
Exercises

Giulia Bernardini

giulia.bernardini@units.it

Algorithmic Design / Algorithms for Scientific
Computing

a.y. 2023/2024

mailto:giulia.bernardini@units.it

Exercise 1
Cormen, problem 8.2: Suppose that we have an array A of
records to sort and that the key of each record has the value 0 or
1. An algorithm for sorting such a set of records might possess
some subset of the following three desirable characteristics:

1.The algorithm runs in time.

2.The algorithm is stable.

3.The algorithm sorts in place.  

a.Give an algorithm that satisfies criteria 1 and 2 above.

b.Give an algorithm that satisfies criteria 1 and 3 above.

c.Give an algorithm that satisfies criteria 2 and 3 above.

n

O(n)

Solution 1
a. Use an auxiliary array C of length . Make two passes over A.

• In the first pass, copy all the records with key 0 in C, in the
same order as they appear in A.

• In the second pass, do the same with the records with key 1,
writing them in C right after the ones with key 0.

• Return C.

Homework: write pseudocode for this algorithm.

n

Solution 1
b. Scan A from left to right.

• Each time the algorithm finds a record with key 0, it swaps it
with the record following the last 0 already seen.

• At the end of the scan, all the records with key 0 precede the
records with key 1, thus A is sorted.

• The relative order of the records with the same key can change,
thus it is not stable.

Solution 1
c. Simply run Insertion Sort!

Exercise 2
1st problem of the written exam on 13/06/2022 (Prof.
Casagrande’s): Let A[1. . .] be an array of integers containing at
most distinct values, where is an unknown constant.

Propose an efficient in-place algorithm to sort A and establish its
complexity.

n
k k

Solution 2
Since is constant, even an in-place algorithm can afford to use
an auxiliary array D of size to store the distinct items of A.

To compute D, we can use a list of size O(). The list is initially
empty. We scan A from left to right: whenever we read A[], we
check if it is already in the list; if not, we append it. This costs

 total time, which is because is constant by
hypothesis. We sort D using Insertion Sort in time.

We finally scan A times. At the first scan, whenever we read
A[]=D[1], we move it at the beginning of A by swapping; at the

-th scan, we move items A[]=D right after the elements
moved in the -th scan. Since D is sorted, at the end A will
be sorted. This requires time.

k
k

k
j

Θ(k2) Θ(1) k
Θ(k2) = Θ(1)

k
j

d j [d]
(d − 1)

Θ(k2 + kn) = Θ(n)

