
Block 1.4

The Role of Probability in epidemiological and 

clinical studies (…very quick review) 

• Random samples 

• Probability & incidence proportion 

• Inference on an estimated probability

• Conditional probabilities 

• Independence of two events 

• Example of conditional probabilities

• Diagnostic Tests 
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The Role of Probability in epidemiological studies

Two fundamental components to describe the probability of an occurrence are:

(1) a random experiment

(2) an event

A random experiment is a process that produces an outcome not predetermined by the investigator 

An event is a collection of one or more distinct possible outcomes.

An event occurs if the observed outcome of the experiment is contained in the collection of outcomes 

defining the event.

For example, in tossing a coin one usually thinks of only two possible outcomes - heads and crosses

Here, the experiment is the toss of a coin, and an event might be that the coin comes up heads.
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A similar situation occurs with the administration of a treatment to a patient with a certain disease. 

Random experiment = application of treatment

Possible events = patient cured OR patient not cured

Probability of an event A = P(A)

In a random experiment, P(A) is the fraction of times the event A occurs when the experiment is 

repeated many times, independently and under the exact same conditions.

Suppose that a random experiment is conducted K times and the event A occurs in 𝐾𝐴 of the total K 

experiments. 

As K grows larger and larger, the fraction of times the event A occurs  
𝐾𝐴

𝐾
approaches a constant value. 

This value is P(A) the probability of A occurring in a single experiment*

*frequentist approach
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Sampling n individuals from a population of N members is an example of random experiment. 

At random implies that although the investigator sets the sample size n, he/she does not predetermine 

which n individuals will be selected.

When randomly selecting a single object from a group of N, the probability that the selected object has 

a specific attribute (event A) is the fraction of the N objects that possess this attribute. 

1991 U.S. infant mortality by mother’s marital status and by birthweight [census]

Weight<2500 g

A = death within 1 yr

P(A) = 

(16712+18784)/(1213854+2897205) = 

0.0086 =

8.6 deaths x 1000

B = normal weight

P(B) =3818736/4111059 = 0.93 
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Cumulative incidence (incidence proportion) is the fraction of the population at risk that possesses 

characteristic D [in a specified time interval]. 

If an individual is drawn at random from the population during a certain time period, the probability that 

he/she will have characteristic D is P(D) = incidence proportion. 

 proportion of a population who are incident cases in a given interval

 probability that a randomly chosen member of the population is an incident case

P(E) : probability that a randomly selected individual from a population has an exposure characteristic 

labeled by E (qualitative or quantitative measure of exposure or risk)

With any event A, we will 

sometimes use ҧ𝐴 to refer to 

the event “not A”

P(D) and P(E) are used to refer explicitly or implicitly to the probability of being diseased or the probability 

of being exposed

Of note: the randomness referred to in these statements

arises entirely from random sampling from a target population
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Random sampling allows quantification of the uncertainty inherent in using samples to infer properties of 

a larger population from which the sample is drawn. 

We rarely observe an entire population with appropriate risk factor information [as was possible for the 

infant mortality data]. 

We will draw a (simple) random sample that will provide us with appropriate data we can use to estimate

a population probability or proportion.

We are interested in estimating P(A), the 

probability of a characteristic A in a given 

population. 

We draw a simple random sample of size n from 

the population and let:

𝑛𝐴 =number in the sample with characteristic A. 

For simplicity, write p=P(A)
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Ƹ𝑝 =
𝑛𝐴
𝑛

An obvious estimate of p is:

From sample to sample, the random number 𝑛𝐴 follows a binomial sampling distribution with expectation 

(mean) given by 𝑛 ∗ 𝑝 and variance by 𝑛 ∗ 𝑝 ∗ (1 − 𝑝).

𝑛𝐴~𝐵𝑖𝑛 𝑛, 𝑝

For a sufficiently* large n, this sampling distribution is close to a 

Normal distribution with the same expectation and variance: 

*If n*p ≥ 5 e n*(1 − p) ≥ 5

The variance can be estimated from our sample data by 

plugging in Ƹ𝑝 :

Ƹ𝑝 1 − Ƹ𝑝

𝑛

𝑝~𝑁 𝑝,
)𝑝(1 − 𝑝

𝑛
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We now have a simple method to construct a confidence interval for the unknown proportion using our 

sample.

