
Data management

Importing Data

Matilde Trevisani

Entering and cleaning data

There are four basic steps as you prepare to analyze data in R:

1. Identify where the data is (If it is on your computer, which directory? If it is online, what is
the url?)

2. Read data into R (read.table, read.csv, or readr package) using the file path you
figured out in step 1

3. Check to make sure the data came in correctly (dim, head, tail, str)
4. Clean the data up

Directories and pathnames

Working directory
You can figure out which directory R is working in by running the command getwd().

getwd()

[1] "C:/Users/39349/Documents/teaching_2023/ADPI/slides/datamanaging"

You can set a new working directory using the setwd() function and a pathname. For
example,

setwd("~")
getwd()

[1] "C:/Users/39349/Documents"

Finally, you can use R Projects from within RStudio. The working directory is the project
directory (the directory in which the .Rproj file is stored).

File and directory pathnames
Pathnames are the directions for getting to a directory or file stored on your computer.

You can use one of two types of pathnames:

Relative pathname: How to get to the file or directory from your current working directory
Absolute pathname: How to get to the file or directory from anywhere on the computer

Forward slashes and backslashes

Remember to use forward slashes / to separate directories in the path. If you use back slashes \, you will get an error as these are
used to escape the following character (e.g., \t is a tab). If you really want back slashes, use two of them \ as the first will escape
the second. If you let autocomplete fill in your path, it will do it correctly

Absolute pathnames give the full directions starting all the way at the root directory. For
example, the daily_show_guests.csv file in the data directory has the absolute
pathname:

"C:\Users\39349\Documents\teaching_2023\ADPI\slides\datamanaging\data"

You can use this absolute pathname to read this file in using read.csv.

file_path <- "C:\\Users\\39349\Documents\\teaching_2023\\ADPI\\slides\datamanaging\\data"
daily_show <- read.csv(file_path, ...)

The relative pathname depends on your current working directory.

As an example of a relative pathname, say you're working in the directory datamanaging
and you want to read in the daily_show_guests.csv file in the data subdirectory.
Therefore, the relative pathname would be:

"data/daily_show_guests.csv"

You can use this relative pathname to tell R where to find and read in the file:

daily_show <- read.csv("data/daily_show_guests.csv", ...)

There are some abbreviations for pathnames:

Shorthand Meaning

~ Home directory

. Current working directory

.. One directory up from current working directory

../.. Two directories up from current working directory

If you are getting errors reading in files, it is often helpful to use list.files() to make sure
the file in question is in the directory that the relative pathname you are using is directing R
to.

list.files()

Diversion: paste
The paste() function takes, as inputs, a series of different character strings and pastes them
together in a single character string. For example:

paste("Sunday", "Monday", "Tuesday")

[1] "Sunday Monday Tuesday"

The paste() function has an option called sep = that indicates what is the separator. The
default is a space. E.g., if you wanted to paste without spaces, you could use sep = "":

paste("Sunday", "Monday", "Tuesday", sep = "")

[1] "SundayMondayTuesday"

As a shortcut, you could achieve the same thing using the paste0 function.

paste0("Sunday", "Monday", "Tuesday")

Reading data into R
Some of the types of data files that R can read in:

Flat (or plain text) files (files that you can open using a text editor)
Files from other statistical packages (SAS, Excel, Stata, SPSS)
Tables on webpages (e.g., the table on ebola outbreaks near the end of this Wikipedia
page)
Data in a database (e.g., MySQL, Oracle)
Data in JSON and XML formats
Geographic shapefiles
Data through APIs [Application Programming Interfaces] (e.g., GoogleMaps, Twitter, many
government agencies)

http://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Africa
http://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Africa

Reading tabular (rectangular) data into R

Tabular data and file format
Tabular data are data that is organized in the form of a table with rows and columns. A table
often has a header, i.e. an additional row that displays variable names.

Tabular data may be stored in files using various formats, spreadsheets, etc.

The most common spreadsheets store data in their own, proprietary file format, e.g. MS
Excel which produces .xls and .xlsx files. Such formats may be a limitation to data
management in R.

Simpler formats such as plain text files with .txt or .csv should always be preferred when
saving or exporting data from spreadsheets.

Reading local flat files
Flat files basically are files that you can open using a text editor. Most flat files come in two
general categories:

1. Fixed width files (fwf)
2. Delimited files

Comma-separated values: ".csv"
Tab-separated values: ".tab", ".tsv"
Other possible delimiters: space, colon, semicolon, pipe ("|")

For example,

Course Number Day Time
Intro to Epi 501 M/W/F 9:00-9:50
Advanced Epi 521 T/Th 1:00-2:15

Course, Number, Day, Time
"Intro to Epi", 501, "M/W/F", "9:00-9:50"
"Advanced Epi", 521, "T/Th", "1:00-2:15"

The read.table family of functions are part of base R.
If the file is delimited, you can use the read.table family of functions. This family of
functions includes several specialized functions.

