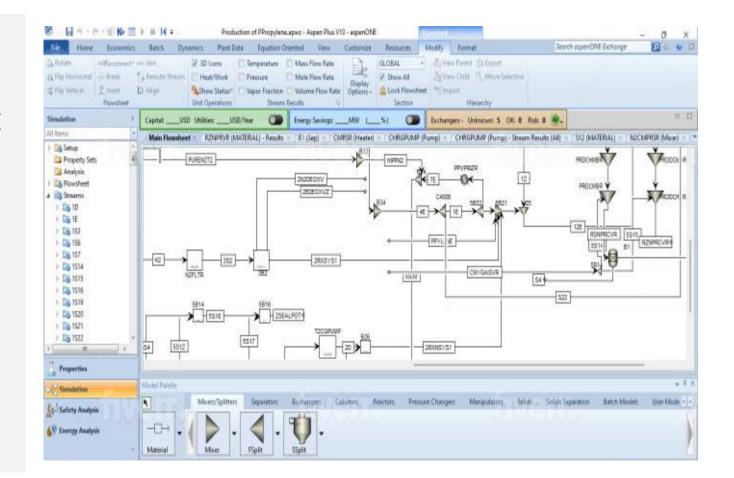
A brief introduction to Aspen plus


N.Zuliani

Content

- What Aspen Plus is?
- Installing Aspen Plus
- Basic steps to simulate a process plant with Aspen Plus
- Simulation example: simple process configuration and simulation
- Rankine cycle exercise

Aspen Plus

Aspen Plus is **one** of the leading Chemical Process Simulator in the market. It is based on a database of **component properties** and different **property methods** to compute the thermodynamic and transport properties.

Graphic User Interface

🔞 i 🔒 🔊 - 🤊 - 🌾 🕪 🔤	▶ ■ 4 = i	Si	mulation 1 - Aspe	en Plus V11 -	aspenONE		Flowsheet								×
File Home Economics	Batch Dyn	namics Plant Da	ta Equation Orier	nted View	Customize	Resources	Modify	Format				Search Exchang	e	۵ 🙎	× 🕥
A Rotate →■Reconnect*	→+ Join	3D Icons	🗌 Temperature 🔲	Mass Flow Rate		GLOBAL	✓ Ale Vie	w Parent 🖾 Export							
Flip Horizontal	a Reroute Stream	Heat/Work	Pressure	Mole Flow Rate		Show All	, 📴 Vie	w Child 🖳 Move Sel	ection						
Insert	🚊 Align	Show Status▼	Vapor Fraction	Volume Flow Ra	Display te Options -	🔒 Lock Flow									
Flowsheet		Unit Operations	Stream Res		G C	Section		Hierarchy							
Simulation <	Capital:USD) Utilities:USD	/Year 🛇 🔵 🛛	Energy Savings: .	MW (_%) 🛇 🖸	Exchang	ers - Unknown: 0 O)K: 0 Risk:	0					∞ 23
All Items 🔹	Main Flowshee	t× +													-
🕨 🔁 Setup															
Property Sets															
🔁 Analysis															
Flowsheet Streams															
Blocks															
Utilities															
📜 Reactions															
🕨 词 Convergence															
Flowsheeting Options															
Model Analysis Tools															
EO Configuration															
Results Summary															
 Datasheets Dynamic Configuration 															· · · · ·
 Dynamic Configuration Plant Data 															
Π															
Properties]
	Model Palette														▲ 廿 ×
	R	Mixers/Splitters	Separators E	xchangers (Columns R	Reactors Pr	essure Change	s Manipulators	Solids	Solids Separators	Batch Models	User Models			
Safety Analysis															
🔊 Energy Analysis			۴ با 🖉												
•															
*	MATERIAL	Mixer	FSplit S	Split											<u> </u>
Flowsheet Not Complete	neck Status											132%	Θ		• 🗄

Basic steps to simulate a process plant with Aspen Plus

- **1. Components definition:** in every simulation, you must define the components that will make up the simulation. In other words, you must specify which chemicals Aspen Plus should take from its large database of chemicals and use in the simulation.
- 2. Property method choice: A property method is a collection of methods and models (equation of states, advanced equation of states etc ...) that Aspen Plus uses to compute thermodynamic (Enthalpy, Entropy, Gibbs free energy..etc..) and transport properties (Viscosity, Thermal conductivity...etc).

Property method

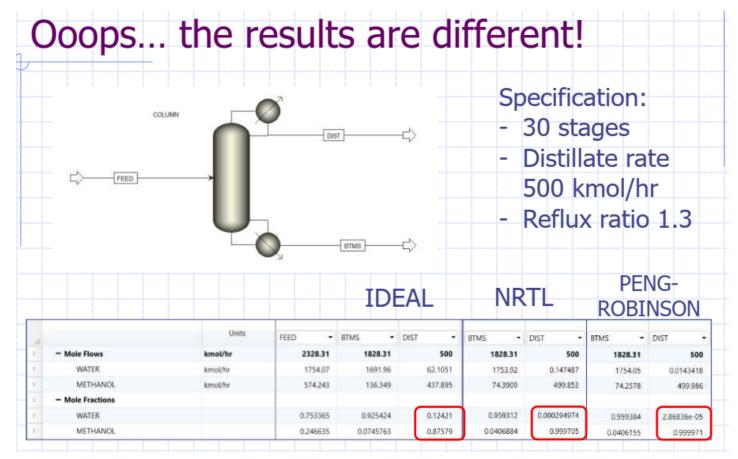
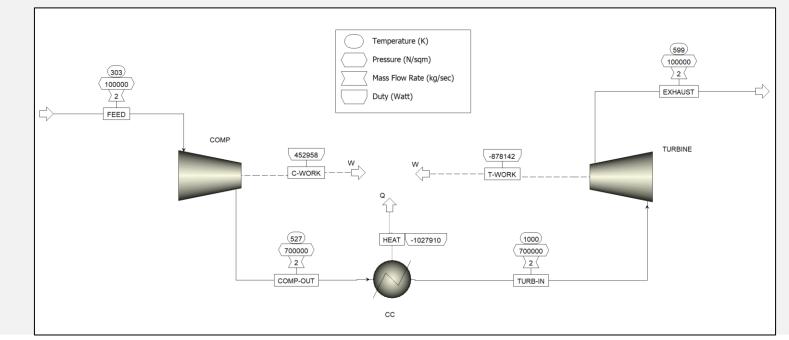
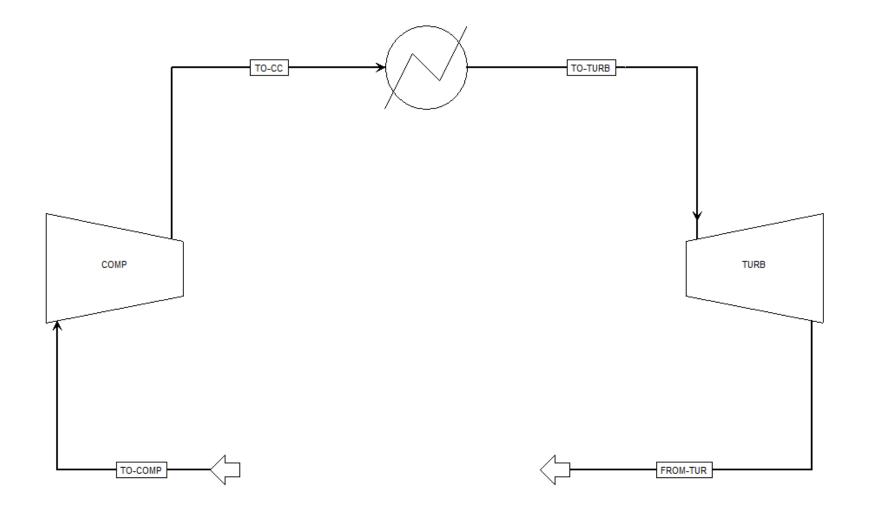


Image from https://t.ly/2D4no

Basic steps to simulate a process plant with Aspen Plus


Property method choice: You must select one (or more) Property Methods to model the properties of specific systems (chemicals) in your flowsheet. Choosing the appropriate property method *is often the key decision* in determining the accuracy of your simulation results. Aspen Plus includes a large number of built-in property methods that are sufficient for most applications.

How to choose the correct property method ?


- Aspen Plus recommended methods for different plant (oil and gas production, gas processing, Petrochemicals et...)
- Literature analysis on similar works
- Experience (experimental data comparison)

Basic steps to simulate a process plant with Aspen Plus

3. Process flowsheet definition: "drawing" of the process plant by means of choosing the *unit operations model, materials* and *energy streams*.