Using the approximate sampling distribution: 

Confidence refers to the experiment of repeatedly drawing simple random samples of size n from the 
population. The CI is itself a random variable. It includes the true value with a certain probability…

Ƹ𝑝 ± 𝑧
1−

𝛼
2

Ƹ𝑝 1 − Ƹ𝑝

𝑛

𝑧1−𝛼
2

is 1 −
𝛼

2
percentile of 

the Normal(0,1) distribution

100 (1-a)% confidence interval for p

A random sample of 100 births drawn in the U.S. in 1991 and 

that 35 births were from unmarried mothers

95% confidence interval: (0.26, 0.44) 

[The true population probability is 0.295]

0.35 ± 1.96
0.35 ∗ 0.65

100
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Note that here we are assuming that data arise from a simple random sample of the population. 

There are other, often more effective sampling techniques, including stratified and cluster sampling 

that are used to obtain estimates of a population proportion or probability.

In more complex sampling schemes, the basic 

philosophy for constructing interval estimates remains 

the same, but expressions for both proportion estimators 

and their associated sampling variability must be 

modified to incorporate relevant sampling properties.

Moreover, note that sometimes participants are not selected by 

any form of random sampling. 

Nevertheless, confidence intervals are usually calculated using 

the exact same techniques, with the tacit assumption that the 

data are being treated as if they arose from a simple random 

sample…
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This is a risky assumption to rely on consistently, since factors influencing a participant’s selection are 

often unknown and could be related to the variables of interest. 

Such studies could be subject to substantial bias in estimating probabilities and proportions. 

Of special concern is when study subjects are self-selected, as in volunteer projects. 

When all individuals in the population are selected, the study is called a census. The summary statistics 

obtained from a census are not estimates, since every member of the population is measured. 

Validity of the resulting statistics depends however on how well the measurements are made (data quality). 

Main advantages of sample surveys over censuses lie in the reduced costs and greater speed (and possibly 

better data quality…) by taking measurements on a subset rather than on an entire population. 

https://www.istat.it/it/censimenti-permanenti/popolazione-e-abitazioni

In restricted populations, sometimes all available population members are selected for study.

https://www.istat.it/it/censimenti-permanenti/popolazione-e-abitazioni
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Conditional probabilities

What is the probability of death within a year from birth for a newborn from an unmarried mother or for 

a normal birthweight infant? 

The conditional probability of event A given that event B occurs, P(A|B), is the long run fraction of 

times that event A occurs, the fraction being restricted to only those events for which B occurs. 

A = a randomly chosen infant dies within a year from birth

B = a randomly chosen infant has an unmarried mother

P(A|B)= probability that a randomly chosen infant dies within a year of birth, given that this infant has 

an unmarried mother.

𝑃 𝐴 𝐵 =
𝑃 𝐴&𝐵

)𝑃(𝐵

𝑃 𝐴&𝐵
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16712/(1197142+16712)=16712/1213854 = 0.014, or 14 per 1,000 births

P(A&B)=16712/4111059=0.0041

P(B)= 1213854/4111059=0.295

P(A|B)=0.0041/0.295=0.014

A = infant dies within a year from birth

B =  birth is associated with an unmarried mother

What is the probability that a child dies within a year from birth given that he/she has an unmarried mother?  

𝑃 𝐴 𝐵 =
𝑃 𝐴&𝐵

)𝑃(𝐵



Block 1.4

Independence of two events

A natural consequence of looking at the conditional probability of an infant death within a year of birth, 

given that the mother is unmarried, is to examine the same conditional probability for married mothers. 

Are these two conditional probabilities the same in this population? If not, how different are they?

The two conditional probabilities 𝑃 𝐴 𝐵 and  𝑃 𝐴 ത𝐵 being identical reflects that the frequency of event A 

is not affected by whether B occurs or not.