Function Separator Decimal point

read.table white space period

read.csv comma period

read.csv2 semi-colon comma

read.delim tab period

read.delim2 tab comma

Some of the interesting parameters with the read.table family of functions are:

Option Description

sep What is the delimiter in the data?

skip How many lines of the start of the file should you skip?

header Does the first line you read give column names?

as.is Should you bring in strings as characters, not factors?

nrows How many rows do you want to read in?

na.strings How are missing values coded?

But, we will use equivalent functions from packages that belong to the tidyverse collection
--->

Most were developed in
part or full by Hadley
Wickham and others at
RStudio.

You can use the
tidyverse package to
download all tidyverse
packages at one.

The "tidyverse"
The readr package is a member of the tidyverse (https://www.tidyverse.org/) of packages.

The read_* functions
The read.table family of functions are part of base R. There is a newer package called
readr that has a family of read_* functions. These functions are very similar, but have some
more sensible defaults.

Work better with large datasets: faster, includes progress bar
Have more sensible defaults (e.g., characters default to characters, not factors)

Functions in the read_* family include:

read_csv, read_tsv (specific delimiters)
read_delim, read_table (generic)
read_fwf
read_log
read_lines

readr
Read a flat file into a tibble by readr 2.1.5

read_table() - whitespace delimited
files
read_csv() - comma delimited files
read_csv2() - semicolon separated
files (common in countries where "," is
used as the decimal place)
read_tsv() - tab delimited files
read_delim() - reads in files with any
delimiter
read_fwf() - fixed width files
read_lines - read some lines

readxl
Read an excel file into a tibble

read_excel() - read xls or xlsx files
...

Some tips
It is recommended to systematically inspect data file before importing in R. One way to do it
is to open the text file in a text editor (for example RStudio), or to read some of the file into R
with read_lines('file.txt') (the n_max argument is useful if there is lots of data) and
determine:

1. which symbol is used as delimiter ("," or ";")
2. which symbol is used as decimal separator ("." , the default, or ",")
3. any extra lines of data that need removing

in order to specify the above inputs, if needed,

1. delim=
2. locale = locale(decimal_mark = ",")
3. skip= (number of lines to skip before reading data.) or n_max= (Maximum number of

lines to read)

Use spec() and problems() to verify column specifications and any reading problem.

Reading data
nobel <- read_csv(file = "data/nobel.csv")
nobel

A tibble: 935 × 26
id firstname surname year category affiliation city
<dbl> <chr> <chr> <dbl> <chr> <chr> <chr>
1 1 Wilhelm Conrad Röntgen 1901 Physics Munich Uni… Muni…
2 2 Hendrik A. Lorentz 1902 Physics Leiden Uni… Leid…
3 3 Pieter Zeeman 1902 Physics Amsterdam … Amst…
4 4 Henri Becquerel 1903 Physics École Poly… Paris
5 5 Pierre Curie 1903 Physics École muni… Paris
6 6 Marie Curie 1903 Physics <NA> <NA>
ℹ 929 more rows
ℹ 19 more variables: country <chr>, born_date <date>,
died_date <date>, gender <chr>, born_city <chr>,
born_country <chr>, born_country_code <chr>,
died_city <chr>, died_country <chr>,
died_country_code <chr>, overall_motivation <chr>,
share <dbl>, motivation <chr>, …

Write a file

df <- data.frame(
 x = 1:3,
 y = letters[1:3]
)

write_csv(df, file = "data/df.csv")

or

df <- tribble(
 ~x, ~y,
 1, "a",
 2, "b",
 3, "c"
)

write_csv(df, file = "data/df_2.csv")

Read it back in to inspect

read_csv("data/df.csv")

A tibble: 3 × 2
x y
<dbl> <chr>
1 1 a
2 2 b
3 3 c

read_csv("data/df_2.csv")

A tibble: 3 × 2
x y
<dbl> <chr>
1 1 a
2 2 b
3 3 c

Writing data

Variable names

Data with bad names
edibnb_badnames <- read_csv("data/edibnb-badnames.csv")
names(edibnb_badnames)

[1] "ID" "Price"
[3] "neighbourhood" "accommodates"
[5] "Number of bathrooms" "Number of Bedrooms"
[7] "n beds" "Review Scores Rating"
[9] "Number of reviews" "listing_url"

... but R doesn't allow spaces in variable names

E.g.,

ggplot(edibnb_badnames, aes(x = Number of bathrooms, y = Price)) +
 geom_point()

R prints error!