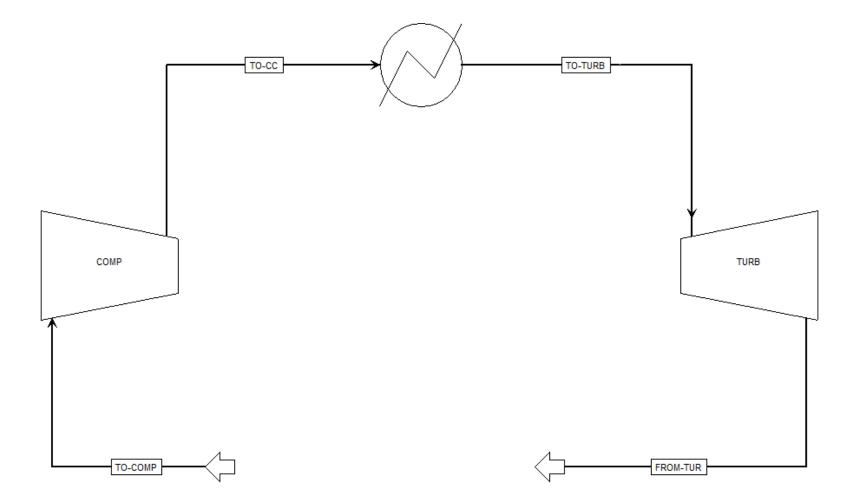
Example

Specification

- Fluid: air
- Feed air mass flow: 500 kg/h
- Feed air pressure and temperature: 1 bar, 30° C
- Compressor pressure ratio: 10
- Turbine inlet temperature: 1.000 °C
- Turbine outlet pressure: 1 bar

Calculate

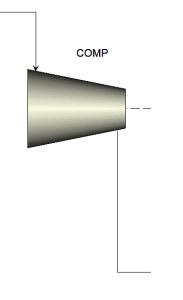
- Streams temperature and pressure
- Compressor work
- Turbine work


Component definition

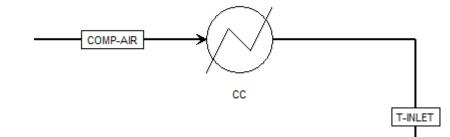
Clipboard Units		ivavigate		IOOIS	Data Sol	urce Run Mode
Properties	< ۲	Components >				
All Items	•	Selection	Petroleum	Nonconventional	Enterprise Database	Comments
▲ Setup Ø Specifications		Select compon	ents			
Calculation Options Comp-Groups		Compor	nent ID	Тур	e	Componen
Dirit Sets		AIR	Co	nventional		AIR
Report Options						
Components			EL 14/			
☑ Specifications ▷ ☑ Molecular Structure		Find	Elec Wizard	SFE Assistant	User Defined	Reorder
Assay/Blend						
Light End Properties	=					
🕨 詞 Petro Characterization	=					
Pseudocomponents						
Component Attributes						
🗀 Henry Comps 🗹 UNIFAC Groups						
 Delymers 						
Methods						
🚞 Chemistry						
🚞 Property Sets						
🚞 Data						
Estimation						
Analysis						
PURE-1	-					
×						

Method choice

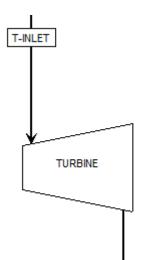
 Setup Components Methods Chemistry Property Sets Data Estimation Method silter Petroleum calculation options Free-water method STEAM-TA Water solubility Electrolyte calculation options Electrolyte calculation options 	Properties	< / Methods × +
 Components Methods & options Method filter Method filter Method filter Base method IDEAL IDEAL	ll Items	Comments
 Chemistry Property Sets Data Sestimation Analysis Petroleum calculation options Free-water method STEAM-TA Water solubility 3 Electrolyte calculation options Chemistry ID Results Use true components Human Components Human Components Human Components Henry components Modify Vapor EOS Data set Liquid gamma GMIDL Liquid molar enthalpy HLMX82 Liquid molar volume VLMX01 Heat of mixing Poynting correction 	 Setup Components 	
 Property Sets Data Estimation Analysis Petroleum calculation options Free-water method STEAM-TA Water solubility 3 Data set Liquid gamma GMIDL Data set Liquid molar enthalpy HLMX82 Liquid molar volume VLMX01 Heat of mixing Poynting correction 	-	IDEAL MIEthods Assistant
 Petroleum calculation options Petroleum calculation options Free-water method STEAM-TA Water solubility Water solubility Water solubility Electrolyte calculation options Chemistry ID Use true components Heat of mixing Poynting correction 	Property Sets	Madifi
 Free-water method STEAM-TA Mater solubility Water solubility Water solubility Customize Chemistry ID Use true components Heat of mixing Poynting correction 	D'utu	Petroleum calculation options Vapor EOS
▲ Control PURE-1 Water solubility 3 ↓ Liquid gamma GMIDL ▲ Control PURE-1		Data act
Input Imput Imput <t< td=""><td></td><td></td></t<>		
Chemistry ID Use true components Chemistry ID Poynting correction Chemistry ID Poynting correction	🧭 Input	
 Results Chemistry ID Use true components Heat of mixing Poynting correction 	> 🔯 Customize	Electrolyte calculation options Liquid molar enthalpy HLMX82
Use true components Heat of mixing Poynting correction	🖻 词 Results	Chemistry ID
		V Use true components
Use liquid reference state enthalpy		Poynting correction
		Use liquid reference state enthalpy


Blocks, materials and streams

Feed flow rate and composition


	nun -				Junne			Analysis	Surcey Analysis
Main Flows	heet ×⁄F	EEDAIR (MAT	'ERIAL) ×	+					
🥑 Mixed	Cl Solid	NC Solid	Flash Opt	tions	EO Options	Costing	g Comments		
🔺 Specifi	cations								 Component Attributes
Flash Type	. 1	Temperature	-	Press	ure	- r	Composition ———		✓ Particle Size Distributio
- State var	iables —						Mole-Frac 🔹	~	Ŭ
Tempera			30	С	•		Component	Value	
Pressure			1	bar	•		AIR	1	
Vapor fra	action								
Total flow	w basis	Mass	•						
Total flow	w rate		500	kg/h	r 🔻				
Solvent					Ŧ				
Reference	e Tempera	ture							
Volume	flow refere	nce temperati	ure						
	С	~							
Compor	ent conce	ntration refere	ence tempe	erature					
	С	-					Total	1	

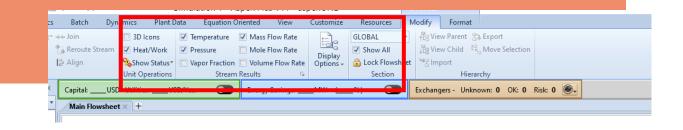
Compressor block

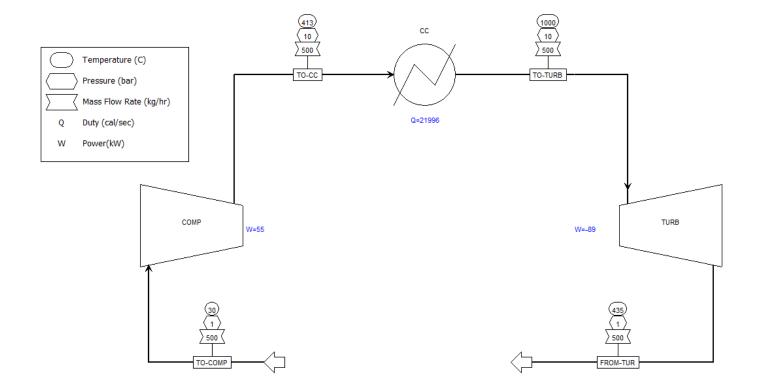

Main Flowsheet × COMP (Com	pr) × +			
Specifications Calculation C	ptions Power Loss	Convergence	Integration Parameters	Utility Comments
Model and type Model Compressor Type Isentropic	🔘 Turbine		•	
Outlet specification				
O Discharge pressure	bar	Ŧ		
Pressure increase	bar	Ŧ		
Pressure ratio	10			
O Power required	kW	T		
O Use performance curves to de	termine discharge cond	ditions		
Efficiencies Isentropic Polytr	opic Me	chanical		

