation is that the map T must be linear. The reason for this rests
in the physical meaning of the density matrix as presented in Sec. 1.1, and in the motto “ignorance propagates
linearly”, which is valid both in a classical as well as quantum situation. If a system is in state | 1i with
probability p1 and in state | 2i with probability p2, and if | 1i evolves into | 0

1i and | 2i into | 0
2i, then the

system will end up in state | 0
1i with probability p1 and in state | 0

2i with probability p2. In terms of statistical
operators, a pure state | ki h k| is mapped into T [| ki h k|]. Then, for a statistical mixture we have:

⇢̂ =
X

k

pk | ki h k| ! ⇢̂0 = T [⇢̂] =
X

k

pkT [| ki h k|], (2.13)
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which shows that the map T is linear. Let us fix an orthonormal basis { |�ii }Ni=1 of H. The linearity of the map
T implies that we can express the matrix elements of ⇢̂0 as a linear combination of the matrix elements of ⇢̂:

⇢0ij =
NX

r,s=1

Tir,js⇢rs, (2.14)

where ⇢0ij = h�i|⇢̂0|�ji and ⇢rs = h�r|⇢̂|�si. Since there are N2 complex matrix elements ⇢0ij , there are N4

complex constants Tir,js. The output state ⇢̂0 must be Hermitian: (⇢̂0)† = ⇢̂0. Then, since also the input state ⇢̂
is Hermitian, and being it generic, Eq. (2.14) implies that

T ⇤
js,ir = Tir,js. (2.15)

We now group the pair of indices (js) in a single index m running from 1 to N2. Similarly, we group the pair
(ir) in a single index n. The coe�cients Tir,js can be arranged to form a N2 ⇥N2 square matrix1

T̂ with matrix
elements Tmn = Tir,js. Then, Eq. (2.15) tells that T̂ is Hermitian and therefore it has N2 real eigenvalues �↵

and N2 complex eigenvectors e
↵, which are orthonormal: e↵ · e� = �↵� . Resorting to the inverse map between

the pair (js) and m, the eigenvectors e
↵ identify square N ⇥ N matrix Ê↵ via the relation E↵

js = e
↵
m. The

orthonormality condition translates into:

Tr
h
Ê↵Ê�†

i
= �↵� . (2.16)

The spectral decomposition of T̂ tells that:

Tmn =
N2X

↵=1

�↵e↵me
⇤↵
n ! Tir,js =

N2X

↵=1

�↵E↵
irE

⇤↵
js , (2.17)

using which, Eq. (2.14) can be rewritten as follows:

⇢0ij =
N2X

↵=1

�↵
NX

r,s=1

E↵
irE

↵⇤
js ⇢rs ! ⇢̂0 =

N2X

↵=1

�↵Ê↵⇢̂ Ê↵†. (2.18)

We expect the map T to preserve the trace of the density matrix: Tr [⇢̂0] = Tr [⇢̂] = 1. According to Eq. (2.18),
this implies:

Tr

2

4
N2X

↵=1

(�↵Ê↵⇢̂ Ê↵†) � ⇢̂

3

5 = Tr

2

4

0

@
N2X

↵=1

(�↵Ê↵† Ê↵) � 1̂

1

A ⇢̂

3

5 = 0, (2.19)

where 1̂ is the identity operator. Since the initial state ⇢̂ is generic, we conclude that:

N2X

↵=1

�↵Ê↵† Ê↵ = 1̂. (2.20)

Example 2.4
Let H be a two dimensional Hilbert space. Let us consider the following map:

⇢ij =

✓
⇢11 ⇢12
⇢21 ⇢22

◆
! ⇢0ij =

✓
⇢22 ⇢12
⇢21 ⇢11

◆
,

1 Here and in the rest of the section, we denote N2 ⇥ N2 square matrices and vectors of length N2 with bold letters;
non-bold letters denote N ⇥N square matrices and vectors of length N .
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which exchanges the two diagonal elements. Then, with reference to Eq. (2.14), the only non-vanishing co-
e�cients Tir,js are: T11,22 = T12,12 = T21,21 = T22,11 = 1. Accordingly, the 4-dimensional square Hermitian

matrix T̂ has matrix elements:

Tmn =

0

BB@

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

1

CCA ,

and its eigenvalues are: �(1) = �(2) = ��(3) = �(4) = 1. The corresponding eigenvectors are:

e
1
m =

1p
2

0

BB@

0
1
1
0

1

CCA , e
2
m =

1p
2

0

BB@

0
�i
i
0

1

CCA , e
3
m =

1p
2

0

BB@

�1
0
0
1

1

CCA , e
4
m =

1p
2

0

BB@

1
0
0
1

1

CCA .

