
1/467 – Data Model EngineeringADM

Lecture 7 – Data Model Engineering

Advanced Data Management
Data Science and Scientific Computing / UniTS – DMG
Scientific and Data-Intensive Computing / UniTS – DMG

2/467 – Data Model EngineeringADM

Metadata and provenance

Today data are being collected by a vast number of instruments in every
discipline of science

Datasets currently grow into the petascale range and are shared among
and across the scientific communities

Importance of recording the meaning of data and the way they were
produced increases dramatically

Metadata: data descriptions that assign meaning to the data

Data provenance: information about how data was derived

Both are important to interpret a particular data item

Metadata catalogs made use of a variety of underlying technologies:
relational databases, XML-based databases, grid database services, etc.

Modeling adds value to metadata management much the same way it
does for data itself

3/467 – Data Model EngineeringADM

Why data modeling

Quality: conceptual integrity is the most important consideration in
system design

Communication: models reduce misunderstandings and promote
consensus among developers, customers, and other stakeholders

Reliability: rigorous modeling improves the quality of the data. You
can weave constraints into the fabric of a model and the resulting
database

Performance: a sound model simplifies database tuning

4/467 – Data Model EngineeringADM

Data model (1)

A model is a representation of some aspect of a problem that lets you
thoroughly understand it

A data model is a model that describes how data is stored and accessed

It does not include many of the details of how the data is stored or how the
operations are implemented

It uses logical concepts, such as objects, their properties, and their
interrelationships

Categories of data model

Conceptual data model: focuses on major entity types and relationship types.
Provides a high-level overview. Has no attributes

Logical data model: fleshes out the conceptual model with attributes and
lesser entity types

Physical data model: converts the logical model into a database design. The
emphasis is on physical constructs such as tables, keys, indexes, and
constraints.

5/467 – Data Model EngineeringADM

Data model (2)

Entity-Relationship (ER) models

Entity: real-world object or concept

Attribute: property of interest that further describes the entity

Relationship: among two or more entities, it represents the associations
among the entities

Additional abstractions for advanced ER models:

Specialization: Specialization is the process of defining a set of subclasses
of an entity type; this entity type is called the superclass of the specialization

The set of subclasses that forms a specialization is defined on the basis of some
distinguishing characteristic of the entities in the superclass

Generalization: reverse process of abstraction in which we identify the
common features of several entities, and generalize them into a single
superclass of which the original entity types are special subclasses

Categories: to represent a collection of entities from different entity types

6/467 – Data Model EngineeringADM

Specialization, Generalization, Category

Account

Checking Savings Loan

Bank account

7/467 – Data Model EngineeringADM

Database systems

Several criteria can be used to classify Database Management Systems
(DMBS)

One of these criteria is the data model used:
Relational DBMSs: they use the relational model, which represents a database as a
collection of tables, where each table can be stored as a separate file. Most relational
databases use the high-level query language called SQL

Object databases: they use object data model, but has not had widespread use

NoSQL databases:
NoSQL key-value stores: simple data model based on fast access by the key to the value
associated with the key

Document based NoSQL sytems: data in form of documents using well-known formats,
such as JSON, accessed by ID or indexes

Column-based NoSQL systems: partition a table by column into column families, where
each column family is stored in its own files

Graph-based NoSQL systems: Data is represented as graphs, and related nodes can be
found by traversing the edges using path expressions

Hybrid systems: e.g. XML databases

8/467 – Data Model EngineeringADM

Relational database system

Relational model: represents the database as collection of relations
Each relation represents a table of values, i.e. a flat file of records

Each row in the table represents a collection of related data values

A row represents a fact that typically corresponds to a real-world entity or
relationship

Table name and column names are used to interpret the meaning of the values in
each row

A relation schema R, denoted by R(A1, A2, …, An) is made up of a relation
name R and a list of attributes A1, A2, …, An.