Heater block

emperature change C egrees of superheating C egrees of subcooling C ressure 0 uty cal/sec apor fraction	Flash specifications Flash Type		Тетр	perature		-
emperature change C egrees of superheating C egrees of subcooling C ressure 0 uty cal/sec apor fraction			Press	sure		•
egrees of superheating C egrees of subcooling C ressure 0 bar uty cal/sec apor fraction	Temperature			1200	С	•
egrees of subcooling C ressure 0 bar uty cal/sec apor fraction	Temperature change	e			С	~
ressure 0 bar ▼ uty cal/sec ▼	Degrees of superhea	ating			С	~
uty cal/sec	Degrees of subcooli	ing			С	Ŧ
apor fraction	Pressure			0	bar	•
	Duty				cal/sec	Ŧ
	Vapor fraction					
ressure drop correlation parameter	Pressure drop corre	lation parameter				

Turbine block




Main Flowsheet $ imes$	TURBINE (Compr) >	+				
Specifications	Calculation Options	Power Loss	Convergence	Integration Parameters	Utility	Comments
Model and type — Model		Turbine	-	·		
Outlet specificatio	n]		
Oischarge press	sure 1	bar	•			
Pressure increa	se	bar	T			
Pressure ratio						
Operation Power required		kW	T			
🔘 Use performan	ce curves to determine	e discharge cono	ditions			
Efficiencies Isentropic	Polytropic	Me	chanical			

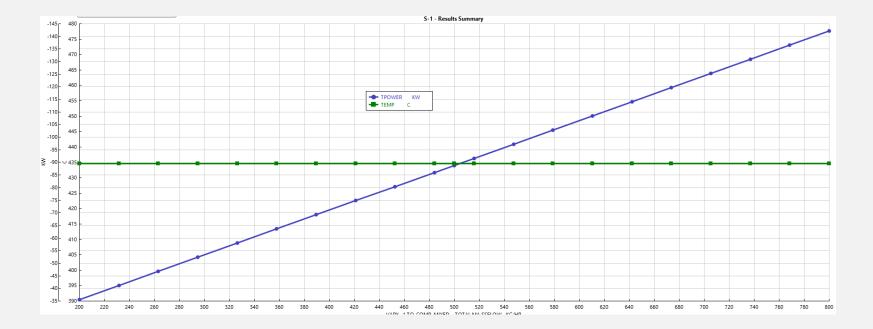
Run the simulation, showing results, change units of measure

- Streams data (temperature, pressure etc..)
- Compressor and turbine work
- Combustion chamber heat
- How to change units of measure
- How to change unit visualization

Show results

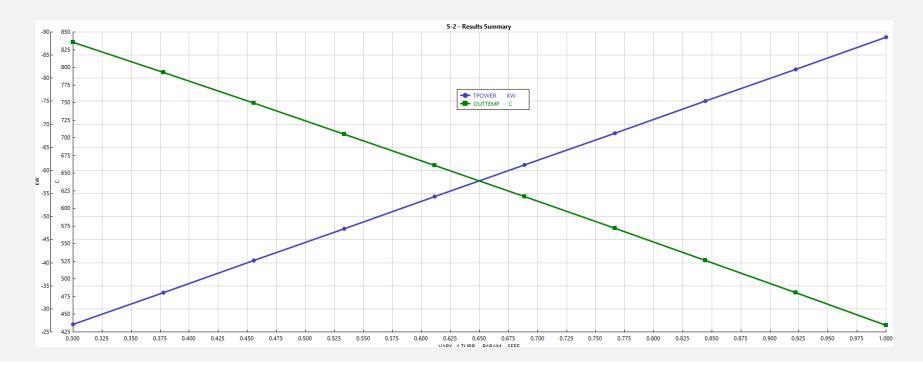
Stream stream results table

• Strea	ms	tab	le
---------	----	-----	----


All Items	M	aterial Heat Load Work Vol.% C	Curves Wt. % Curves	Petroleum Polyme	rs Solids		
 Setup Property Sets 			Units	COMP-AIR -	FEEDAIR -	T-INLET -	T-OUTLET -
Analysis		Description					
 Egy Flowsheet Streams 		From		COMP	COOLER	сс	TURBINE
Streams COMP-AIR		То		cc	COMP	TURBINE	COOLER
FEEDAIR		Stream Class		CONVEN	CONVEN	CONVEN	CONVEN
T-INLET	P			CONVEN	CONVEN	CONVEN	CONVEN
T-OUTLET		Maximum Relative Error					
Blocks Utilities		Cost Flow	\$/sec				
Reactions		 MIXED Substream 					
Convergence		Phase		Vapor Phase	Vapor Phase	Vapor Phase	Vapor Phase
Flowsheeting Options		Temperature	с	412.845	30	1200	743.591
Model Analysis Tools	•	Pressure	bar	10	1	10	1
 EO Configuration Results Summary 	•	Molar Vapor Fraction		1	1	1	1
Run Status	•	Molar Liquid Fraction		0	0	0	0
Streams		Molar Solid Fraction		0	0	0	0
Convergence Operating Costs	•	Mass Vapor Fraction		1	1	1	1
CO2 Emissions	•	Mass Liquid Fraction		0	0	0	0
🧭 Models		Mass Solid Fraction		0	0	0	0
	•	Molar Enthalpy	J/kmol	1.15322e+07	144981	3.76355e+07	2.21117e+07
Datastices Dynamic Configuration		Mass Enthalpy	J/kg	398337	5007.81	1.29998e+06	763765
🕨 🚞 Plant Data		Molar Entropy	J/kmol-K	5632.27	591.677	30781.9	37336
		Mass Entropy	J/kg-K	194.545	20.4372	1063.25	1289.63
		Molar Density	kmol/cum	0.175328	0.0396748	0.0816443	0.0118294
		Mass Density	kg/cum	5.07591	1.14862	2.36368	0.342472
		Enthalpy Flow	kW	55.3246	0.695529	180.552	106.078
		Average MW		28.9509	28.9509	28.9509	28.9509
7 Properties		Mole Flows	kmol/sec	0.00479739	0.00479739	0.00479739	0.00479739

Copy paste to excel

G7 Cost From From From To Strem From To Strem From To Strem From To Strem Stre	scription m eam Cla ximum	B Units	× ✓ fa c FROM-TU				S	tyles				
2 Desci 3 Fron 4 To 5 Streight 5 Maxi 7 Cost 8 MiXi 9 Phase 1 Pres 2 Mola 4 Mola 6 Mass 6 Mass 7 Mass 8 Mola 9 Mass 9 Mass	scription m eam Cla ximum	B Units n	С					tytes				Ac
1 Desc 2 Desc 3 From 4 To 5 Stread 5 Maxi 7 Cost 8 MIXE 9 Phase 0 Term 1 Press 2 Mola 4 Mola 5 Mass 6 Mass 7 Mass 8 Mola 9 Mass	scription m eam Cla ximum	Units n										
2 Desc 3 Fron 4 To 5 Strea 5 Maxi 7 Cost 8 MIXE 9 Phas 0 Tem 1 Pres 2 Mola 3 Mola 4 Mola 5 Mass 6 Mass 7 Mass 8 Mola 9 Mass	scription m eam Cla ximum	n	FROM-TU	D	E	F	G	н	1	J	К	
a From 4 To 5 Stread 5 Maximum 7 Cost 8 MIXE 9 Phase 0 Term 1 Press 2 Mola 3 Mola 4 Mola 5 Mass 6 Mass 7 Mass 8 Mola 9 Mass	m eam Cla ximum			TO-CC	TO-COMP	TO-TURB						
4 To 5 Stread 5 Maxi 7 Cost 8 MIXE 9 Phas 0 Tem 1 Pres 2 Mola 3 Mola 4 Mola 5 Mas 6 Mas 7 Mas 8 Mola 9 Mas	eam Cla ximum											
5 Strea 5 Maxi 7 Cost 8 MIXE 9 Phas 0 Tem 1 Pres 2 Mola 3 Mola 4 Mola 5 Mas 6 Mas 7 Mas 8 Mola 9 Mas	ximum		TURB	COMP		CC						
5 Maxi 7 Cost 8 MIXE 9 Phas 0 Tem 1 Pres 2 Mola 3 Mola 4 Mola 5 Mass 6 Mass 7 Mass 8 Mola 9 Mass	ximum			CC	COMP	TURB						
7 Cost 8 MIXE 9 Phas 0 Tem 1 Pres 2 Mola 3 Mola 4 Mola 5 Mass 6 Mass 7 Mass 8 Mola 9 Mass		SS	CONVEN	CONVEN	CONVEN	CONVEN						
MIXE Phase Phase Phase Phase Prese Mola Mola Mola Mola Mola Mola Mola Mola		Relative E	rror									
Phase Phase Prese	t Flow	\$/hr										
 Tem Pres Mola Mola Mola Mola Mola Mass Mola Moss Mola Mola Mola Mola Mola Mola Mola Mola 	(ED Sub	stream										
1 Pres 2 Mola 3 Mola 4 Mola 5 Mass 6 Mass 7 Mass 8 Mola 9 Mass	ase		Vapor Pha	Vapor Pha	Vapor Pha	Vapor Pha	se					
 Mola Mola Mola Mola Mass Mass Mola Mola Mola Mola Mola Mola Mola 	nperat	с	434.6128	412.8452	30	1000						
 3 Mola 4 Mola 5 Mass 6 Mass 7 Mass 8 Mola 9 Mass 	ssure	bar	1	10	1	10						
4 Mola 5 Mass 6 Mass 7 Mass 8 Mola 9 Mass	lar Vap	or Fractior	1	1	1	1						
5 Mass 6 Mass 7 Mass 8 Mola 9 Mass	lar Liqu	id Fraction	0	0	0	0						
6 Mass 7 Mass 8 Mola 9 Mass	lar Solid	d Fraction	0	0	0	0						
7 Mass 8 Mola 9 Mass	ss Vapo	r Fraction	1	1	1	1						
8 Mola 9 Mass	ss Liqui	d Fraction	0	0	0	0						
9 Mass	ss Solid	Fraction	0	0	0	0						
	lar Entl	cal/mol	2915.447	2754.423	34.62805	7339.374						
0 Mola	ss Enth	cal/gm	100.7031	95.14118	1.196095	253.511						
	lar Enti	cal/mol-K	6.148897	1.345244	0.14132	6.148896						
1 Mass	ss Entro	cal/gm-K	0.21239	0.046466	0.004881	0.21239						
2 Mola	lar Der	mol/cc	1.70E-05	0.000175	3.97E-05	9.45E-05						
3 Mass	ss Den:	gm/cc	0.000492	0.005076	0.001149	0.002735						
	halpy F		13986.55	13214.05	166.1244	35209.86						
	erage M		28.95091	28.95091	28.95091	28.95091						
	-	kmol/hr				17.27062						
<	>	Shee		+								-
_		et 1 of 1		essibility: (_						III II	E