The associated 2-dimensional matrices Ê↵ are:

E1
js =

1p
2

✓
0 1
1 0

◆
, E2

js =
1p
2

✓
0 �i
i 0

◆
, E3

js =
1p
2

✓
1 0
0 �1

◆
, E1

js =
1p
2

✓
1 0
0 1

◆
,

i.e. Ê↵ = 1p
2
�̂↵, with �̂i (i = 1, 2, 3) the three Pauli matrices and �̂4 = 1̂. Then, according to Eq. (2.18),

the map can be written as:

⇢̂0 =
1

2

⇥
�̂1⇢̂ �̂1 + �̂2⇢̂ �̂2 � �̂3⇢̂ �̂3 + ⇢̂

⇤
. (2.21)

It is easy to check that Eq. (2.20) is satisfied.

The last requirement to check is that ⇢̂0 in Eq. (2.14) is positive definite. Unfortunately, there is no charac-
terization of positive maps, apart from the definition. A stronger definition which is considered is the Complete
Positivity (CP). Let us consider an ancilla Hilbert space Ha and the map:

T : B(Ha) ⌦ B(H) ! B(Ha) ⌦ B(H),

⇢̂ ! ⇢̂
0
= (id ⌦T )⇢̂,

(2.22)

where id is the identity map id : ⇢̂ ! ⇢̂. The map T is completely positive if and only if the map T is positive,
i.e. for any v 2 Ha ⌦ H one has:

hv|⇢̂0|vi = hv|(id ⌦ T )⇢̂|vi =
N2X

↵=1

�↵ hv|(1̂ ⌦ Ê↵)⇢̂(1̂ ⌦ Ê↵)†|vi � 0 (2.23)

Now, we decompose both |vi and ⇢̂ with respect to the orthonormal bases { |�ani }Na

n=1 and { |�mi }Nm=1 of Ha

and H respectively:

|vi =
NaX

n=1

NX

m=1

vnm |�ani |�mi , and ⇢̂ =
NaX

l,l0=1

NX

k,k0=1

ClkC
⇤
k0l0 |�al i |�ki h�al0 | h�k0 | . (2.24)

Then, in these terms we obtain
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hv|⇢̂0|vi =
N2X

↵=1

�↵
NaX

m,m0

l,l0
=1

NX

n,n0

k,k0=1

v⇤m0n0vnmClkC
⇤
k0l0E

↵
m0kE

↵⇤
mk0�n0l�nl0 ,

=
N2X

↵=1

�↵ Tr
h
ĈD̂†Ê↵

i
Tr

h
Ê↵†D̂Ĉ†

i
,

(2.25)

where we define the operators Ĉ and D̂ as having for matrix elements the coe�cients Ckl and vmn respectively.
We choose Ĉ and D̂ such that Ê� = D̂Ĉ†/

p
N . This is possible since they descend from ⇢̂ and |vi via Eq. (2.24),

which are both generic; they only need satisfy the constraint:

hv|vi = 1 = Tr
h
D̂D̂†

i
and Tr

⇥
⇢̂
⇤

= 1 = Tr
h
ĈĈ†

i
. (2.26)

Two possible options are: Ĉ† = Ê� , D̂ = 1̂/
p
N or Ĉ† = 1̂/

p
N, D̂ = Ê� , and in both cases the constraints in

Eq. (2.26) are satisfied. Coming back to Eq. (2.25), we have:

hv|⇢̂0|vi = N
N2X

↵=1

�↵
�
�↵�

�2
= N�� .

