
Single-Source Shortest Paths

Chapter 24 of Cormen’s book

Giulia Bernardini

giulia.bernardini@units.it

Algorithmic Design and Algorithms for Scientific
Computing

a.y. 2023/2024

mailto:giulia.bernardini@units.it

BFS(G,s) - G is represented by the adjacency lists Adj[] of its vertices

for each u V {s}

u.color white;
u.distance ;

s.color gray;
s.distance 0;
Q ;
enqueue(Q,s);
while Q

u dequeue(Q);

for each v Adj[u]

if v.color = white

v.color gray;
v.distance u.distance + 1;
enqueue(Q,v);

u.color black;

⋅
∈ ∖
←

←∞
←

←
←∅

≠ ∅
←

∈

←
←

←

Does BFS work for weighted graphs too?

BFS assigns to each v
value v.distance, the least

possible number of edges

on any source-to-v path.

BFS(G,s) - G is represented by the adjacency lists Adj[] of its vertices

for each u V {s}

u.color white;
u.distance ;

s.color gray;
s.distance 0;
Q ;
enqueue(Q,s);
while Q

u dequeue(Q);

for each v Adj[u]

if v.color = white

v.color gray;
v.distance u.distance + 1;
enqueue(Q,v);

u.color black;

⋅
∈ ∖
←

←∞
←

←
←∅

≠ ∅
←

∈

←
←

←

Does BFS work for weighted graphs too?

BFS assigns to each v
value v.distance, the least

possible number of edges

on any source-to-v path.

Can’t we just modify this

instruction to make it work

for weighted graphs?

w(u,v)

The shortest weighted path between two vertices may not be the
one with the least number of edges!

Why does BFS not work for weighted graphs?

9

8

5 2

15

19

12

0 s1

2

3

5

6

7

8

9

12

2

3

3

1

3

1

71

42

1

4

The shortest weighted path between two vertices may not be the
one with the least number of edges!

The shortest path from S to vertex number 3 would be through
vertex 2: the length of 1 2 3 is 2+1=3<12, even if this path has two
edges in place of one.

Why does BFS not work for weighted graphs?

9

8

5 2

15

19

12

0 s1

2

3

5

6

7

8

9

12

2

3

3

1

3

1

71

42

1

4

Shortest paths on DAGs
1. Topological sort of the DAG

2. One pass over the vertices in the order given by the topological

sort, starting from the source. Every node to the left of the
source has infinite weight. The rest will get the weight of the
shortest path.

Time complexity: Θ(|V | + |E |)

Dĳkstra’s algorithm
If all the weights are nonnegative, we can

use Dijkstra’s (pronounced “Deikstra”) algorithm.

Recall:

RELAX(u,v,w)

if v.d > u.d + w(u,v)

v.d = u.d + w(u,v);
v.p u; ←

∞

∞

∞0

∞

∞

s

3

1

2

5

6

4

Dĳkstra’s algorithm

2

5

15

1 3

1

At each step, one edge is relaxed. The vertices that are still to be
finalised are maintained in a min-priority queue (many different
implementations are possible). S is the set of finalised vertices.

S={}

Q={0, , , , , }∞ ∞ ∞ ∞ ∞

1 2 3 4 5 6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q V;

while Q

u EXTRACTMIN(Q);
S S {u};

for each v Adj[u]

RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

At each step, one edge is relaxed. The vertices that are still to be
finalised are maintained in a min-priority queue (many different
implementations are possible). S is the set of finalised vertices.

S={}

Q={0, , , , , }∞ ∞ ∞ ∞ ∞

∞

∞

∞0

∞

∞

s

3

1

2

5

6

4

Dĳkstra’s algorithm

2

5

15

1 3

1

DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q V;

while Q

u EXTRACTMIN(Q);
S S {u};

for each v Adj[u]

RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

1 2 3 4 5 6

At each step, one edge is relaxed. The vertices that are still to be
finalised are maintained in a min-priority queue (many different
implementations are possible). S is the set of finalised vertices.

S={1}

Q={1,5, , , }∞ ∞ ∞

∞

∞

∞0

1

5

s

3

1

2

5

6

4

Dĳkstra’s algorithm

2

5

15

1 3

1

2 3 4 5 6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q V;

while Q

u EXTRACTMIN(Q);
S S {u};

for each v Adj[u]

RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

At each step, one edge is relaxed. The vertices that are still to be
finalised are maintained in a min-priority queue (many different
implementations are possible). S is the set of finalised vertices.