The attribute Ai is the name of a role played by some domain D in the relation
schema R

The degree of the relation R is the number of attributes n

D is called domain of Ai and denoted by dom(Ai)

A domain is given: name, data type and format

9/467 – Data Model EngineeringADM

Relation (instance)

A relation (or relation state) r of a relation schema is a set of n-tuples
r = {t1, t2, …, tm} and is denoted as r(R)

Each n-tuple t is an ordered list of n values t = <v1, v2, …, vn>, where
each value vi is an element of dom(Ai) or a special NULL value

Each value in a tuple is an atomic value (not divisible into components)

We can have several meanings for NULL values: value unknown, value
exists but not available, attribute does not apply (i.e. value undefined)

A relation r(R) is a mathematical relation of degree n on the domains
dom(A1), dom(A2), …, dom(An), which is a subset of the Cartesian
product of the domains that define R:

Some relations may represent facts about entities, other relations may
represent facts about relationships

r (R)⊆(dom (A1)×dom (A2)×⋯×dom(An))

10/467 – Data Model EngineeringADM

Relational model constraints

Inherent model-based constraints (or implicit constraints)

E.g.: a relation cannot have duplicate tuples

Schema-based constraints (or explicit constraints)
Typically directly expressed in the schema of the data model, using a Data
Definition Language (DDL)

E.g.: domain constraints, key constraints (see next slides)

For each attribute, a constraint can specify whether NULL values are or
are not permitted

Application-based or semantic constraints
Constraints that cannot be directly expressed in the schema of the data
model

They must be enforced by application programs

11/467 – Data Model EngineeringADM

Domain and key constraints

Domain constraints specify that each value of each attribute A must be an atomic
value from the domain dom(A)

Data types associated with domains typically include standard numeric types for integers, real
numbers, characters, booleans, fixed-length and variable length strings, date, time, etc.

A subset of attributes of the relation schema R is called superkey (SK) of R if for any
two distinct tuples t1 and t2 of a relation state r of R, t1[SK] ≠ t2[SK]

Every relation has at least one default SK, the set of all its attributes

A candidate key (CK) of a relation schema R is a SK of R with the additional property
that removing any attribute from CK leaves a set of attributes that is not a superkey of R

A relation schema may have more than one CK

A primary key (PK) is a CK whose values are used to identify tuples in the relation

It is usually better to choose a PK with a single attribute or a small number of attributes

A PK composed of one column is called single primary key, a combination of column is called
composite primary key

The other candidate keys are designated as unique keys (or alternate keys)

12/467 – Data Model EngineeringADM

Relational database

A relational database usually contains many relations

A relational database schema S is a set of relation schemas S = {R1,
R2, …, Rm} and a set of integrity constraints (IC)

A relational database state DB of S is a set of relation states DB = {r1,
r2, …, rm} such that ri is a state of Ri and such that the ri relation states
satisfy the integrity constraints specified in IC

A database state that does not obey all the integrity constraints is
called an invalid state, and a state that satisfy all the constraints in
the defined set of integrity constraints IC is called a valid state

Each relational DBMS must have a data definition language (DDL)
for defining a relational database schema

Current relational DBMS-s are mostly using the SQL language for this
purpose

13/467 – Data Model EngineeringADM

The entity integrity constraint states that no primary key value can be
NULL

The primary key is used to identify individual tuples in the relation

A referential integrity constraint is specified between two relations and
is used to maintain the consistency among tuples of the two relations

A set of attributes FK in relation schema R1 is a foreign key of R1 that
references relation R2 if it satisfies the following rules:

1. The attributes in FK have the same domain(s) as the primary key attributes PK of
R2.

2. A value of FK in a tuple t1 in the current state r1(R1) either occurs as a value of PK
for some tuple t2 in the current state r2(R2) or is NULL. In the former case, we have
t1[FK] = t2[PK], and we say that the tuple t1 references the tuple t2

If the two conditions above hold between R1 and R2, a referential integrity
constraint from R1 to R2 is said to hold

Entity and referential integrity constraints

14/467 – Data Model EngineeringADM

Relational model example

15/467 – Data Model EngineeringADM

Relational model operations

The operations of the relational model can be categorized into retrievals
and updates

There are three basic operations that can change the states of relations in
the database: Insert, Delete, and Update (or Modify)

Whenever these operations are applied, the integrity constraints specified on the
relational database schema should not be violated

