
Chapter 3

Quantum Dynamical Semigroups

We describe the dynamical evolution, being continuous in time, of density matrices in the framework of open
quantum systems. The key result will be the Lindblad-Gorini-Kossakowski-Sudarshan theorem.

3.1 On the linearity of the dynamics

As we understood from the discussion in Sec. 2.2, a good quantum operation — and thus also a dynamics
— should be completely positive and trace preserving (CPTP). Here, we heuristically demonstrate that the
dynamics should be also linear.

Consider two sets of states { | �ii }ni=1 and { |  ji }mj=1 in the Hilbert space H. Here, we are not assuming
that these two sets have any particular proprieties, we only assume that n > m. Consider also two sets of
parameters { pi }ni=1 and { qj }mj=1, where pi, qj 2]0, 1], such that they define the same statistical operator ⇢̂ in
the following way

⇢̂ =
nX

i=1

pi |�ii h�i| =
mX

j=1

qj | ji h j | . (3.1)

Specifically, these are two representation of the same statistical operator. Nevertheless, their physical interpre-
tation can be significantly di↵erent as they represent di↵erent physical situations. An example of this situation
is provided by the Example 1.3 and Example 1.4. Nevertheless, as they have the same statistical operator ⇢̂,
they represent equivalent statistical ensembles.

Now, let us consider an ancillary Hilbert space HA, and a state |�i 2 H ⌦ HA such that

|�i =
X

i

p
pi |�ii ⌦ |↵ii , (3.2)

where |↵ii are elements of a basis of HA.
Now, since the states |�ii and | ji provide the same ⇢̂, it means that the span the same subspace of H

(possibly the entire H). Thus, one can express the former as a linear superposition of the latter. Namely,

|�ii =
mX

j=1

bij | ji , (3.3)

where bij = h j |�ii. Accordingly, the state |�i can be rewritten as
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|�i =
X

i

p
pi

X

j

bij | ji ⌦ |↵ii ,

=
X

j

| ji ⌦ |�̃ji ,
(3.4)

where we defined
|�̃ji =

X

i

p
pibij |↵ii . (3.5)

This is a non-normalised state in HA. Its normalisation can be computed as the following. Consider

h�̃j |�̃li =
X

ik

p
pipkb

⇤
ijbkl h↵i|↵ki ,

=
X

i

pib
⇤
ijbil,

=
X

i

pi h l|�ii h�i| ji ,

= h l|⇢̂| ji ,

(3.6)

where we exploited the first expression in Eq. (3.1). Then, by exploiting Eq. (3.1), we have

h�̃j |�̃li =
X

k

qk h l| ki h k| ji ,

= qj�lj ,

(3.7)

where we assumed that the vectors | ji are orthonormal. It follows, that we can defined the normalised state

|�ji =
1

p
qj

|�̃ji , (3.8)

and thus
|�i =

X

j

p
qj | ji ⌦ |�ji . (3.9)

This means that, by starting from two equivalent expressions for the statistical operator ⇢̂ of a subsystem,
we can demonstrate that there are two equivalent ways to express the state of a state |�i shared (actually,
entangled) between two subsystems.

Owning this information, we consider the following physical situation. Suppose we have Alice and Bob sharing
the state |�i, where Alice is associated to the Hilbert space HA and Bob to H. Suppose Alice can perform on
her part of the state two operations, which correspond to the operators Â and B̂, having the following spectral
decompositions

Â =
X

i

↵i |↵ii h↵i| ,

B̂ =
X

j

�j |�ji h�j | .
(3.10)

Conversely, Bob does nothing and can only observe his part of the state. Now, if Alice applies the operator Â,
then her part of the state collapses in the basis |↵ii. After having performed a statistic, Bob has in his hands
the state X

i

pi |�ii h�i| = ⇢̂1. (3.11)

Similarly, if Alice applies B̂, the state in Bob hands becomes
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X

j

qj | ji h j | = ⇢̂2. (3.12)

However, by construction ⇢̂ = ⇢̂1 = ⇢̂2, and thus one cannot perform faster then light signaling. Indeed, in
the opposite case, to communicate at a distance, Alice could apply the operator Â to communicate 0, and the
operator B̂ to communicate 1. However, since the two ensembles represented by ⇢̂1 and ⇢̂2 are equivalent, such
a communication is not possible.