Model analysis tool: sensitivity analysis

Aim: evaluate the turbine power and output temperature change with air flow rate change

Model analysis tool: sensitivity analysis

Aim: evaluate the turbine power and output temperature change with turbine isentropic efficiency change

Model analysis tool: sensitivity analysis

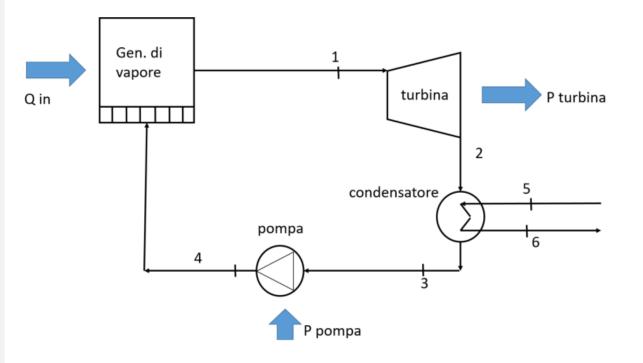
Main Flowsheet	× S-1 - F	Results ×	S-1 - Resul	ts Sumn	nary - Plot 🔅	< Results S	ummary - Run S	tatus × S-2 ×	+
🕜 Vary 🕜 D	efine 🛛 🥑	Tabulate	Options	Cases	Fortran	Declaration	Comments		
Active	Case	e study							
🔿 Manipulate	d variables	(drag and d	rop variable	es from f	orm to the	grid below)			
Varia	able	Active			Manipul	ated variable		Units	
▶ 1			Block	-Var Bloo	ck=TURB Va	riable=SEFF	Sentence=PA		-
New		Delete		C	ору	Pas	ste		
Edit selecte	dvariable								
- Manipulate					lanipulated	variable limit	·s		
Variable	1				Equidistar			t of values	
Туре	Block	Var		- 9	Start point		0.3		-
Block	TURB			- E	End point		1	,	-
Variable:	SEFF		- 28		Number	of points	10 🚭		
Sentence:	PARAN	4			🔵 Incremer	nt	0.077778		-
) Report lai	pelc			
					Report la	/CIS			

Variable			[Definition		
TPOWER	Block-Var B	Block=TURB Variable	e=BRAKE-PC	OWER Sentence	=RESULTS Uni	ts=kW
OUTTEMP	Stream-Var	Stream=FROM-TU	R Substream	n=MIXED Varial	ble=TEMP Unit	s=C
•						
Edit selected vari	able	Reference -				
Category		Туре	Block-	Var	•	
) All		Block:	TURB		-	
		Variable:		E-POWER	• 🏔	
Blocks		Sentence:	RESULT	S		
Blocks		1 Incident				
Streams		Units:	kW		•	
		Units:	kW		Ţ	
Streams	ters	Units:	kW		•	

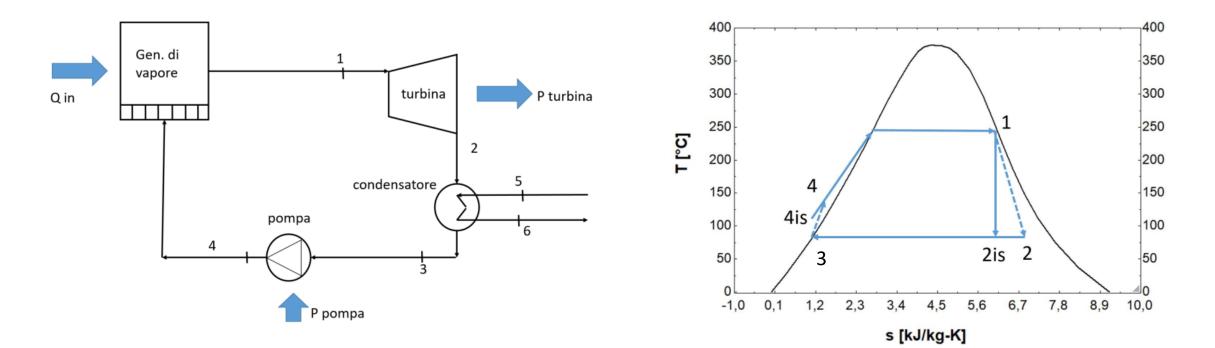
Flowsheet options: design specifications

Aim: find the air flow rate to produce 200 kW from turbine

Main Flowsheet × DS-1 × +												
	⊘ Define	⊘Spec	🕜 Vary	Fortran	Declarations	EO Options	Comments					
	<u> </u>	d variables Variable	(drag and	drop variab	les from form t	o the grid below Defini						
	TPOW	ER	Block	-Var Block=	TURB Variable:	BRAKE-POWER	Sentence=RESU	LTS Units=kW				
	New	Delet	te	Сору	Paste	Move Up	Move Down	View Variables				
Edit selected variable												
	Variable Category - All Blocks Streams Model U Propert Reactio	Utility y Paramete		•	Block: Variable: Sentence:	Block-Var TURB BRAKE-POWER RESULTS KW	• (#					
	EO input – Open varia	ble										
	Description											


Ciclo Rankine, esercizio

Ciclo Rankine, esercizio


Calcolare la portata d'acqua necessaria per ottenere una potenza netta del ciclo pari a 100 MW

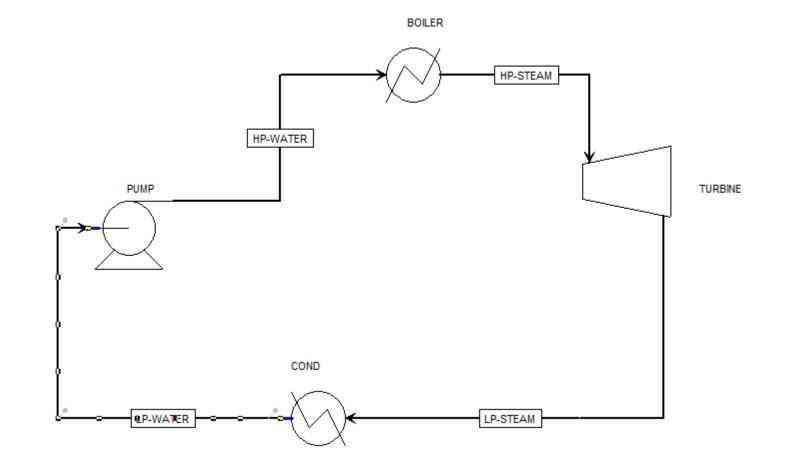
Dati

- Pressione al condensatore 0.08 bar
- Liquido saturo all'uscita del condensatore
- Pressione all'ingresso in turbina 80 bar
- Vapore saturo all'ingresso in turbina
- Rendimenti isoentropici pompa e turbina 85%
- Si trascurano le perdite di carico
- Temperature dell'acqua al condensatore ingresso e uscita: 15°C e 35°C