S={1}

Q={1,5, , , }∞ ∞ ∞

∞

∞

∞0

1

5

s

3

1

2

5

6

4

Dĳkstra’s algorithm

2

5

15

1 3

1

2 3 4 5 6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q V;

while Q

u EXTRACTMIN(Q);
S S {u};

for each v Adj[u]

RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

At each step, one edge is relaxed. The vertices that are still to be
finalised are maintained in a min-priority queue (many different
implementations are possible). S is the set of finalised vertices.

S={1,2}

Q={5, , ,16}∞ ∞

16

∞

∞0

1

5

s

3

1

2

5

6

4

Dĳkstra’s algorithm

2

5

15

1 3

1

3 4 5 6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q V;

while Q

u EXTRACTMIN(Q);
S S {u};

for each v Adj[u]

RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

16

∞

∞0

1

5

s

3

1

2

5

6

4

Dĳkstra’s algorithm

2

5

15

1 3

1

3 4 5 6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q V;

while Q

u EXTRACTMIN(Q);
S S {u};

for each v Adj[u]

RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

At each step, one edge is relaxed. The vertices that are still to be
finalised are maintained in a min-priority queue (many different
implementations are possible). S is the set of finalised vertices.

S={1,2}

Q={5, , ,16}∞ ∞

At each step, one edge is relaxed. The vertices that are still to be
finalised are maintained in a min-priority queue (many different
implementations are possible). S is the set of finalised vertices.

S={1,2,3}

Q={7, ,16}∞

16

7

∞0

1

5

s

3

1

2

5

6

4

Dĳkstra’s algorithm

2

5

15

1 3

1

 4 5 6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q V;

while Q

u EXTRACTMIN(Q);
S S {u};

for each v Adj[u]

RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

At each step, one edge is relaxed. The vertices that are still to be
finalised are maintained in a min-priority queue (many different
implementations are possible). S is the set of finalised vertices.

S={1,2,3}

Q={7, ,16}∞

16

7

∞0

1

5

s

3

1

2

5

6

4

Dĳkstra’s algorithm

2

5

15

1 3

1

DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q V;

while Q

u EXTRACTMIN(Q);
S S {u};

for each v Adj[u]

RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

 4 5 6

At each step, one edge is relaxed. The vertices that are still to be
finalised are maintained in a min-priority queue (many different
implementations are possible). S is the set of finalised vertices.

S={1,2,3,4}

Q={8,16}

16

7

80

1

5

s

3

1

2

5

6

4

Dĳkstra’s algorithm

2

5

15

1 3

1

DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q V;

while Q

u EXTRACTMIN(Q);
S S {u};

for each v Adj[u]

RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

 5 6

At each step, one edge is relaxed. The vertices that are still to be
finalised are maintained in a min-priority queue (many different
implementations are possible). S is the set of finalised vertices.

S={1,2,3,4}

Q={8,16}

16

7

80

1

5

s

3

1

2

5

6

4

Dĳkstra’s algorithm

2

5

15

1 3

1

DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q V;

while Q

u EXTRACTMIN(Q);
S S {u};

for each v Adj[u]

RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

 5 6

At each step, one edge is relaxed. The vertices that are still to be
finalised are maintained in a min-priority queue (many different
implementations are possible). S is the set of finalised vertices.

S={1,2,3,4,5}

Q={11}

RELAX makes 6.d change from 16 to 11!

11

7

80

1

5

s

3

1

2

5

6

4

Dĳkstra’s algorithm

2

5

15

1 3

1

DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q V;

while Q

u EXTRACTMIN(Q);
S S {u};

for each v Adj[u]

RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

 6

At each step, one edge is relaxed. The vertices that are still to be
finalised are maintained in a min-priority queue (many different
implementations are possible). S is the set of finalised vertices.

S={1,2,3,4,5,6}

Q={}

RELAX makes 6.d change from 16 to 11!

