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BFS(G,s) - G is represented by the adjacency lists Adj[ ] of its vertices

for each u  V {s} 

u.color white;  
u.distance ; 

s.color gray;  
s.distance 0; 
Q ; 
enqueue(Q,s); 
while Q  

u dequeue(Q); 

for each v  Adj[u]

if v.color = white 

v.color gray;  
v.distance u.distance + 1; 
enqueue(Q,v); 

u.color black; 

⋅
∈ ∖
←

←∞
←

←
←∅

≠ ∅
←

∈

←
←

←

Does BFS work for weighted graphs too?

BFS assigns to each v  
value v.distance, the least 

possible number of edges

on any source-to-v path.




BFS(G,s) - G is represented by the adjacency lists Adj[ ] of its vertices

for each u  V {s} 

u.color white;  
u.distance ; 

s.color gray;  
s.distance 0; 
Q ; 
enqueue(Q,s); 
while Q  

u dequeue(Q); 

for each v  Adj[u]

if v.color = white 

v.color gray;  
v.distance u.distance + 1; 
enqueue(Q,v); 

u.color black; 

⋅
∈ ∖
←

←∞
←

←
←∅

≠ ∅
←

∈

←
←

←

Does BFS work for weighted graphs too?

BFS assigns to each v  
value v.distance, the least 

possible number of edges

on any source-to-v path.


Can’t we just modify this 

instruction to make it work

for weighted graphs?

w(u,v)



The shortest weighted path between two vertices may not be the 
one with the least number of edges!

Why does BFS not work for weighted graphs?
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The shortest weighted path between two vertices may not be the 
one with the least number of edges!

The shortest path from S to vertex number 3 would be through 
vertex 2: the length of 1 2 3 is 2+1=3<12, even if this path has two 
edges in place of one.

Why does BFS not work for weighted graphs?
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Shortest paths on DAGs
1. Topological sort of the DAG

2. One pass over the vertices in the order given by the topological 

sort, starting from the source. Every node to the left of the 
source has infinite weight. The rest will get the weight of the 
shortest path.


Time complexity:  Θ( |V | + |E | )



Dĳkstra’s algorithm
If all the weights are nonnegative, we can 

use Dijkstra’s (pronounced “Deikstra”) algorithm.


Recall:

RELAX(u,v,w)

if v.d > u.d + w(u,v) 

v.d = u.d + w(u,v); 
v.p u; ←
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At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={}

Q={0, , , , , }∞ ∞ ∞ ∞ ∞

1    2     3      4      5     6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q  

u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.
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DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q  

u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈
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At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.
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2   3    4     5     6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q  

u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
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←
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At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.
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2   3    4     5     6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q  

u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
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At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.
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3    4      5     6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q  

u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←
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←
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INITIALISE(G,s);

S ;

Q  V;

while Q  

u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
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At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.
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Q={5, , ,16}∞ ∞



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.
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 4    5     6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q  

u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1,2,3}

Q={7, ,16}∞

16

7

∞0

1

5

s

3

1

2

5

6

4

Dĳkstra’s algorithm

2

5

15

1 3

1

DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q  

u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←
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←
← ∪

∈

 4    5     6



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1,2,3,4}

Q={8,16}
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DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q  

u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
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←
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At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1,2,3,4}

Q={8,16}
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DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q  

u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);
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At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1,2,3,4,5}

Q={11}

RELAX makes 6.d change from 16 to 11!
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DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q  

u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪
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At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1,2,3,4,5,6}

Q={}

RELAX makes 6.d change from 16 to 11!
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DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q  

u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪
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Dĳkstra’s algorithm: complexity

Queue data 
structure TB(n) TE(n) TR(n) TD(G)

Arrays (n) (n) (1)   (|E|+|V|2)

Binary Heaps (n) O(log n) O(log n) O((|E|+|V|)log |V|)

Fibonacci 
Heaps (n) O(log n) (1) O(|E|+|V|log |V|)

Θ Θ ΘΘ

Θ

Θ Θ

Time complexity: (|V|) + TB(|V|) + |V| TE(|V|) + |E| TR(|V|) Θ ⋅ ⋅



Bellman-Ford algorithm
Can be applied to general graphs, even with negative cycles.


1. Do |V|-1 passes of the graph. At each pass, relax all the 
edges.


2.Once this is done, with a single pass check, for each edge, if 
it can be further relaxed. If an edge (u,v) can still be relaxed, 
mark the weight of v as undefined (it is reachable using a 
negative cycle!)