A is said to occur independently of B if the conditional probability P(A|B) is equal to the (unconditional) 

probability of the event A, P(A). That is, event A is independent of event B if and only if: 

)𝑃 𝐴 𝐵 = 𝑃 𝐴 ത𝐵 = 𝑃(𝐴

It follows that, in this case: )𝑃 𝐴&𝐵 = 𝑃 𝐴 𝑃(𝐵
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P(infant death)=0.0086

A = death within 1 yr

P(A) = 35496/4111059 = 0.0086 =

8.6 deaths x 1000

P(unmarried mother)=0.295

B=unmarried mother

P(B)= 1213854/4111059=0.295

If these two characteristics were independent, then:  

P(unmarried mother & infant death)=0.0086*0.295=0.0025

P(unmarried mother and infant & death)=16712/4111059=0.0041

Instead:

In this population the two characteristics are clearly not independent.

The two characteristics, unmarried mother and infant death, occur together much more frequently than 

would be predicted if they were independent [association/correlation…?? causation ??]. 

We will soon introduce association measures to evaluate these aspects
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To formulate a diagnosis, the doctor hypothesizes a set of alternatives.

He/she then tries to reduce them by progressively excluding specific diseases.

In other cases, the doctor has a strong belief that the patient is suffering from

one specific disease and seeks confirmation of the diagnostic hypothesis.

Given a particular diagnosis, a good test should indicate whether the disease is

unlikely or likely.

In practice, it is important to remember that a diagnostic test is only useful if

the result significantly influences the patient's treatment.

The diagnostic path
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For any two events H and E: 

Bayes’ formula:

These identities follow directly from the definitions of probability and conditional 

probability.

𝑃 𝐻 𝐸 =
)𝑃 𝐸 𝐻 𝑃(𝐻

)𝑃(𝐸

Thomas Bayes (1763), An Essay towards solving a Problem in the Doctrine of Chances. 

The link between the diagnostic process and probability theory: 
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Suppose we want to evaluate the performance of a diagnostic test that 

provides a dichotomous answer [positive or negative] with respect to the 

presence or absence of a certain pathology.

We wonder (development phase):

(a) If the disease is present what is the probability that the test is positive?

 this question introduces the concept of sensitivity of a test.

(b) If the disease is absent, what is the probability of a negative result?

 this question introduces the concept of specificity of a test.
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Obviously one can accurately answer these questions only if the true diagnosis is known.

For example, the true answer may come from a biopsy or from a risky and expensive procedure such as 

an angiography in the case of heart disease. Or in other cases you can resort to the opinion of an expert. 

These types of responses represent what is commonly referred to as the gold standard.

Suspect of ischemic

cardiomiopathy

Coronary Disease

(coronary 

angiography)

Present

(D+)

Absent

(D-)

Total

Stress 

test

Positive 

(T+)

815 (a) 115 (b) 930

Negative 

(T-)

208 (c) 327 (d) 535

Total 1023 442 1465

The prevalence of coronary heart disease in these 

patients is 1023/1465 = 0.70 or 70%.

P(D+)=0.70
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Suspect of ischemic

cardiomiopathy

Coronary Disease

(coronary 

angiography)

Present

(D+)

Absent

(D-)

Total

Stress 

test

Positive 

(T+)

815 (a) 115 (b) 930

Negative 

(T-)

208 (c) 327 (d) 535

Total 1023 442 1465

Tot test positive 

Tot test negative

Tot sick pts Tot healthy

Sensitivity answers the question: "How many of the sick patients tested positive?"

Sensitivity of a test is therefore the proportion of positive to the test among those who have the disease.

a/(a+c)=815/1023=0.80 (80%). sensitivity= P(T+|D+)
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Suspect of ischemic

cardiomiopathy

Coronary Disease

(coronary 

angiography)

Present

(D+)

Absent

(D-)

Total

Stress 

test

Positive 

(T+)

815 (a) 115 (b) 930

Negative 

(T-)

208 (c) 327 (d) 535

Total 1023 442 1465

Tot test positive 

Tot test negative

Tot sick pts Tot healthy

Specificity answers the question: "How many of the healthy patients tested negative?"