Option 1 - Define column names
edibnb_col_names <- read_csv("data/edibnb-badnames.csv",
 col_names = c("id", "price",
 "neighbourhood", "accommodates",
 "bathroom", "bedroom",
 "bed", "review_scores_rating",
 "n_reviews", "url"))

names(edibnb_col_names)

[1] "id" "price"
[3] "neighbourhood" "accommodates"
[5] "bathroom" "bedroom"
[7] "bed" "review_scores_rating"
[9] "n_reviews" "url"

Option 2 - Format text to snake_case
edibnb_clean_names <- read_csv("data/edibnb-badnames.csv") %>%
 janitor::clean_names()

names(edibnb_clean_names)

[1] "id" "price"
[3] "neighbourhood" "accommodates"
[5] "number_of_bathrooms" "number_of_bedrooms"
[7] "n_beds" "review_scores_rating"
[9] "number_of_reviews" "listing_url"

Snake case is a naming convention that all the words are in lowercase and split by an underscore _ with no spaces in between.

Variable types

read_csv("data/df-na.csv")

A tibble: 9 × 3
x y z
<chr> <chr> <chr>
1 1 a hi
2 <NA> b hello
3 3 Not applicable 9999
4 4 d ola
5 5 e hola
6 . f whatup
7 7 g wassup
8 8 h sup
9 9 i <NA>

Which type is x? Why?

A tibble: 9 × 3
x y z
<dbl> <chr> <chr>
1 1 a hi
2 NA b hello
3 3 <NA> <NA>
4 4 d ola
5 5 e hola
6 NA f whatup
7 7 g wassup
8 8 h sup
9 9 i <NA>

Option 1. Explicit NAs
read_csv("data/df-na.csv",
 na = c("", "NA", ".", "9999", "Not applicable"))

Option 2. Specify column types
read_csv("data/df-na.csv", col_types = list(col_double(),
 col_character(),
 col_character()))

Warning: One or more parsing issues, call `problems()` on your data frame
for details, e.g.:
dat <- vroom(...)
problems(dat)

A tibble: 9 × 3
x y z
<dbl> <chr> <chr>
1 1 a hi
2 NA b hello
3 3 Not applicable 9999
4 4 d ola
5 5 e hola
6 NA f whatup
7 7 g wassup
8 8 h sup
9 9 i <NA>

Use problems() for investigation
dat <- read_csv("data/df-na.csv", col_types = list(col_double(), col_character(), col_character())

A tibble: 9 × 3
x y z
<dbl> <chr> <chr>
1 1 a hi
2 NA b hello
3 3 Not applicable 9999
4 4 d ola
5 5 e hola
6 NA f whatup
7 7 g wassup
8 8 h sup
9 9 i <NA>

problems(dat)

A tibble: 1 × 5
row col expected actual file
<int> <int> <chr> <chr> <chr>
1 7 1 a double . ""

Column types
type function data type

col_character() character

col_date() date

col_datetime() POSIXct (date-time)

col_double() double (numeric)

col_factor() factor

col_guess() let readr guess (default)

col_integer() integer

col_logical() logical

col_number() numbers mixed with non-number characters

col_numeric() double or integer

col_skip() do not read

col_time() time

Maybe col_number() ?
dat <- read_csv("data/df-na.csv", col_types =
 list(col_number(), col_character(), col_character())) %>% print(n = 10)

Warning: One or more parsing issues, call `problems()` on your data frame
for details, e.g.:
dat <- vroom(...)
problems(dat)

A tibble: 9 × 3
x y z
<dbl> <chr> <chr>
1 1 a hi
2 NA b hello
3 3 Not applicable 9999
4 4 d ola
5 5 e hola
6 NA f whatup
7 7 g wassup
8 8 h sup
9 9 i <NA>

No difference wrt col_double.

Turn off some printed output
read_csv("data/df-na.csv")

Rows: 9 Columns: 3
── Column specification ───
Delimiter: ","
chr (3): x, y, z

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

A tibble: 9 × 3
x y z
<chr> <chr> <chr>
1 1 a hi
2 <NA> b hello
3 3 Not applicable 9999
4 4 d ola
...

read_csv("data/df-na.csv", show_col_types = F)

Case study: Favourite foods

Favourite foods

fav_food <- read_excel("data/favourite-food.xlsx")

fav_food

A tibble: 5 × 6
`Student ID` `Full Name` favourite.food mealPlan AGE SES
<dbl> <chr> <chr> <chr> <chr> <chr>
1 1 Sunil Huffmann Strawberry yo… Lunch o… 4 High
2 2 Barclay Lynn French fries Lunch o… 5 Midd…
3 3 Jayendra Lyne N/A Breakfa… 7 Low
4 4 Leon Rossini Anchovies Lunch o… 99999 Midd…
5 5 Chidiegwu Dun… Pizza Breakfa… five High