The Insert operation provides a list of attribute values for a new tuple t that is to
be inserted into a relation R. It can violate any of the four type of constraints
(domain constraint, key constraint, entity integrity and referential integrity)

The Delete operation can violate only the referential integrity

The Update (or Modify) operation is used to change the values of one or more
attributes in a tuple (or tuples) of some relation R

It is necessary to specify a condition on the attributes of the relation to select the
tuple (or tuples) to be modified

Updating an attribute that is neither part of a primary key nor part of a foreign key
usually causes no problems

16/467 – Data Model EngineeringADM

The Transaction concept

A database application program running against a relational database
typically executes one or more transactions

A transaction is an executing program that includes some database
operations, such as reading from the database, or applying insertions,
deletions, or updates to the database

At the end of the transaction, it must leave the database in a valid or
consistent state that satisfies all the constraints specified on the
database schema

A single transaction may involve any number of retrieval operations
and any number of update operations

A large number of commercial applications running against relational
databases in online transaction processing (OLTP) systems are
executing transactions at rates that reach several hundred per second

17/467 – Data Model EngineeringADM

Entity-relationship diagram’s

Many different Entity-Relationship Diagrams (ERD) notations available

Chen notation, Information Engineering (IE) or Crows’s foot notation,
IDEF1X, Unified Modeling Language (UML), etc.

The Information Engineering is a modeling notation that has been in use
for many years

IE focuses on details such as tables, keys, and indexes (it is closer to the
Physical data model). IE’s attention to database detail is helpful for
explaining nuances of the UML

The IE lacks a standard notation and there are several variants

The UML class model specifies classes (entity types) and their
relationship types. It is closer to the Conceptual data model:

More concise than traditional database notations (usually no keys, foreign
keys, indexes and referential integrity)

It provides an higher level of abstraction

18/467 – Data Model EngineeringADM

Data model design: UML approach

Any database with a schema that includes more than 20 entity types
and a similar number of relationship types requires a careful design
methodology

Covering requirements analysis, modeling, design, implementation and
deployment of databases

One approach is a standard proposed by the Object Management
Group (OMG): the Unified Modeling Language (UML)

A diagrammatic notation and associated language syntax to cover the
entire software life cycle

Can be used by software developers, data modelers, database designers

Language-independent and platform-independent

It specifies many types of diagrams for various software design purposes

19/467 – Data Model EngineeringADM

UML class diagram

The UML class diagram specifies classes (entity types) and their
relationship types

An object is a concept, abstraction, or thing that has identity and
meaning for an application

Application needs also determine the level of abstraction for representing
an object

E.g.: an airplane flight can be represented by departure/arrival time or as a
sequence of phases (at gate, boarding, taking off, en route, landing, at
gate, disembarking) depending on the applications

A class describes a group of objects with similar properties
(attributes), behavior (operations), relationships to other objects, and
semantic intent

20/467 – Data Model EngineeringADM

Classes and attributes

An attribute is a named property of a class that describes a value held by each object
of the class

The second portion of the UML class box shows attribute names

The IE notation lists attributes in both portions of the entity type box.
The top portion has primary key attributes, the lower portion has the remaining data attributes

The attribute authorlD above is a surrogate key (a generated number that uniquely identifies
an author)

In UML, each attribute can have an attribute multiplicity that specifies the number of
possible values for each record. If not specified, it defaults to [1].

Normally, a relational database attribute cannot store a collection of values

For IE, we had to convert the “many” multiplicity to a relationship type

21/467 – Data Model EngineeringADM

Data types

Most UML tools assign each attribute a data type

The UML notation lists the attribute name, a colon, the data type, and
attribute multiplicity

The IE notation lists the attribute name, a colon, the domain (optional),
the data type (optional, can appear with or without the domain), and
nullability

It is good database practice for developers to assign each attribute a
domain (IE) and then separately resolve the domain to a data type

Flexibility: there are fewer domains than attributes

A domain can define both a data type and additional constraints

22/467 – Data Model EngineeringADM

Class operations

An operation is a function or
procedure that can be applied to
or by objects in a class.
IE models lack operations.