We now introduce the dynamics in the picture. Suppose that Bob, instead of measuring right away his part
of the state, he waits for a time t. Then, the state ⇢i (i = 1, 2) is evolved with respect to a dynamical map Tt

with t � 0, where
Tt[⇢̂] = ⇢̂t. (3.13)

Specifically, one has

⇢̂1 =
X

i

pi |�ii h�i| ! Tt[⇢̂1] = ⇢̂1(t),

⇢̂2 =
X

j

qj | ji h j | ! Tt[⇢̂2] = ⇢̂2(t).
(3.14)

If the dynamics is not linear, namely Tt is not a linear operator, then one might have that ⇢̂1(t) 6= ⇢̂2(t), as the
action of the dynamical map can depend on the state itself. Thus, in such a case, Bob would be able to know
which is the operator Alice applied to her part of the state. This would allow faster then light signalling.

Thus, one needs to require the linearity of the dynamical map Tt to ensure that ⇢̂1(t) = ⇢̂2(t). In such a way,
equivalent ensembles are mapped into equivalent ensembles.

3.2 Strongly Continuous Semigroup

We introduce a (strongly continuous) semigroup of operators and discuss its physical meaning.

Definition 3.1 (Strongly Continuous Semigroup of Operators) Let B be a Banach space. A family
{Tt}t�0 of bounded linear operators Tt : B ! B is called a strongly continuous semigroup of operators if and
only if:

1. Tt+s = TtTs, 8 t, s � 0,
2. T0 = id,
3. limh!0 Tt+hx = Ttx 8x 2 B, 8t, h � 0.

The first two properties define the semigroup structure, while the third property makes sure that for every
x 2 B, Ttx is (strongly) continuous in t. From the physical point of view, {Tt}t�0 represents the (continuous)
dynamical evolution of a system over time t, which does not need to be reversible, as it will be the case with
open quantum systems. The key element of a semigroup of operators is its generator.

A comment here is due. The request 1. implies the Markovian nature of the semigroup evolution. In the
Markovian case, the knowledge of the state at time t is su�cient to obtain the state at any time t+ ⌧ for ⌧ > 0.
In the non-Markovian case, such a knowledge is not su�cient. The evolution might depend also on the past
states: there is a memory e↵ect in the dynamics. An example might be an evolution of the form

d

dt
⇢̂(t) =

Z t

�1
ds F (⇢̂(s)). (3.15)

Definition 3.2 (Infinitesimal generator) The operator L : D(L) 2 B ! B defined such that

Lx = lim
h!0+

Thx � x

h
, 8x 2 D(T ), (3.16)
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where the domain D(L) is the set of all x 2 B such that the above limit exists, is called infinitesimal generator
of the semigroup {Tt}t�0.

The importance of the infinitesimal generator if given by the following theorem.

Theorem 3.1 (Properties of the infinitesimal generator). Let {Tt}t�0 be a strongly continuous semigroup
of operators in the Banach space B and let L be its infinitesimal generator with domain D(L). Then:

1. D(L) is a linear (and dense) subspace of B and L is a linear operator.
2. If x 2 D(L) then also Ttx 2 D(L) for every t � 0. Moreover, Ttx is strongly di↵erentiable in t and

d

dt
Ttx = LTtx = TtLx, 8t � 0. (3.17)

The above theorem tells that the whole family of operators constituting the semigroup is controlled by the
infinitesimal generator, through the formal relation Tt = etL, which justifies its name. As such, a strongly
continuous semigroup can be seen as the generalization of the exponential function. This is made even clearer
by the following theorem.

Theorem 3.2 (Solution of first order di↵erential equations). Let L with domain D(L) 2 B be the in-
finitesimal generator of a strongly continuous semigroup of operators {Tt}t�0, with Tt = etL. Then, the Cauchy
problem

d

dt
xt = Lxt, 8t � 0, (3.18)

with initial condition x0 2 D(L) has the unique solution

xt = Ttx0, t � 0. (3.19)

The theorem above also clarifies the physical meaning of the semigroup property, which describes a Markovian
dynamics. Namely, the present state of the system (x0) is su�cient to infer its future state (xt) via Eq. (3.18).
The latter is a first-order di↵erential equation, whose solution is uniquely identified by the initial condition. An
important question is when a strongly continuous semigroup admits a generator. The theorem by Hille, Yosida
and Philipps presents necessary and su�cient conditions that an operator L with domain D(L) in a Banach
space B is the generator of a strongly continuous semigroup of operators.