Therefore, the condition of having a CP map implies that the eigenvalues �↵ must be non-negative. Returning
to Eq. (2.18) and (2.20), we can redefine

p
�↵Ê↵ ! Ê↵ and summarize the results in the following theorem

Theorem 2.2 (Kraus-Stinespring). Any linear completely positive map

T : B(H) ! B(H) (2.27)

admits the following decomposition:

T ⇢̂ =
N2X

k=1

Êk⇢̂Ê
†
k, (2.28)

where X

k

Ê†
kÊk = 1̂. (2.29)

Equation (2.28) gives a nice physical interpretation to the e↵ect of the environment on the system, once it is
re-written in the following way:

T [⇢̂] =
N2X

k=1

pk
Êk⇢̂Ê

†
k

Tr[Êk⇢̂Ê
†
k]
, pk = Tr[Êk⇢̂Ê

†
k]. (2.30)

The coe�cients pk can be interpreted as probabilities since they are non-negative and sum to 1.

2.3 Quantum operations on qubits

We present some of the most common types of quantum maps acting of a single qubit, which are of relevance
for quantum information processing.

Bit flip. As the name suggests, under this map the state of the qubit is flipped (|0i ! |1i and |1i ! |0i) with
a given probability p, otherwise it is left unchanged. In mathematical terms:
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Tbf[⇢̂] = (1 � p)⇢̂+ p �̂x⇢̂�̂x. (2.31)

According to Eq. (2.28), the Kraus operators are: Ê1 =
p

1 � p 1̂ and Ê2 =
p
p �̂x. An easy calculation shows

that the Bloch vector r changes as follows:

rx ! rx,

ry ! (1 � 2p)ry,

rz ! (1 � 2p)rz.

(2.32)

The e↵ect is summarized in Fig. 2.1.
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Fig. 2.1: Graphical representation of the bit flip channel. (Left) Components of the Bloch radius (continuous
lines) with respect to the value of p. The initial values (dashed lines) are reported for comparison. (Right) Bloch
representation of the state before (black arrow) and after (red arrow) the application of the map for p = 1. The
initial state corresponds to r0 = (4, 1, 6)/

p
53.

Phase flip. In this case the phase of the qubit is flipped (namely, |0i ! |0i and |1i ! � |1i) with probability
p, otherwise it is left unchanged:

Tpf[⇢̂] = (1 � p)⇢̂+ p �̂z ⇢̂�̂z. (2.33)

The corresponding Kraus operators are: Ê1 =
p

1 � p 1̂ and Ê2 =
p
p �̂z. The Bloch vector r changes as follows:

rx ! (1 � 2p)rx,

ry ! (1 � 2p)ry,

rz ! rz.

(2.34)

The e↵ect is summarized in Fig. 2.2.

Bit-Phase flip. This is the combination of the previous two maps, and it is described as follows:

Tbp[⇢̂] = (1 � p)⇢̂+ p �̂y⇢̂�̂y. (2.35)

The Kraus operators are: Ê1 =
p

1 � p 1̂ and Ê2 =
p
p �̂y. The Bloch vector r changes as follows:
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Fig. 2.2: Graphical representation of the phase flip channel. (Left) Components of the Bloch radius (continuous
lines) with respect to the value of p. The initial values (dashed lines) are reported for comparison. (Right) Bloch
representation of the state before (black arrow) and after (red arrow) the application of the map for p = 1. The
initial state corresponds to r0 = (4, 1, 6)/

p
53.

rx ! (1 � 2p)rx,

ry ! ry,

rz ! (1 � 2p)rz.

(2.36)

The e↵ect is summarized in Fig. 2.3.
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Fig. 2.3: Graphical representation of the bit-phase flip channel. (Left) Components of the Bloch radius (contin-
uous lines) with respect to the value of p. The initial values (dashed lines) are reported for comparison. (Right)
Bloch representation of the state before (black arrow) and after (red arrow) the application of the map for
p = 1. The initial state corresponds to r0 = (4, 1, 6)/

p
53.

Depolarizing channel. In this map, the state ⇢̂ of the system is depolarized with probability p, i.e. it is
replaced by the completely mixed state 1̂/2. With probability (1�p) the state is left unchanged. Then, we have
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Tdc[⇢̂] = (1 � p)⇢̂+ p
1̂

2
. (2.37)

Using the relation
1̂

2
=
⇢̂+ �̂x⇢̂�̂x + �̂y⇢̂�̂y + �̂z ⇢̂�̂z

4
, (2.38)

we can rewrite Eq. (2.37) as follows:

Tdc⇢̂ =

✓
1 � 3

4
p

◆
⇢̂+

p

4
(�̂x⇢̂�̂x + �̂y⇢̂�̂y + �̂z ⇢̂�̂z), (2.39)

showing that the Kraus operators are: Ê1 =
p

1 � 3p/4 1̂, Ê2 =
p
p/4 �̂x, Ê3 =

p
p/4 �̂y and Ê4 =

p
p/4 �̂z.