The third portion of the UML class box
displays operation names

A UML operation summarizes business
logic. It is helpful to see a summary
of functionality placed in context with
the model of data structure

It helps designing the data model itself

Database stored procedures can implement operations

23/467 – Data Model EngineeringADM

Notation summary (1)

24/467 – Data Model EngineeringADM

Associations

Associations provide the means for relating classes

The UML notation for an association is a line

A UML association corresponds to an IE identifying relationship
type (solid line) and non-identifying relationship type (dashed line)

25/467 – Data Model EngineeringADM

Independent and dependent entity types

IE distinguishes between identifying relationship type (solid line) and non-
identifying relationship type (dashed line)

An identifying relationship type propagates primary key attributes of the source entity
type to the primary key of the referent entity type. A solid line connects the entity types.
The referent entity type is necessarily dependent (rounded box).

A non-identifying relationship type propagates primary key attributes of the source entity
type to data attributes of the referent entity type. A dashed line connects the entity
types. The referent entity type may be independent (square box) or dependent
(rounded box) depending on its other relationship types and generalizations (next
slides).

IE distinguishes between independent entity types (square box) and
dependent entity types (rounded box)

An independent entity type (also called strong entity type) does not include any
foreign keys in its primary key. The IE symbol is a square-corner box

A dependent entity type (also called weak entity type) includes one or more foreign
keys in its primary key (via one or more identifying relationship types or via
generalization, see the next slides). It can exist only if one ore more other entity types
also exist. The IE symbol is a rounded-corner box

26/467 – Data Model EngineeringADM

Multiplicity

Multiplicity specifies the number of occurrences of one class that may
relate to a single occurrence of an associated class

Thus multiplicity pertains to an association end

UML multiplicity

IE relationship symbols

27/467 – Data Model EngineeringADM

Multiplicity: UML vs IE

28/467 – Data Model EngineeringADM

Many-to-many relationships

This example shows a many to many relationship between Customer and
Review, i.e. a customer can rate 0 or more reviews and a review can be rated by
0 or more customers

The physical data model of the IE notation shows that this type of relation is
realized with a dependent entity type (Review_Rating) and two or more
identifying relationship types

Review_Rating is called an associative entity type, i.e. it obtains its primary
key from two or more entity types.

Review_Rating.raterID refers to Customer.customerID

29/467 – Data Model EngineeringADM

Association names (UML)

The UML only requires association names when there are multiple
associations between the same classes

An association name often reads in a particular direction. Nevertheless,
associations can be traversed either way

The UML also has a navigation icon to show the direction for reading the name

This association traversal is analogous to combining relational database
tables via foreign-key-to-primary-key joins

An association end name is an alias for a class in an association. The
UML notation is a legend next to the class-association intersection

Association end names are optional if a model is unambiguous

Ambiguity occurs when there are multiple associations for the same classes or
an association for objects of the same class

When constructing models, you should properly use association ends and
not introduce a separate class for each reference

30/467 – Data Model EngineeringADM

Association names example

31/467 – Data Model EngineeringADM

Benefits of association names

Benefits of association names:

Improves model readability

Provides a table name for an associative entity type

Disambiguates multiple associations for the same classes

Benefits of association end names:

Improves model readability

Provides a foreign key name

Disambiguates multiple associations for the same classes

Disambiguates an association for objects of the same class

Provides clarity for model traversal and SQL queries

32/467 – Data Model EngineeringADM

Relationship names (IE)

It is a common IE practice to include relationship type names. Each
relationship type can have either a single name or a pair of directed
names. Directed names add bulk but make a model more readable.

A single name can be useful for development (it provides a table
name)

33/467 – Data Model EngineeringADM

Notation summary (2)

34/467 – Data Model EngineeringADM

Generalization

Generalization is a defining characteristic of object-oriented software
approaches and organizes classes by their similarities and differences

It leads to smaller models with deeper insight

Generalization couples a class (the superclass) to one or more
variations of the class (the subclasses)

The superclass holds common information (attributes, operations, and
associations)

Each subclass adds specific information

Generalization organizes classes by their similarities and differences,
structuring the description of objects. Generalization can arise from
requirements that list structural alternatives

The UML notation for generalization is a large hollow arrowhead that
points to the superclass.