The fact that a strongly continuous semigroup can be seen as the exponential of the generator becomes a
mathematically correct statement if the semigroup is uniformly continuous (or norm continuous). A strongly
continuous semigroup is called a uniformly continuous semigroup if

lim
h!0

kTt+h � Ttk = 0, 8 t, t + h � 0. (3.20)

Notice that uniform continuity implies strong continuity, but not viceversa. In such a case, it can be shown that
the infinitesimal generator exists and is a bounded operator. Specifically, there exists a bounded linear operator
L on B such that Tt = etL. Such an operator is given by:

L = lim
h!0

Th � id

h
, (3.21)

where the limit is taken in the uniform operator topology.

3.3 Quantum Dynamical Semigroup

A quantum dynamical semigroup specializes the notion of a strongly continuous semigroups of operators to
quantum systems, according to the following definition.
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Definition 3.3 (Quantum Dynamical Semigroup) Let BTr(H) be the Banach space of trace-class operators
over the Hilbert space H, with associated trace norm ||Â||Tr. A family {Tt}t�0 of bounded linear operators Tt :
BTr(H) ! BTr(H) is called a Quantum Dynamical Semigroup (QDS) if and only if:

1. {Tt}t�0 is a strongly continuous semigroup of operators,
2. Tt⇢̂ � 0, 8⇢̂ 2 BTr(H), ⇢̂ � 0, 8t � 0,
3. Tr [Tt⇢̂] = Tr [⇢̂] , 8⇢̂ 2 BTr(H), ⇢̂ � 0, 8t � 0.

The meaning of the above requests is straightforward. The first conditions summarises a continuous Markovian
dynamics, as discussed above, while the last two conditions make sure that a density matrix is mapped into a
density matrix.

The important question is how to characterize the infinitesimal generator of a QDS, which according to
Theorem 3.2 amounts to asking which kind of dynamical equation the density matrix is subject to. The answer
was provided by two articles, both appeared in 1976: one by Lindblad, under the assumption that the QDS is
uniformly continuous, and one by Gorini, Kossakowski and Sudarshan, under the assumption that the Hilbert
space is finite dimensional, hence the common name of LGKS theorem. In both cases, a further assumption
was enforced: that the QDS is completely positive, i.e. that Tt is a completely positive operator for any t (see
Sec. 2.2). We present the theorem in the finite-dimensional case.

Theorem 3.3 (Lindblad-Gorini-Kossakowski-Sudarshan). Let H be a finite-dimensional Hilbert space of
dimension N . Let {Tt}t�0 be a completely positive QDS. Its infinitesimal generator L has the following structure:

L⇢̂ = � i

~ [Ĥ, ⇢̂] +
N2�1X

↵=1


L̂↵⇢̂L̂↵† � 1

2

n
L̂↵†L̂↵, ⇢̂

o�
, (3.22)

where Ĥ is an hermitian operator and L̂↵ are called Lindblad operators.

Here we present a simple proof. From the previous discussion, we know that the generator exists. To derive its
explicit form, since the map ⇢̂ ! Tt[⇢̂] is completely positive, we can express it in the Kraus form (see Theorem
2.2):

Tt[⇢̂] =
N2X

↵=1

�↵t Ê
↵
t ⇢̂ Ê

↵†
t , (3.23)

where now we indicated explicitly the time dependence. For the sake of simplicity, we recall the notation used
in Sec. 2.2. Namely, we rewrite Eq. (3.23) in terms of its matrix elements on a arbitrary orthonormal basis
{ | �ii }i of H:

(⇢0t)ij =
NX

r,s=1

(Tt)ir,js⇢rs, (3.24)

where ⇢̂0t = Tt[⇢̂], ⇢rs = h�r|⇢̂|�si, and Tmn = (Tt)ir,js (where we used the grouping of the indices) has the
following spectral decomposition

(Tt)ir,js =
N2X

↵=1

�↵(E↵
t )ir(E

⇤↵
t )js, (3.25)

with (E↵
t )ir = h�i|Ê↵

t |�ri. For t = 0, one has the initial state, so we have T0 = id. This means that Tt=0 must
leave the state unchanged. Then, its eigenvalues �↵ and eigenvectors Ê↵ are:

�↵t=0 =

(
N, ↵ = N2,

0, otherwise,
(3.26)

and
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Ê↵
t=0 =

8
<

:

1p
N

1̂, ↵ = N2,

K̂↵, otherwise,
(3.27)

where the operators K̂↵ are arbitrary chosen, such that {K̂↵, 1̂/
p
N} form an orthonormal basis of B(H) (see

Example 3.1).