Specificity is the proportion of those negative to the test among those not affected by the disease.

d/(b+d)=327/442=0.74 (74%). specificity= P(T-|D-)
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A doctor sees a patient suffering from chest pain compatible with CHD. Knowing the prevalence of the 

disease in the target population, the doctor thinks the patient is suffering from coronary heart disease 

with a 70% probability.

The patient then does a stress test, and the result is positive.

How much does the positive result change the probability of the disease ? (this is what matters !!!)

Suspect of ischemic

cardiomiopathy

Coronary Disease

(coronary 

angiography)

Present

(D+)

Absent

(D-)

Total

Stress 

test

Positive 

(T+)

815 (a) 115 (b) 930

Negative 

(T-)

208 (c) 327 (d) 535

Total 1023 442 1465

The predictive value of a positive 

test is:

P(D+|T+) : PPV= 815/930=0.88 
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Suspect of ischemic

cardiomiopathy

Coronary Disease

(coronary 

angiography)

Present

(D+)

Absent

(D-)

Total

Stress 

test

Positive 

(T+)

815 (a) 115 (b) 930

Negative 

(T-)

208 (c) 327 (d) 535

Total 1023 442 1465

The predictive value of a negative test is:

P(D-|T-): NPV=327/535=0.61 

As for all the estimates made on 

sample data, it is possible to calculate 

the confidence intervals around the 
values of sensitivity, specificity, PPV 

and NPV.

We do not dwell on the formulas, but 

remember that the confidence 

intervals should always been reported, 

in addition to the point estimates].
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Therefore, the previous estimate of 0.70 must be corrected upwards by taking into account the 

probability of disease given that the test is positive -> the predictive value of the positive test (0.88).

Suspect of ischemic

cardiomiopathy

Coronary Disease

(coronary 

angiography)

Present

(D+)

Absent

(D-)

Total

Stress 

test

Positive 

(T+)

815 (a) 115 (b) 930

Negative 

(T-)

208 (c) 327 (d) 535

Total 1023 442 1465

The predictive value of a positive test is:

P(D+|T+) : PPV= 815/930=0.88 

What is the relationship between PPV 

P(D+|T+) and sensitivity P (T +|D +)?

𝑃 𝑇 + 𝐷 + =
𝑃 𝑇 + 𝑎𝑛𝑑 𝐷 +

𝑃 𝐷 +
𝑃 𝑇 + 𝑎𝑛𝑑 𝐷 + = 𝑃 𝑇 + 𝐷 + ∗ 𝑃 𝐷 +

sensitivity prevalence
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P(T+ and D+)=P(D+ and T+) 

P(T+|D+)*P(D+)=P(D+|T+)*P(T+)

Bayes Theorem:

P(D+|T+)=[P(T+|D+)*P(D+)]/P(T+)

P(D+|T+)=PPV=

[sensitivity*prevalence]/probability of test 

positive=

[P(T+|D+)*P(D+)]/P(T+)

Suspect of ischemic

cardiomiopathy

Coronary Disease

(coronary 

angiography)

Present

(D+)

Absent

(D-)

Total

Stress 

test

Positive 

(T+)

815 (a) 115 (b) 930

Negative 

(T-)

208 (c) 327 (d) 535

Total 1023 442 1465

P(T+|D+)=sensitivity= 0.80

P(D+)=prevalence=0.70

P(T+)=probability test positive=930/1465=0.63

Bayes Theorem:

P(D+|T+)=[P(T+|D+)*P(D+)]/P(T+)

(0.80*0.70)/0.63=0.56/0.63=0.88
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P(D+|T+)=posterior probability

P(D+)=prior probability

Once the diagnostic test is performed, Sensitivity and Specificity lose importance. Post-test probabilities 

become important.

If the prevalence of a disease is 1 in 1000 and we have a test that can diagnose it with a sensitivity of 

100% and a specificity of 95%, what is the probability that a person will have the disease if he tested 

positive ?

Probability of a positive test: we start with a population of 1000 people, of which 1 is affected by the 

disease. 