Ciclo Rankine

$$\eta_{th} = \frac{P_{NET}}{\dot{Q}_{in}} = \frac{P_{turbina} - P_{pompa}}{\dot{m}(h_1 - h_4)}$$

Simulazione di processo con Aspen Plus


Definizione delle proprietà della simulazione

- Scelgo come componente l'acqua
- Scelgo il metodo: IAPWS-59 (International Association for the Properties of Water and Steam)

ltems 🔹	Selection	Petroleur	n Nonconventional	Enterprise Database	Comments			
词 Setup								
Components	Select compo	nents						
Specifications	Comp	onent ID	Тур		Compo	nent name	Alias	
Molecular Structure		Allerie ID		-		inerit name		
🚞 Assay/Blend	WATER		Conventional		WATER		H2O	
Light End Properties								
Petro Characterization								
Pseudocomponents	Find	Elec Wiz	ard SFE Assistant	SFE Assistant User Defined		Reorder Review		
Component Attributes								
🔁 Henry Comps								
UNIFAC Groups								
Polymers								
🔯 Methods								
Specifications								
Selected Methods								
🕨 词 Parameters								
🔁 Routes								
O NC Props								
Tahnoly								

Property methods &	-		Method name	Method name						
Method filter	COMMON	•	IAPWS-95 • Methods Assistant							
Base method	IAPWS-95	•	_							
Henry components	Ŧ		Modify							
- Petroleum calculati	on options –		Vapor EOS	-						
Free-water method		•	Data set	1						
Water solubility	3	-	Liquid gamma	GMIDL -						
		Data set	Data set	1 🚔						
Electrolyte calculati	on options –		Liquid molar enthalpy	HLMXWS95 -						
Chemistry ID		•	Liquid molar volume	VLMXWS95 ~						
Use true compo	nents		Heat of mixing							
			Poynting correction	n						
			Use liquid reference	e state enthalpy						

Definizione del flowsheet

LP-WATER stream definition

Ø Mixed	Cl Solid	NC Solid	Flash Opti	ons EO Opt	ions	Costing	Comments			
Specifi	ications									 Component Attributes
Flash Type	e Pi	ressure	-	Vapor Fractio	n		mposition —			 Particle Size Distribution
- State var	riables —						ole-Frac 🔹		Ŧ	
Tempera	ature			С	Ŧ		Component	Value		
Pressure	•		0.008	bar	•		WATER		1	
Vapor fra	action		0							
Total flow	w basis	Mass	•							
Total flow	w rate		1	kg/hr	•					
Solvent					Ŧ					
Reference	ce Temperat	ure								
Volume	flow referen	ice temperat	ure							
	С	Ŧ								
Compor	nent concen	tration refer	ence tempe	rature						
	С	Ŧ					Total		1	

PUMP block definition

Main Flowsheet ×	Results Summar	/ - Run S	Status $ imes$ $ angle$ LP	-WATER (Material) ×	PUMP (P	ump) × 🛨				
Specifications (Calculation Optic	ns Fl	lash Options	Utility	Comments						
Model											
Pump											
- Pump outlet specific	ation										
Oischarge pressu		80	bar		•						
Pressure increase			bar	,	•						
Pressure ratio											
Power required			kW 👻								
Ose performance	curve to determ	ine discl	harge conditio	ons 💽							
Efficiencies	05	Duite									
Pump 0	.85	Drive	:r								

BOILER block definition

Flash specifications				
	D			
Flash Type	Pressure			
	Vapor fraction			
Temperature		С	T	
Temperature change		С	T	
Degrees of superheating		С	~	
Degrees of subcooling		С	T	
Pressure	0	bar	•	
Duty		kW	~	
/apor fraction	1			
Pressure drop correlation parameter				
Always calculate pressure drop co	rrelation parameter			
Valid phases				
Vapor-Liquid	•			

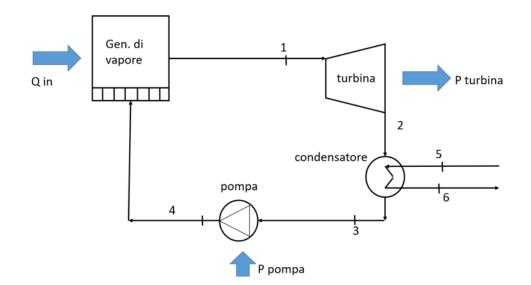
TURBINE block definition

Main Flowsł	heet × 1	SOILER (Heater) $ imes$	TURBINE (C	ompr) × 🕂					
Specification	ations (alculation Options	Power Los	s 🛛 🥑 Convergence	e Integration Parameters				
- Model and	l type —								
Model	Comp	ressor 🍥 .	Turbine						
Type Isentropic -									
- Outlet spe	cification								
Oischar		e 0.08	bar	•					
Pressure decrease			bar	Ŧ					
Pressure	e ratio								
🔘 Power p	produced		kW	Ŧ					
🔘 Use per	formance	curves to determine	e discharge co	onditions					
Efficiencie	s								
lsentropic		5 Polytropic	N	Mechanical					

Specifications C	alculation Options	Power Loss	Convergence	Integration Parameters	Utility	Comments
Flash parameters —						
Valid phases	Vapor-Liquid-Fi	reeWater	•			
Maximum iterations	30	0				
Tolerance	0.0	001				
Entropy balance para	meters					
Constant entropy flas	h type <i>Iterative</i>	-				
Maximum iterations		30 😌 🛛 Tolera	ance 0.00	001		

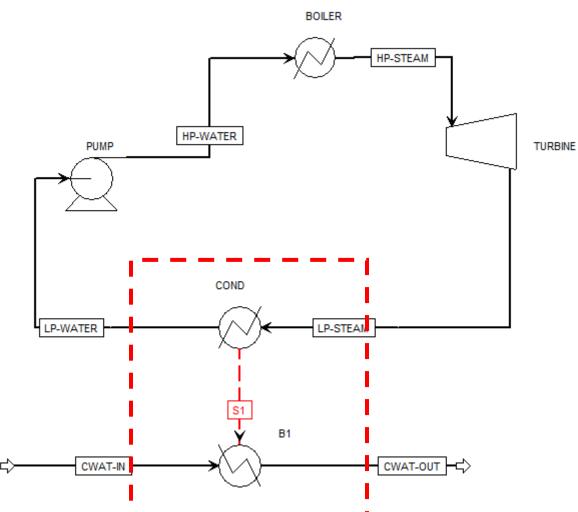
Free water: this represents any unbound, uncondensed liquid water that may be present in the system. It refers to water that is not associated with the vapor-liquid equilibrium but exists as a separate phase. This phase could occur, for example, in systems where water droplets are suspended in a gas stream

CONDENSER block definition

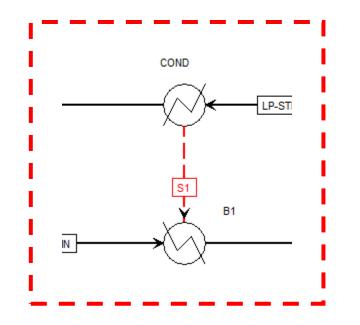

Specifications Flash Options l	Jtility Comments					
lash Type	Pressure		-			
	Vapor fraction	Vapor fraction 🔹				
Temperature		С	Ŧ			
Temperature change		С	Ŧ			
Degrees of superheating		С	Ŧ			
Degrees of subcooling		С	Ŧ			
Pressure	0	bar	•			
Duty		kW	Ŧ			
Vapor fraction	0					
Pressure drop correlation parameter						
Always calculate pressure drop co	rrelation parameter					
Valid phases						
Vapor-Liquid	-					