11

7

80

1

5

s

3

1

2

5

6

4

Dĳkstra’s algorithm

2

5

15

1 3

1

DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q V;

while Q

u EXTRACTMIN(Q);
S S {u};

for each v Adj[u]

RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

Dĳkstra’s algorithm: complexity

Queue data
structure TB(n) TE(n) TR(n) TD(G)

Arrays (n) (n) (1) (|E|+|V|2)

Binary Heaps (n) O(log n) O(log n) O((|E|+|V|)log |V|)

Fibonacci
Heaps (n) O(log n) (1) O(|E|+|V|log |V|)

Θ Θ ΘΘ

Θ

Θ Θ

Time complexity: (|V|) + TB(|V|) + |V| TE(|V|) + |E| TR(|V|) Θ ⋅ ⋅

Bellman-Ford algorithm
Can be applied to general graphs, even with negative cycles.

1. Do |V|-1 passes of the graph. At each pass, relax all the
edges.

2.Once this is done, with a single pass check, for each edge, if
it can be further relaxed. If an edge (u,v) can still be relaxed,
mark the weight of v as undefined (it is reachable using a
negative cycle!)

Time complexity: Θ(|V | |E |) = O(|V |3)

Exercises
Cormen 24.3-6: We are given a directed graph G which each
edge (u,v) has an associated value r(u,v), which is a real number in
the range [0,1] that represents the reliability of a communication
channel from vertex u to vertex v. We interpret r(u,v) as the
probability that the channel from u to v will not fail, and we
assume that these probabilities are independent. Give an efficient
algorithm to find the most reliable path between two given
vertices. (Hint: either modify Dijkstra or transform the weights…)

All-Pairs Shortest Paths

Chapter 25.2 of Cormen’s book

Giulia Bernardini

giulia.bernardini@units.it

Algorithmic Design and Algorithms for Scientific
Computing

a.y. 2023/2024

mailto:giulia.bernardini@units.it

Dynamic programming: a summary
Basic steps:
1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution, typically bottom-up

4. Construct an optimal solution from computed information

Dynamic programming vs divide-and-conquer
Divide-and-conquer algorithms partition the problem into disjoint
subproblems, solve them recursively, and combine their solutions.

If the subproblems overlap, a divide-and-conquer algorithm would
solve each subproblem repeatedly. A dynamic-programming
algorithm solves each subproblem just once and saves its answer in
a table, to be used over and over again.

Dynamic programming: a summary
To which problems does dynamic programming apply?

It applies to optimization problems with an optimal substructure:
an optimal solution to the problem contains optimal solutions to
subproblems.

Moreover, these subproblems must be independent: the solution
to one subproblem does not affect the solution to another
subproblem of the same problem.

All-Pairs Shortest Paths (APSP)
Input: a (weighted or not weighted, directed or undirected) graph
G=(V,E,W?)

Output: a shortest path between each possible pair of vertices

Baseline solution: apply Dijkstra’s algorithm |V| times, each time
picking a different vertex as a source. This would take

O(|V| (|E|+|V|log |V|)) time (using Fibonacci heaps).

This only works for graphs with nonnegative weights.

For general graphs, we could apply Bellman-Ford |V| times: this
would require time, which is for dense
graphs. Can we do better?

⋅

Θ(|V |2 |E |) Θ(|V |4)

A recursive solution
Let dij(k) be the length of a shortest path from i to j with all its
intermediate vertices in the set {1,2,…,k}. We can incrementally
build shortest paths by admitting a new untouched intermediate
vertex at each step, using the following recursion:

wij if k=0

dij(k)=

min{dij(k-1),dik(k-1)+dkj(k-1)} if k 1

Because for any path in G the intermediate vertices are in
{1,2,…,n}, the matrix D(n)[i,j]=dij(n) gives the desired output.

The Floyd-Warshall algorithm computes the whole sequence of
matrixes D(0),D(1),…,D(n)

≥

A dynamic programming solution:
the Floyd-Warshall algorithm

FLOYD-WARSHALL(W) - W is the weight matrix

 D(0) W;

 for k=1,…,

 allocate a new matrix D(k);

 for i=1,…,

 for j=1,…,

 dij(k) = min{dij(k-1),dik(k-1)+dkj(k-1)};

 return D(|V|);

Time complexity:

|V | × |V |
←

|V |
|V | × |V |

|V |
|V |

Θ(|V |3)

We can compute it at the same time of the weights.