The test will certainly detect that person (100% sensitivity), but it will also be positive for 5% of the 999 

healthy people. 

Thus, the total number of positive tests will be: 1 + 0.05 * 999 = 50.95
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P(T+)=50.95/1000=0.05095

P(D+)=1/1000=0.001 

P(D+|T+) =[P(T+|D+)*P(D+)]/P(T+)=[1*0.001]/0.05095=0.02

sensitivity=1

The usefulness of a diagnostic test depends on the prevalence of the disease. 

A test is useful if the pre-test probability is significantly changed after the test 

result. If a disease is very rare or very frequent, the test has questionable 

usefulness.
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Prevalence

For any given test (i.e. fixed sensitivity and specificity) as prevalence ⬇, PPV ⬇ [more false positives for every true positive]. 

This is because you’re hunting for a “needle in a haystack” and likely to find lots of other things that look similar along the way – the 
bigger the haystack, the more frequently you mistake things for a needle.

As prevalence ⬇, NPV ⬆ [more true negatives for every false negative]. 

This is because a false negative would mean that a person actually has the disease, which is unlikely because the disease is rare (low 
prevalence).

Prevalence

P
P

V

N
P

V
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The ideal diagnostic tests (so-called gold standards) perfectly discriminate the unhealthy from the healthy 

ones: individuals are classified with absolute certainty as affected or not affected by the disease of interest.

DiseaseHealthy

DiseaseHealthy

When a diagnostic test does not clearly discriminate 

the unhealthy from the healthy, it is necessary to 

calculate the degree of uncertainty of the 

classification.

If the diagnostic test result is a binary variable 

(affected / unaffected), simply calculate:

• sensitivity

• specificity
• predictive values (positive and negative)

(with corresponding confidence intervals!)
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If the test result is instead a continuous variable, the analysis of the ROC curve (Receiver Operating 

Characteristics) could be used.

The ROC curve is a statistical technique that measures the accuracy of a diagnostic test along the entire 

range of possible values.

The ROC curve represents the method of choice for validating a diagnostic test.

DiabeticsNon Diabetics

Glycemia (mg/100 ml)

The ROC curve could allow to

identify the optimal threshold value (the so-

called best “cut-off”), i.e. the value of the 

test that maximizes the difference between 

true positives and false positives ...
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What is the ROC Curve?

It is presented as a graph in which the Sensitivity and 1-Specificity

are reported (for all the different values of the diagnostic test). 

What is the usefulness of the ROC curve?

• allows you to choose the best cut-off in a 

diagnostic test

• allows you to choose the best of two (or more) 

diagnostic tests: the one with the largest Area 

Under the Curve (AUC)

• The cut-off would be optimal if it maximized both sensitivity and specificity simultaneously. However, this 

is not possible: in fact, as the specificity increases, the value of false positives decreases, but false 

negatives increase, which leads to a decrease in sensitivity. 

• There is a trade-off between the two indices.
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If the test does not discriminate 

the unhealthy from the healthy, 

the ROC curve has an area 

(AUC) of 0.5 (or 50%) which 

coincides with the area below 

the diagonal of the graph 

(reference line).

The area under the curve can 
assume values between 0.5 and 

1.0. The greater the area under 

the curve, the greater the 

discriminating power of the test.

A diagnostic test with an area 

under the curve ≥ 80% is 

considered adequate in clinical 

practice.
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For the interpretation of the values of the area below the ROC curve it is possible to refer to the 

classification proposed by Swets (1988)*:

• AUC = 0.5 the test is not informative

• 0.5 <AUC ≤0.7 the test is not very accurate

• 0.7 <AUC ≤0.9 the test is moderately accurate

• 0.9 <AUC <1.0 the test is highly accurate

• AUC = 1 perfect test

*J.A. Swets, Measuring the accuracy of diagnostic systems, Science, 1988 Jun 3;240(4857):1285-93.

However, it is also necessary to evaluate the 

confidence interval around the AUC value.
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Statistical hypothesis tests can be performed to compare two diagnostic tests, as for example the De Long test:

H0: AUC1=AUC2

H1: AUC1≠AUC2 