DESIGN SPECIFICATION Net power output

O Define O Street O Very	Deeleestiene I EO Cotione						Main Flowsheet × NETPOWER × Results Summary - Run Status × NETPOWER - Input ×						+	
Oefine Opec OVary Fortran	Declarations EO Options	Comments					🖉 Define 🛛 🄇	Spec 🔗	Vary Fortran	Declaratio	ons EO Optio	ns Com	ments	
Active								Jopec V	illy rollar	Decidiatio			inches	
Sampled variables (drag and drop varia		ow) inition					- Manipulated v	ariable		Manipulat	ted variable limi	+-		
Variable										6	50			
	=TURBINE Variable=BRAKE-P(=PUMP Variable=BRAKE-POW				Туре	Stream-Va		Lower						
					Stream:	LP-STEAM	-	Upper			500			
New Delete Copy	Paste Move Up	Move Down	View Variables				Substream:	MIXED	•	Step size				
Edit selected variable							Variable:	MASS-FLO	ow ▼ 🏦	Maximum	n step size			
Variable ØPPUMP -	Reference						Units:	kg/sec	•					
Category	Type Block-Var Block: PUMP	•								- Report lab	oels			
O All	Variable: BRAKE-POWE	ER 🔹 🎮								Line	e 1 Line 2	Line 3	Line 4	
Blocks	Sentence: RESULTS													
🔘 Streams	Units: kW	•												
🔘 Model Utility										- EO input -				
Property Parameters										Open vari	able			
Reactions										Descriptio	n			
EO input							L			· · ·				
Open variable							Сору	Paste	Clear					
Description														
			Main Flowshee	× NETPOWER	X Result	ts Summary - Ri	un Status 🖂 🕯	NETPOWER	R - Input $ imes$	+				
					T.e. i	La Luci	L co.o. vi	Le						
			🖉 🖉 Define 🔇	Spec 🛛 🛇 Vary	Fortran	Declarations	EO Options	Comme	ents					
			_											
		cation expression												
			Spec	PTURB+PPUM	Р									
			Tarad	-1 <mark>00000</mark>										
			Teleroner	1										
			Tolerance											


Risultati attesi (calcolati con EES, Engineering Equation Solver)

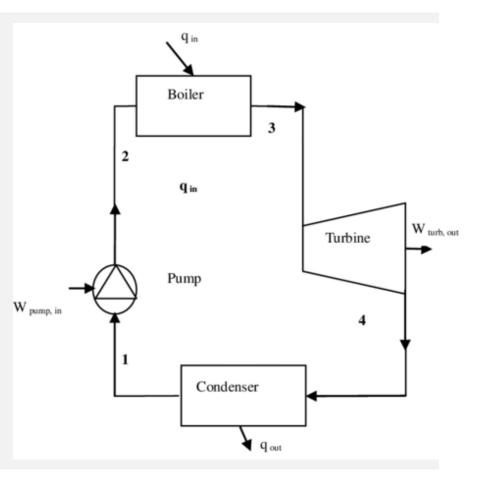
	1 h _i [kJ/kg]	² Pi	³ s _i [kJ/kg-K]	⁴ Τ _i [C]	⁵ x _i	⁶ h _{is;i} [kJ/kg]	⁷ s _{is;i} [kJ/kg-K]
[1]	2758	80	5,743	295	1		
[2]	1939	0,08	6,202	41,49	0,7348	1794	5,743
[3]	173,7	0,08	0,5921	41,49	0		
[4]	183,2	80	0,5967	42,07		181,8	0,5921



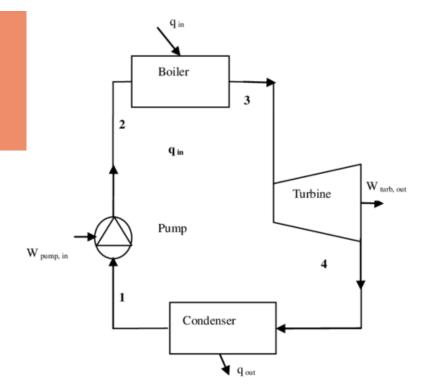
DESIGN SPECIFICATION Cooling water flow rate

Condenser cold side block definition

Flash specifications ———— Flash Type	Pressure		•
	Inlet heat stream		Ŧ
Temperature	35	С	-
Temperature change		С	Ψ
Degrees of superheating		С	T
Degrees of subcooling		С	T
Pressure	0	bar	-
Duty		kW	T
Vapor fraction			
Pressure drop correlation parameter			
Always calculate pressure drop co	rrelation parameter		


Process simulation example with Aspen Plus: Rankine cycle

Dipartimento di Ingegneria ed Architettura


Rankine cycle data and aim

• Data

- 1 kg/s water
- 600 °C steam temperature @ 3 MPa
- Turbine discharge pressure @ 101325 Pa
- Condenser @ 100 °C liquid phase
- Aim
- Heat required
- Work produced

Rankine cycle

A steam engine consists of the following steps:

- Water is pumped into a boiler using a pump.
- Water is vaporized in a boiler and becomes high temperature and pressure steam.
- Steam flows through a turbine and does work. The pressure and temperature go down during this step. The steam is also partially condensed.
- The steam is further cooled to be condensed completely. Then, it is fed to the pump mentioned in the first step to be re-used.

Components

Λ*

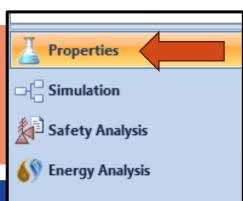
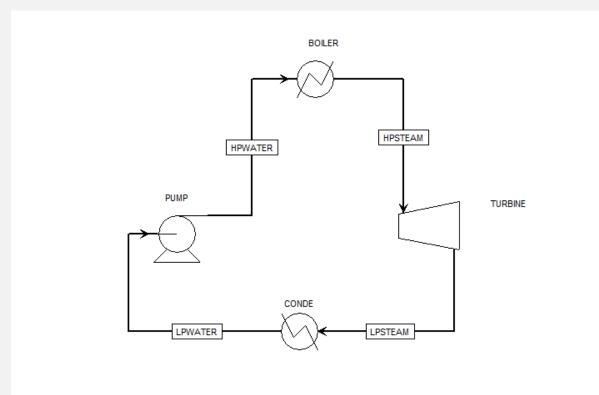

H • • e • ⇒ E > = K • [

 Image: Simulation 1 - Aspen Plus V8.0 - as

 Assistant


File	Home	View	Cu	stomiz	e Get	Started								
🔏 Cut	METCBAR	-	📝 Setu	р	Na ⁺ Che	emistry		掛 Method	s Assistant		Analysis	▶	1	
Сору	🖶 Unit Set	s) Con	nponen	ts 🔏 Cus	stomize	~	🍫 Clean Pa	rameters	🛞 DECHEMA	Stimation	2	×	
🐴 Paste			👗 Met	hods	Pro 🕀	p Sets	Draw Structure	🍫 Retrieve	Parameters		Kegression	(2)	 Control Panel 	1
Clipboard	Units			Na	vigate			Tools		Data Source	Run Mode		Run 🗔	à.
Properties	s		<	Star	Page 🗙	Compo	nents - Spe	cifications \times	+					
All Items			•	0	Selection	Petrole	um Non	conventional	Databank	s Information				
🕨 📷 Setu 🔺 🔯 Con	1.5.1			Sele	ct compor	nents:								
0	Specification	s			Compo	nent ID		Туре	(Component nam	e	Alias		
	Molecular Str	ructure	:	•	WATER		Conventi	onal	WATER		H20			
L 💽 4	Assay/Blend Light End Pro Petro Charac Pseudocomp	terizati	ion		Find	Elec	: Wizard	User Defi	ned	Reorder	Review			

Method

		Simulation 1 - Aspen Plus V8.0 - aspenONE
ethod name		mize Get Started
APWS-95	- Methods Assistant	Na ⁺ Chemistry Image: Nethods Assistant Image: NIST Image: Analysis Draw Oclean Parameters Image: Diagonal Color Colo
Modify —		ds 🐵 Prop Sets Structure 🍕 Retrieve Parameters 🖉 Regression Run Su
/apor EOS		Navigate Tools Data Source Run Mode
Data set	1	Start Page × Methods - Specifications × +
Liquid gamma	GMIDL -	Global Flowsheet Sections Referenced Information
	 Components Specifications Molecular Structure Assay/Blend Light End Properties Petro Characterization Pseudocomponents Component Attributes 	Property methods & options Method filter: COMMON Base method: IAPWS-95 Henry components: Petroleum calculation options Free-water method: STEAM-TA Water solubility: 3 Method name: IAPWS-95 Method name: IAPWS-95 Methods Assistant Method session Methods Assistant Modify Vapor EOS: Data set: 1
	 Henry Comps UNIFAC Groups Polymers Methods Specifications Selected Methods Parameters Routes 	Electrolyte calculation options Chemistry ID: Use true components Liquid molar enthalpy: HLMXWS95 Liquid molar volume: VLMXWS95 Orection Poynting correction Use liquid reference state enthalpy