35/467 – Data Model EngineeringADM

Example of inheritance in UML

The generalization set name (productDiscriminator) is an enumerated
attribute that can be placed next to the generalization symbol

Generalization has two purposes

Reuse. Subclasses can share information that superclasses provide

Form a taxonomy and declare what is similar and what is different about
classes. This is much more profound than modeling each class individually
and in isolation

36/467 – Data Model EngineeringADM

Abstract class

An abstract class is a class that has no direct occurrences. The UML
indicates an abstract class by italicizing the class name or placing the
legend {abstract} before or after the class name

A superclass can be abstract or concrete, depending on how the
generalization is stated

As a matter of style, it is a good idea to avoid concrete superclasses.
Then, abstract and concrete classes are readily apparent at a glance;
all superclasses are abstract and all leaf subclasses are concrete.

Deeply nested generalizations, try to avoid generalizations with more
than five levels

37/467 – Data Model EngineeringADM

Nested generalization

38/467 – Data Model EngineeringADM

IE notation for generalization

IE subtypes are dependent entity types because each subtype primary
key refers to the supertype primary key

The supertype may be independent or dependent (but is usually
independent) based on whether its primary key incorporates a foreign
key from another entity type.

39/467 – Data Model EngineeringADM

Notation summary (3)

40/467 – Data Model EngineeringADM

Alternate keys

An alternate key is a candidate key that is not chosen as a primary
key. Therefore each candidate key is either a primary key or an
alternate key

The UML has no specified notation for unique keys (i.e. alternate keys)

It is possible to use the same notation used by IE, the AKn.m notation
(see figure above)

AKn.m = column mth of the nth Alternate Key

41/467 – Data Model EngineeringADM

Surrogate key vs Natural key (1)

With existence-based identity each class has a generated identifier (also
called a surrogate key) as its primary key. Each association has a primary key
composed of identifiers from the related classes

The advantage of this approach is that each class’s primary key is a single attribute
(often defined as a number)

Furthermore, since the primary key is synthetic, it is immutable

Another approach is value-based identity — a unique combination of real-
world attributes (also called a natural key) identifies each class occurrence.
“Real-world attributes” are those that come from the business problem
description

A downside is that the value of real-world attributes can change — such changes
must propagate to foreign keys

Some models have a series of dependent entity types that lead to unwieldy multi-
attribute primary keys

Unless there are unusual circumstances, it is recommend the use of surrogate
keys (existence-based identity).

42/467 – Data Model EngineeringADM

Surrogate key vs Natural key (2)

Surrogate Key Example

Natural Key Example

43/467 – Data Model EngineeringADM

Association, Aggregation, Composition

Association is a structural relationship that represents objects can be
connected or associated with another object inside the system

Aggregation and Composition are subsets of Association. In both
object of one class "owns" object of another class:

Aggregation implies a relationship where the child can exist independently
of the parent. Example: Course (parent) and Student (child). Delete the
Course and the Students still exist.

Composition implies a relationship where the child cannot exist
independent of the parent. Example: Hospital (parent) and Department
(child). Departments don't exist separate to a Hospital.

44/467 – Data Model EngineeringADM

Association class

An association class is an association that is also a class. Like the links of
an association, the occurrences of an association class derive identity from
the related objects

Like a class, an association class can have attributes, operations, and
associations

The UML notation for an association class is a box that connects to the
corresponding association with a dotted line

45/467 – Data Model EngineeringADM

Ternary associations

A ternary association is an association involving three classes

The UML notation is a diamond with lines connecting the related
classes

Many supposed “ternary” associations are not fundamental and can be
decomposed into binary associations, with possible qualifiers and
attributes

46/467 – Data Model EngineeringADM

References

Blaha, Michael. (2013). UML Database Modeling Workbook

https://www.yworks.com/products/yed

https://www.lucidchart.com

https://www.youtube.com/watch?v=UI6lqHOVHic

https://www.uml-diagrams.org

https://www.guru99.com/uml-diagrams.html

https://www.yworks.com/products/yed
https://www.lucidchart.com/
https://www.youtube.com/watch?v=UI6lqHOVHic
https://www.uml-diagrams.org/
https://www.guru99.com/uml-diagrams.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