Example 3.1
Let us consider a two-dimensional case. Assume that ⇢̂0 = ⇢̂. Then, Eq. (3.24) implies

Tir,js = �ir�js (3.28)

Considering the two indices m = (i, r) and n = (j, s), we can represent Tt in the basis defined in Eq. (2.4)
as

Tm,n =

0

BB@

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

1

CCA

m,n

,

Its eigenvalues are:
� = 0, with degeneration 3,

� = 2, without degeneration.

Since the only non-vanishing eigenvalue �N
2=4 = 2 is associated to the last eigenvector ÊN2=4, this result

is in accord with the above statement: �N
2

t=0 = N and �↵t=0 = 0 for ↵ 6= N2.

Since the map is continuous, we can consider a linear change proportional to the infinitesimal time increment
dt. Then, the eigenvalues and eigenvectors of the matrix Tdt take the form:

�↵dt =

(
N(1 � cN

2

dt), ↵ = N2,

c↵dt, otherwise,
(3.29)

and

Ê↵
dt =

8
<

:

1p
N

⇣
1̂ + B̂dt

⌘
, ↵ = N2,

K̂↵ + R̂↵dt, otherwise,
(3.30)

Then, Eq. (3.23) at time dt becomes

Tdt⇢̂ = ⇢̂� cN
2

⇢̂dt + B̂ ⇢̂dt + ⇢̂ B̂†dt +
N2�1X

↵=1

c↵
⇣
K̂↵⇢̂ K̂↵†

⌘
dt, (3.31)

where we retained all terms up to first order in dt. By writing B̂ = �iĤ/~+ Â, with both Ĥ and K̂ Hermitian
operators, Eq. (3.31) in di↵erential form becomes:

d⇢̂

dt
= � i

~ [Ĥ, ⇢̂] � cN
2

⇢̂+ Â ⇢̂+ ⇢̂ Â +
N2�1X

↵=1

c↵
⇣
K̂↵ ⇢̂K̂↵†

⌘
. (3.32)

We still have to impose that the map in Eq. (3.31) is trace preserving. Namely, by imposing Tr
⇥
d
dt ⇢̂

⇤
= 0 and

the cyclic property of the trace, we obtain:

cN
2

1̂ = 2Â +
N2�1X

↵=1

c↵K̂↵†K̂↵. (3.33)
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We can write cN
2

1̂⇢̂ = cN
2

(1̂⇢̂+ ⇢̂1̂)/2, and the trace preserving form of Eq. (3.32) reads:

d⇢̂

dt
= L[⇢̂] = � i

~

h
Ĥ, ⇢̂

i
+

N2�1X

↵=1

c↵

K̂↵⇢̂ K̂↵† � 1

2

n
K̂↵K̂↵†, ⇢̂

o�
. (3.34)

Complete positivity makes sure that all the constants c↵ are positive. Then, by definining the Lindblad operators
L̂↵ =

p
c↵K̂↵, we arrive at the final form of the generator given in Eq. (3.22).

Remark 3.1. As consequence of the Theorem 3.3, the Lindblad operators L̂↵ are not arbitrary operators. They
are restricted by the orthogonality condition, which can be derived from Eq. (2.16):

Tr
h
L̂↵L̂�†

i
= c↵�↵� .

It can be proved that the constrains on the number of Lindblad operators and their orthogonality can be released.
Indeed, we can always redefine, through a unitary transformation, the Lindblad operators L̂0↵ =

P
� Û

↵�L̂� in
a way that the argument of the Theorem 3.3 is recovered.

Remark 3.2. As consequence of the Theorem 3.3, the dynamics given by Eq. (3.22) leads to decoherence, which
is the reduction of coherences (o↵-diagonal terms of the density operator). This can be seen as follows. Consider
Eq. (3.22) with a single Lindblad operator L̂ and where we neglect the Hamiltonian. If represented on the basis
of eigenstates { | lii }i of L̂, we find

d⇢ij
dt

= �1

2
(li � lj)

2⇢ij (3.35)

where ⇢ij = hli|⇢̂|lji. The solution is

⇢ij(t) = ⇢ij(0)e�
1
2 (li�lj)

2t, (3.36)

which shows that the o↵-diagonal terms of ⇢ (or better, when li 6= lj) decay exponentially with a rate proportional
to the distance squared (li � lj)2. Conversely, the populations (diagonal terms, i.e. with i = j) do not decay.
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