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3.4 Microscopic derivation of the Born-Markov master equation

Here, we provide an heuristic derivation of the dynamics of an open quantum system in interaction with its
surrounding environment. The following scheme summarises the approach:
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In particular, we will derive the generator of the dynamics under the Born-Markov approximations. We assume
to have a system in interaction with its surrounding environment. The total Hamiltonian reads

Ĥ = Ĥ0 + Ĥint, (3.38)

where Ĥ0 = ĤS + ĤE contains the free Hamiltonian of the system ĤS and that of the environment ĤE, while
Ĥint describes the interaction among the two. The total state, in the interaction picture, evolves as

⇢̂(I)(t) = eiĤ0t/~⇢̂(t)e�iĤ0t/~, (3.39)

where ⇢̂(t) is the total state evolved with respect to Ĥ starting from the initial state ⇢̂(0), i.e.

⇢̂(t) = e�iĤt/~⇢̂(0)eiĤt/~. (3.40)

The evolution of ⇢̂(I)(t) is described by the following dynamical equation
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where Ĥ (I)

int(t) = eiĤ0t/~Ĥinte�iĤ0t/~. Now, by integrating Eq. (3.41) in time from 0 to t, one obtains the formal
solution
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By inserting the latter expression back in Eq. (3.41) and tracing over the degrees of freedom of the environment,
we find
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This is an integro-di↵erential equation, which is not time local since the last term contains the total state ⇢̂(I)(s)
evaluated at time s. This allows to have memory e↵ects in the dynamics: the evolution of the reduced state at
time t depends on the (total) state at all times s between 0 and t. Without loss of generality, we assume that

� i
~ Tr(E)

hh
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int(t), ⇢̂(0)
ii

= 0, and that the initial state is separable, i.e.

⇢̂(0) = ⇢̂S(0) ⌦ ⇢̂E(0). (3.44)

Since the initial state in the interaction and in the Schrödinger picture are the same, the same relation holds
also for ⇢̂(I)(0). In the following we apply two important approximations.
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3.4.1 Born approximation

The Born approximation assumes that the correlations between the system and the environment are negligible,
and that the environment is not influenced by the dynamics of the system. Thus, one can approximate the total
state as

⇢̂(I)(s) ' ⇢̂(I)
S (s) ⌦ ⇢̂E, (3.45)

for all times s � 0, where ⇢̂E is the initial state of the environment. Now, by assuming that the interaction
Hamiltonian has a bilinear form, i.e. Ĥint =

P
↵ Ŝ↵ ⌦ Ê↵, one has that its time evolved version reads
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evolve respectively with respect to ĤS and ĤE. By putting together Eq. (3.45) and Eq. (3.46), we have that the
trace of the double commutator in Eq. (3.43) reads
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By exploiting the linearity and the cyclicity of the trace, the latter expression becomes
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where we defined the two-time correlation functions for the environment
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Under the assumption that ⇢̂E is a stationary state with respect to the evolution due to ĤE, i.e.
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then C↵�(t, s) can be expressed as
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thus C↵�(t, s) = C↵�(t � s). Correspondingly, Eq. (3.43) becomes
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which is the result of the Born approximation.

3.4.2 Markov approximation

Typically, the two-time correlation function C↵�(t�s) is characterized by a correlation time ⌧corr, which describes
the timescale for which the state at time s influences that at the time t � s. The Markov approximation assumes
that such a correlation time ⌧corr is much smaller than the system’s dynamical timescale ⌧S characterising the
dynamics of the system, i.e. under such a scale the state of the system does not change noticeably. Thus,
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one assumes that i) for any time s such that t � s is smaller than ⌧S, one can approximate ⇢̂(I)
S (s) ' ⇢̂(I)

S (t),
and that ii) for any time s such that t � s � ⌧corr, the two-time correlation function is negligibly small, i.e.
C↵�(t � s) ' 0. The application of the approximation i) to Eq. (3.52) leads to the so-called Redfield equation,
which is a time-local equation for ⇢̂(I)

S (t) and it reads
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where we defined
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The application of ii) allows instead to extend the limits of the time integral:
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Now, we move back to the Schrödinger picture. By exploiting that
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we find that
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The last contribution contains terms as
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where we employed Eq. (3.47). Accordingly, one obtains
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where B̂↵ and Ĉ↵ can be obtained from Eq. (3.55) by setting t = 0.

Assuming that the time correlations are proportional to a Dirac delta, i.e. C↵�(t) = C↵��(t), one finds
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By inverting the indexes ↵ and � in the second term, one obtains
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which can be seen as the non-diagonal version of Eq. (3.22).
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