We define (k) as the predecessor of vertex j on a shortest path
from vertex i with all intermediate vertices in the set {1,…,k}.

We can give a recursive formulation:

NIL if i = j or wij =

ij(0)=

 i if i j and wij <

ij(k-1) if dij(k-1) dik(k-1)+dkj(k-1) (shortest p. doesn’t use k)

ij(k)=

kj(k-1) if dij(k-1)>dik(k-1)+dkj(k-1) (shortest path uses k)

πij

∞
π

≠ ∞

π ≤
π

π

What about the predecessor matrix?

Floyd-Warshall algorithm: an example

3

1

2

5

-4

3 7

4

1
4

-5

8

2

6

wij if k=0

dij(k)=

min{dij(k-1),dik(k-1)+dkj(k-1)} if k 1≥

ij(k-1) if dij(k-1) dik(k-1)+dkj(k-1)

ij(k)=

kj(k-1) if dij(k-1)>dik(k-1)+dkj(k-1)

π ≤

π
π

Floyd-Warshall algorithm: an example

3

1

2

5

-4

3 7

4

1
4

-5

8

2

6

wij if k=0

dij(k)=

min{dij(k-1),dik(k-1)+dkj(k-1)} if k 1≥

ij(k-1) if dij(k-1) dik(k-1)+dkj(k-1)

ij(k)=

kj(k-1) if dij(k-1)>dik(k-1)+dkj(k-1)

π ≤

π
π

Floyd-Warshall algorithm: an example

3

1

2

5

-4

3 7

4

1
4

-5

8

2

6

wij if k=0

dij(k)=

min{dij(k-1),dik(k-1)+dkj(k-1)} if k 1≥

ij(k-1) if dij(k-1) dik(k-1)+dkj(k-1)

ij(k)=

kj(k-1) if dij(k-1)>dik(k-1)+dkj(k-1)

π ≤

π
π

Floyd-Warshall algorithm: an example

3

1

2

5

-4

3 7

4

1
4

-5

8

2

6

wij if k=0

dij(k)=

min{dij(k-1),dik(k-1)+dkj(k-1)} if k 1≥

ij(k-1) if dij(k-1) dik(k-1)+dkj(k-1)

ij(k)=

kj(k-1) if dij(k-1)>dik(k-1)+dkj(k-1)

π ≤

π
π

Floyd-Warshall algorithm: an example

3

1

2

5

-4

3 7

4

1
4

-5

8

2

6

wij if k=0

dij(k)=

min{dij(k-1),dik(k-1)+dkj(k-1)} if k 1≥

ij(k-1) if dij(k-1) dik(k-1)+dkj(k-1)

ij(k)=

kj(k-1) if dij(k-1)>dik(k-1)+dkj(k-1)

π ≤

π
π

Floyd-Warshall algorithm: an example

3

1

2

5

-4

3 7

4

1
4

-5

8

2

6

wij if k=0

dij(k)=

min{dij(k-1),dik(k-1)+dkj(k-1)} if k 1≥

ij(k-1) if dij(k-1) dik(k-1)+dkj(k-1)

ij(k)=

kj(k-1) if dij(k-1)>dik(k-1)+dkj(k-1)

π ≤

π
π

An interactive tool
If you want to test the Floyd-Warshall algorithm:

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-
floyd-warshall/index_en.html

https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-floyd-warshall/index_en.html
https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-floyd-warshall/index_en.html

Exercises
Cormen Problem 24-3: Arbitrage is the use of discrepancies in currency
exchange rates to transform one unit of a currency into more than one
unit of the same currency. For example, suppose that 1 U.S. dollar buys
49 Indian rupees, 1 Indian rupee buys 2 Japanese yen, and 1 Japanese
yen buys 0.0107 U.S. dollars. Then, by converting currencies, a trader
can start with 1 U.S. dollar and buy 49 x 2 x 0.0107 = 1.0486 U.S.
dollars, thus turning a profit of 4.86 percent.

Suppose that we are given n currencies and an n x n table
R of exchange rates, such that one unit of currency buys units
of currency .

Give an efficient algorithm to determine whether or not there exists a
sequence of currencies such that

c1, c2, …, cn
ci R[i, j]

cj

ci1, ci2, …, cik
R[i1, i2] ⋅ R[i2, i3] ⋅ … ⋅ R[ik−1, ik] > 1