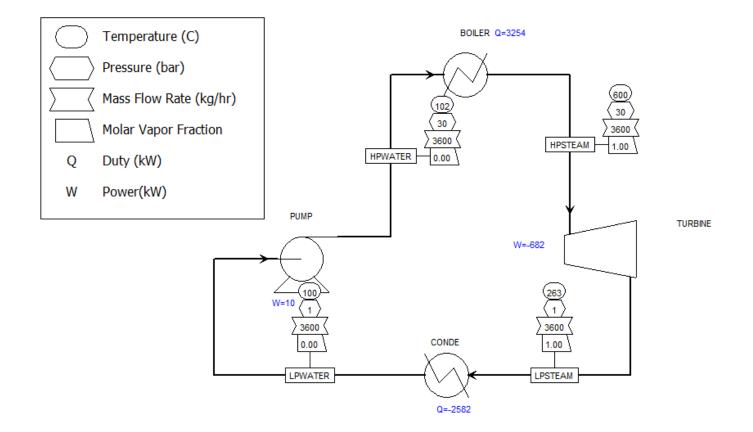
Flowsheet definition

LPWATER

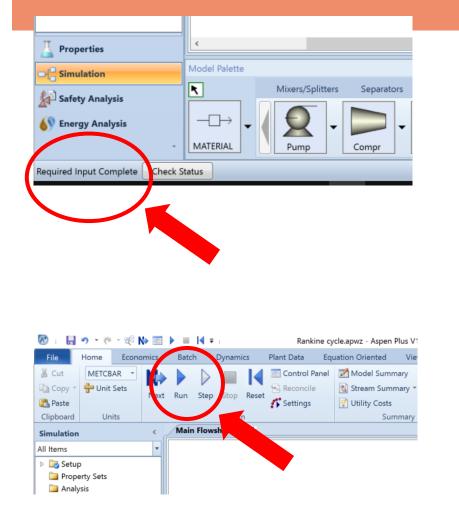
Main Flowsheet × LPWATER (MATERIAL)	× +		
⊘Mixed CI Solid NC Solid Flash C	ptions EO Options Co	osting Comments	
Specifications			 Component Attributes
Flash Type Temperature	Pressure	Composition	 Particle Size Distribution
State variables		Mole-Frac	
Temperature 10	D C 🔹	Component Value	
Pressure 1032	5 Pa 🔻	WATER 1	
Vapor fraction			
Total flow basis Mass	•		
Total flow rate	1 kg/sec 🔻		
Solvent	Ŧ		
Reference Temperature			
Volume flow reference temperature			
C -			
Component concentration reference terr	perature		
C ~		Total 1	
		,	

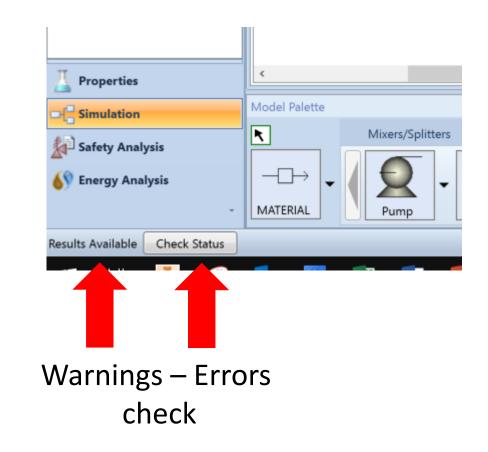
PUMPè

lain Flowsheet $ imes$	LPWATER (MATERIAL)	× PUMP (Pu	mp) × 🕂)
Specifications	Calculation Options	Flash Options	Utility	Comments
Model				
Pump	© Т	urbine		
Pump outlet speci	ification			
Discharge press		3 MPa		
Pressure increa	se	bar		
Pressure ratio				
Power required		kW	-	
	ce curve to determine di		ons 🦱	ĺ l
Efficiencies				
entreteres		iver		
Pump	Dr	iver		


BPOILER

2	Main Flowsheet $ imes$	LPWATER (MATE	RIAL) ×	PUMP (Pum	p) × BOILE	R (Heate
ĺ	Specifications	Flash Options	Utility	Comments		
	-Flash specification	15				
	Flash Type		Temp	perature		•
			Press	ure		-
	Temperature			600	С	-
	Temperature chan	ge			С	Ŧ
	Degrees of superh	eating			С	Ŧ
	Degrees of subcoo	oling			С	Ŧ
	Pressure			0	bar	•
	Duty				cal/sec	Ŧ
	Vapor fraction					
	Pressure drop corr	elation parameter				
	Always calculation	te pressure drop c	orrelatio	n parameter		
	Valid phases					
	Vapor-Liquid			•		
	- upor ciquia					

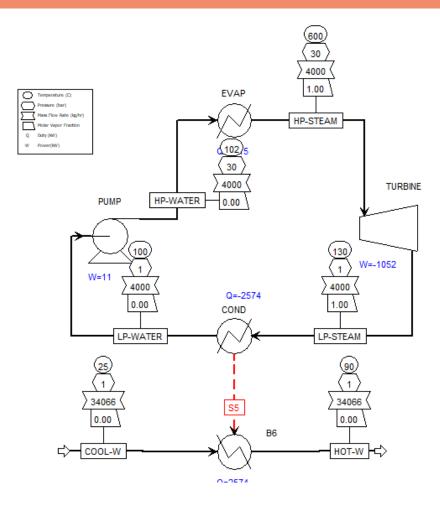

TURBINE


Specificatio	ons Calcu	lation Options	Power Loss	Convergence	Integration Parameter	s Utility	Comments	
_	/pe) Compresso sentropi c	or 💿 T	urbine		-			
Outlet specifi	ication —							
Oischarge		101325	Pa	•				
Pressure d	lecrease		bar	~				
Pressure ra	atio							
O Power pro	oduced		kW	Ŧ				
O Use perfor	rmance curv	es to determine	discharge con	ditions				
- Efficiencies -								
lsentropic		Polytropic	Me	chanical				

Flash Type	Pressure		-
	Vapor fraction		•
Temperature		С	T
Temperature change		С	-
Degrees of superheating		С	•
Degrees of subcooling		С	•
Pressure	0	bar	•
Duty		cal/sec	-
Vapor fraction	0		
Pressure drop correlation parameter			
Always calculate pressure drop cor	relation parameter		
]
Valid phases			

Run the simulation

Stream result summary

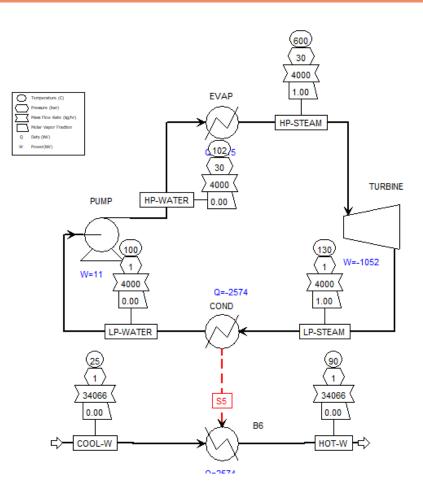

/late	rial Heat Load Work Vol.% Curves	Wt. % Curves Pe	troleum Polyme	s Solids			
4		Units	HPSTEAM -	HPWATER -	LPSTEAM -	LPWATER -	
	Description						
Þ	From		BOILER	PUMP	TURBINE	CONDE	
Þ	То		TURBINE	BOILER	CONDE	PUMP	
•	Stream Class		CONVEN	CONVEN	CONVEN	CONVEN	
	Maximum Relative Error						
Þ	Cost Flow	\$/hr					
-	MIXED Substream						
•	Phase		Vapor Phase	Liquid Phase	Vapor Phase	Liquid Phase	
	Temperature	С	600	101.887	263.353	99.9743	
	Pressure	bar	30	30	1.01325	1.01325	
	Molar Vapor Fraction		1	0	1	0	
	Molar Liquid Fraction		0	1	0	1	
	Molar Solid Fraction		0	0	0	0	
	Mass Vapor Fraction		1	0	1	0	
	Mass Liquid Fraction		0	1	0	1	
	Mass Solid Fraction		0	0	0	0	
	Molar Enthalpy	cal/mol	-52874.1	-66873.7	-55807.6	-66917.7	
	Mass Enthalpy	cal/gm	-2934.96	-3712.05	-3097.79	-3714.5	
	Molar Entropy	cal/mol-K	-8.25163	-34.861	-5.80591	-34.9438	
	Mass Entropy	cal/gm-K	-0.458035	-1.93508	-0.322277	-1.93968	
	Molar Density	mol/cc	0.000419103	0.0531964	2.27868e-05	0.0531975	
	Mass Density	gm/cc	0.00755026	0.958348	0.00041051	0.958368	
Þ	Enthalpy Flow	kW	-12288.1	-15541.6	-12969.8	-15551.9	

Model Palette

Link to Excel: calculator

Aim:

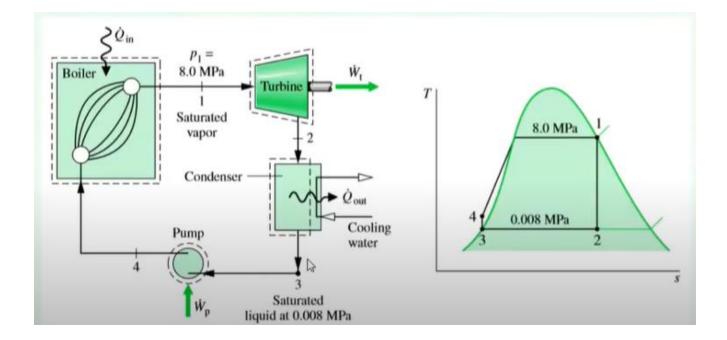
Calculated cycle efficiency value



Design specification: calculate water flow rate at condenser

Aim:

Calculate the cooling water flow rate to the condenser.