Often it is convenient to parametrize the depolarizing channel as follows:

Tdc⇢̂ = (1 � q) ⇢̂+
q

3
(�̂x⇢̂�̂x + �̂y⇢̂�̂y + �̂z ⇢̂�̂z), (2.40)

where q = 3p/4. Thus, Eq. (2.40) provides an alternative way of interpreting the depolarizing channel: with
probability (1�q) the state is left unchanged, and the operations �̂i (i = z, y, z) are applied each with probability
q/3. The e↵ect is summarized in Fig. 2.4.
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Fig. 2.4: Graphical representation of the depolarising channel. (Left) Components of the Bloch radius (continuous
lines) with respect to the value of p. The initial values (dashed lines) are reported for comparison. (Right) Bloch
representation of the state before (black arrow) and after (red arrow) the application of the map for p = 1. The
initial state corresponds to r0 = (4, 1, 6)/

p
53.

Exercise 2.1
Verify the relation in Eq. (2.38).

Amplitude damping channel. This channel describes the situation where the state |1i decays to |0i with
some probability � due to dissipative e↵ects, while |0i remains unchanged. This is formally achieved by the
operation:

Tad[⇢̂] = Ê1⇢̂Ê
†
1 + Ê2⇢̂Ê

†
2, (2.41)

with the Kraus operators Ê1 = |0i h0| +
p

1 � � |1i h1| and Ê2 =
p
� |0i h1|, whose matrix representation on the

computational basis is:
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E1 =

✓
1 0
0

p
1 � �

◆
, E2 =

✓
0

p
�

0 0

◆
. (2.42)

An easy calculation shows that these operators can be written in terms of the Pauli matrices as follows:

Ê1 =
1

2

h
(1 +

p
1 � �)1̂ + (1 �

p
1 � �)�̂z

i
, and Ê2 =

1

2

p
�(�̂x + i�̂y). (2.43)

The e↵ect on the Bloch vector is:

rx !
p

1 � � rx,

ry !
p

1 � � ry,

rz ! � + (1 � �) rz,

(2.44)

The e↵ect is summarized in Fig. 2.5. The repeated application of this channel causes a progressive decay of
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Fig. 2.5: Graphical representation of the amplitude damping channel. (Left) Components of the Bloch radius
(continuous lines) with respect to the value of �. The initial values (dashed lines) are reported for comparison.
(Right) Bloch representation of the state before (black arrow) and after (red arrow) the application of the map
for � = 1. The initial state corresponds to r0 = (4, 1, 6)/

p
53.

the state |1i, and eventually only the state |0i survives. In the language of statistical mechanics, this e↵ect is
produced by an environment at 0 temperature, to which the qubit thermalizes.

Generalised amplitude damping channel. This channel describes the e↵ect of an environment at finite
temperature, which causes the state |1i to decay to |0i, but also the state |0i to be excited to |1i, with a
di↵erent probability depending on the temperature. Therefore, to the Kraus operators Ê1 and Ê2 describing
the decay process of the amplitude damping channel, we add the operators Ê3 = |1i h1| +

p
1 � � |0i h0| and

Ê4 =
p
� |1i h0| describing the inverse process. The two are blended together

Tga[⇢̂] = p(Ê1⇢̂Ê
†
1 + Ê2⇢̂Ê

†
2) + (1 � p)(Ê3⇢̂Ê

†
3 + Ê4⇢̂Ê

†
4), (2.45)

with a di↵erent probability to break the symmetry between them. The e↵ect is summarized in Fig. 2.6.
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Fig. 2.6: Graphical representation of the generalised amplitude damping channel. (Left) Components of the
Bloch radius (continuous lines) with respect to the value of �. The initial values (dashed lines) are reported for
comparison. (Right) Bloch representation of the state before (black arrow) and after (red arrow) the application
of the map for � = 1 and p = 0.3. The initial state corresponds to r0 = (4, 1, 6)/

p
53.
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