Time complexity: Θ( |V | |E | ) = O( |V |3 )



Exercises
Cormen 24.3-6: We are given a directed graph G which each 
edge (u,v) has an associated value r(u,v), which is a real number in 
the range [0,1] that represents the reliability of a communication 
channel from vertex u to vertex v. We interpret r(u,v) as the 
probability that the channel from u to v will not fail, and we 
assume that these probabilities are independent. Give an efficient 
algorithm to find the most reliable path between two given 
vertices. (Hint: either modify Dijkstra or transform the weights…) 
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Dynamic programming: a summary
Basic steps: 
1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution, typically bottom-up 

4. Construct an optimal solution from computed information


Dynamic programming vs divide-and-conquer 
Divide-and-conquer algorithms partition the problem into disjoint 
subproblems, solve them recursively, and combine their solutions.

If the subproblems overlap, a divide-and-conquer algorithm would 
solve each subproblem repeatedly. A dynamic-programming 
algorithm solves each subproblem just once and saves its answer in 
a table, to be used over and over again.  




Dynamic programming: a summary
To which problems does dynamic programming apply?

It applies to optimization problems with an optimal substructure: 
an optimal solution to the problem contains optimal solutions to 
subproblems. 

Moreover, these subproblems must be independent: the solution 
to one subproblem does not affect the solution to another 
subproblem of the same problem. 




All-Pairs Shortest Paths (APSP)
Input: a (weighted or not weighted, directed or undirected) graph 
G=(V,E,W?)

Output: a shortest path between each possible pair of vertices


Baseline solution: apply Dijkstra’s algorithm |V| times, each time 
picking a different vertex as a source. This would take 

O(|V| (|E|+|V|log |V|)) time (using Fibonacci heaps). 


This only works for graphs with nonnegative weights.


For general graphs, we could apply Bellman-Ford |V| times: this 
would require  time, which is  for dense 
graphs. Can we do better?

⋅

Θ( |V |2 |E | ) Θ( |V |4 )



A recursive solution
Let dij(k) be the length of a shortest path from i to j with all its 
intermediate vertices in the set {1,2,…,k}. We can incrementally 
build shortest paths by admitting a new untouched intermediate 
vertex at each step, using the following recursion: 

 


wij if k=0

dij(k)=


min{dij(k-1),dik(k-1)+dkj(k-1)} if k 1


Because for any path in G the intermediate vertices are in 
{1,2,…,n}, the matrix D(n)[i,j]=dij(n) gives the desired output.

The Floyd-Warshall algorithm computes the whole sequence of 
matrixes D(0),D(1),…,D(n) 

≥



A dynamic programming solution:  
the Floyd-Warshall algorithm  

FLOYD-WARSHALL(W) - W is the  weight matrix

  D(0) W;

  for k=1,…, 


  allocate a new  matrix D(k);

  for i=1,…, 


  for j=1,…, 

  dij(k) = min{dij(k-1),dik(k-1)+dkj(k-1)};


  return D(|V|);


Time complexity: 

|V | × |V |
←

|V |
|V | × |V |

|V |
|V |

Θ( |V |3 )



We can compute it at the same time of the weights.

We define (k) as the predecessor of vertex j on a shortest path 
from vertex i with all intermediate vertices in the set {1,…,k}. 

We can give a recursive formulation:


NIL  if i = j or wij = 


ij(0)=

 i  if i  j and wij < 


ij(k-1) if dij(k-1) dik(k-1)+dkj(k-1) (shortest p. doesn’t use k)


ij(k)=

kj(k-1) if dij(k-1)>dik(k-1)+dkj(k-1) (shortest path uses k)

πij

∞
π

≠ ∞

π ≤
π

π

What about the predecessor matrix? 



Floyd-Warshall algorithm: an example  
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An interactive tool
If you want to test the Floyd-Warshall algorithm:


https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-
floyd-warshall/index_en.html


https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-floyd-warshall/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-floyd-warshall/index_en.html


Exercises
Cormen Problem 24-3: Arbitrage is the use of discrepancies in currency 
exchange rates to transform one unit of a currency into more than one 
unit of the same currency. For example, suppose that 1 U.S. dollar buys 
49 Indian rupees, 1 Indian rupee buys 2 Japanese yen, and 1 Japanese 
yen buys 0.0107 U.S. dollars. Then, by converting currencies, a trader 
can start with 1 U.S. dollar and buy 49 x 2 x 0.0107 = 1.0486 U.S. 
dollars, thus turning a profit of 4.86 percent. 

Suppose that we are given n currencies  and an n x n table 
R of exchange rates, such that one unit of currency  buys  units 
of currency  .


Give an efficient algorithm to determine whether or not there exists a 
sequence of currencies  such that

c1, c2, …, cn
ci R[i, j]

cj

ci1, ci2, …, cik
R[i1, i2] ⋅ R[i2, i3] ⋅ … ⋅ R[ik−1, ik] > 1