Exit water at condenser should be for example 40 °C

Exercise

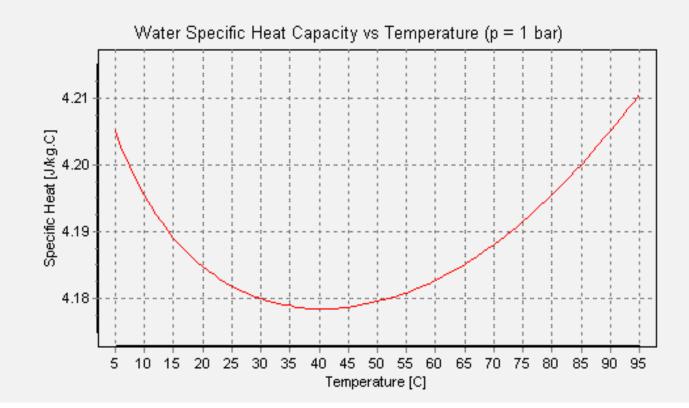
EXAMPLE 8.1 Ideal Rankine Cycle

Steam is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 8.0 MPa and saturated liquid exits the condenser at a pressure of 0.008 MPa. The *net* power output of the cycle is 100 MW. Determine for the cycle (a) the thermal efficiency, (b) the back work ratio, (c) the mass flow rate of the steam, in kg/h, (d) the rate of heat transfer, \dot{Q}_{in} , into the working fluid as it passes through the boiler, in MW, (e) the rate of heat transfer, \dot{Q}_{out} , from the condensing steam as it passes through the condenser, in MW, (f) the mass flow rate of the condenser cooling water, in kg/h, if cooling water enters the condenser at 15°C and exits at 35°C.

Thermodynamic and transport component property analysis

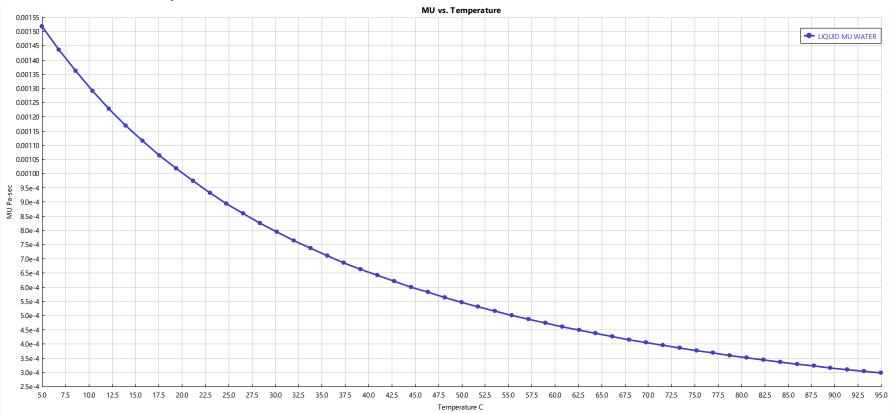
It is possible to use Aspen Plus to retrieve thermodynamic component properties

Tutorials:


- find the specific heat capacity (CP-M mass constant pressure heat capacity) variation with temperature for water between 20 and 95°C using the properties tool
- find the *viscosity (CP-M mass constant pressure heat capacity)* variation with temperature for water between 20 and 95°C using the properties tool

For water \rightarrow IAPWS-95 method

(International Association for the Properties of Water and Steam)

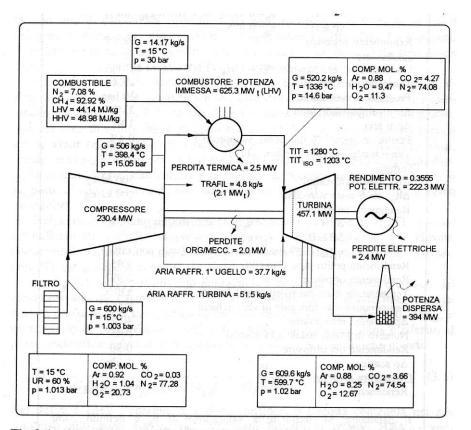

Thermodynamic and transport component property analysis

• Water c_p variation , 5 ÷ 95 °C result

Thermodynamic and transport component property analysis

• Water viscosity, 5 ÷ 95 °C result

Analisi del ciclo reale


Condizioni ambientali	a silo al secup	<u>Turbina</u>
Temperatura e umidità relativa ambiente	15°C, 60%	Δh_{is} , stadi raffreddati
Pressione ambiente	101325 Pa	Δh_{is} , stadi non raffred
<u>Compressore</u> Δp filtro aspirazione Δh _{is} per ogni stadio	1 kPa 27 kJ/kg	Rendimenti politropic SP<1: SP \geq 1: $\eta_{p,\infty}$: 0.
Massa trafilamenti allo scarico compressore	0.8%	Rendimento politropio
Rendimento politropico SP<1: $\eta_p = 0.895 \cdot [1-0.07108]$	·log ₁₀ ² (SP)]	Rendimento organico Temperatura massima
$SP \ge 1$: $\eta_p = 0.895$ Rendimento organico	99.7%	Temperatura massima Δp/p medio refrigerat Numero di Mach assi
<u>Combustibile</u> : gas naturale (93% CH ₄ - LHV=4	4.14 MJ/kg) 15°C	Rendimento del diffu Ap scarico
Temperatura combustibile Pressione combustibile Δp/p combustibile (min.)	30 bar 33 %	<u>Generatore elettrico</u> Rendimento:
Δp/p aria Perdite termiche (% del calore sviluppato)	3% 0.4%	Il parametro SP us $V^{0.5}/\Delta h_{is}^{0.25}$, dove V
Temp.totale ingresso 1°rotore (TIT)	1280°C	turbina e la portata vo

<u>Turbina</u> Δh _{is} , stadi raffreddati	300 kJ/kg
	100 kJ/kg
Δh_{is} , stadi non raffreddati	100 MJ/Kg
Rendimenti politropici	1 2 (CD)1
SP < 1: $\eta_{p} = \eta_{p,\infty} \cdot [1 - 0.02688]$	(SP)
$SP \ge 1$: $\eta_p = \eta_{p,\infty}$	
$\eta_{p,\infty}$: 0.89 (stadi raffr.), 0.925 (st	adi non raffr.)
Rendimento politropico 1°ugello	0.95
Rendimento organico	0.997
Temperatura massima palettature 1°ugello	830°C
Temperatura massima pale di altre schiere	800°C
$\Delta p/p$ medio refrigerante	40%
Numero di Mach assiale allo scarico	0.45
Rendimento del diffusore	0.50
Δp scarico	1 kPa
Generatore elettrico	
Rendimento:	vedi fig.2.15

l parametro SP usato nella valutazione di η_p è definito come $l^{0.5}/\Delta h_{is}^{0.25}$, dove V è la portata volumetrica all'uscita per gli stadi di urbina e la portata volumetrica media per il compressore.

Tab.3.1: Esempio di assunzioni necessarie per il calcolo di una moderna turbina a gas. Questi valori saranno utilizzati nello sviluppo degli esempi del presente testo, quando non specificato diversamente.

Ciclo reale

Fig.3.1: Bilancio termico completo di una turbina a gas in ciclo semplice con $\beta = 15$, TIT = 1280 °C, portata aria 600 kg/s. Assunzioni di calcolo da Tab.3.1.