Variable names

fav_food <- read_excel("data/favourite-food.xlsx") %>%
 janitor::clean_names()

fav_food

A tibble: 5 × 6
student_id full_name favourite_food meal_plan age ses
<dbl> <chr> <chr> <chr> <chr> <chr>
1 1 Sunil Huffmann Strawberry yo… Lunch on… 4 High
2 2 Barclay Lynn French fries Lunch on… 5 Midd…
3 3 Jayendra Lyne N/A Breakfas… 7 Low
4 4 Leon Rossini Anchovies Lunch on… 99999 Midd…
5 5 Chidiegwu Dunk… Pizza Breakfas… five High

Handling NAs

fav_food <- read_excel("data/favourite-food.xlsx",
 na = c("N/A", "99999")) %>%
 janitor::clean_names()

fav_food

A tibble: 5 × 6
student_id full_name favourite_food meal_plan age ses
<dbl> <chr> <chr> <chr> <chr> <chr>
1 1 Sunil Huffmann Strawberry yo… Lunch on… 4 High
2 2 Barclay Lynn French fries Lunch on… 5 Midd…
3 3 Jayendra Lyne <NA> Breakfas… 7 Low
4 4 Leon Rossini Anchovies Lunch on… <NA> Midd…
5 5 Chidiegwu Dunk… Pizza Breakfas… five High

fav_food <- fav_food %>%
 mutate(
 age = if_else(age == "five", "5", age),
 age = as.numeric(age)
)

glimpse(fav_food)

Rows: 5
Columns: 6
$ student_id <dbl> 1, 2, 3, 4, 5
$ full_name <chr> "Sunil Huffmann", "Barclay Lynn", "Jayen…
$ favourite_food <chr> "Strawberry yoghurt", "French fries", NA…
$ meal_plan <chr> "Lunch only", "Lunch only", "Breakfast a…
$ age <dbl> 4, 5, 7, NA, 5
$ ses <chr> "High", "Middle", "Low", "Middle", "High"

Make age numeric

fav_food %>%
 count(ses)

A tibble: 3 × 2
ses n
<chr> <int>
1 High 2
2 Low 1
3 Middle 2

Socio-economic status
What order are the levels of ses listed in?

If we use fct_relevel, a function (of
forcats) that makes the old relevel
more flexible,

fav_food <- fav_food %>%
 mutate(ses = fct_relevel(ses, "Low", "Middle

fav_food %>%
 count(ses)

A tibble: 3 × 2
ses n
<fct> <int>
1 Low 1
2 Middle 2
3 High 2

We can also use a basic code invoking
factor,

fav_food <- fav_food %>%
 mutate(ses = factor(ses, c("Low", "Middle",

fav_food %>%
 count(ses)

A tibble: 3 × 2
ses n
<fct> <int>
1 Low 1
2 Middle 2
3 High 2

Make ses factor

Putting it altogether
fav_food <- read_excel("data/favourite-food.xlsx", na = c("N/A", "99999")) %>%
 janitor::clean_names() %>%
 mutate(
 age = if_else(age == "five", "5", age),
 age = as.numeric(age),
 ses = fct_relevel(ses, "Low", "Middle", "High")
)

fav_food

A tibble: 5 × 6
student_id full_name favourite_food meal_plan age ses
<dbl> <chr> <chr> <chr> <dbl> <fct>
1 1 Sunil Huffmann Strawberry yo… Lunch on… 4 High
2 2 Barclay Lynn French fries Lunch on… 5 Midd…
3 3 Jayendra Lyne <NA> Breakfas… 7 Low
4 4 Leon Rossini Anchovies Lunch on… NA Midd…
5 5 Chidiegwu Dunk… Pizza Breakfas… 5 High

Out and back in
write_csv(fav_food, file = "data/fav-food-clean.csv")

fav_food_clean <- read_csv("data/fav-food-clean.csv")

What happened to ses again?

fav_food_clean %>%
 count(ses)

A tibble: 3 × 2
ses n
<chr> <int>
1 High 2
2 Low 1
3 Middle 2

read_rds() and write_rds()
CSVs can be unreliable for saving interim results if there is specific variable type
information you want to hold on to.
An alternative is RDS files, you can read and write them with read_rds() and
write_rds(), respectively.

read_rds(path)
write_rds(x, path)

Out and back in, take 2
write_rds(fav_food, file = "data/fav-food-clean.rds")

fav_food_clean <- read_rds("data/fav-food-clean.rds")

fav_food_clean %>%
 count(ses)

A tibble: 3 × 2
ses n
<fct> <int>
1 Low 1
2 Middle 2
3 High 2

Other types of data

Other types of data
googlesheets4: Google Sheets
haven: SPSS, Stata, and SAS files
DBI, along with a database specific backend (e.g. RMySQL, RSQLite, RPostgreSQL etc):
allows you to run SQL queries against a database and return a data frame
jsonline: JSON
xml2: xml
rvest: web scraping
httr: web APIs
sparklyr: data loaded into spark

