ANOVA | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | η² | ||||||||
SLC_ClassiRischio | 1.80 | 2 | 0.899 | 4.90 | 0.013 | 0.205 | |||||||
Residuals | 6.98 | 38 | 0.184 | ||||||||||
[3] |
ANOVA | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | η² | ||||||||
SLC_ClassiRischio | 1.80 | 2 | 0.899 | 4.90 | 0.013 | 0.205 | |||||||
Residuals | 6.98 | 38 | 0.184 | ||||||||||
[3] |
Test for Homogeneity of Variances (Levene's) | |||||||
---|---|---|---|---|---|---|---|
F | df1 | df2 | p | ||||
0.962 | 2 | 38 | 0.391 | ||||
[3] |
Post Hoc Comparisons - SLC_ClassiRischio | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Comparison | |||||||||||||||||
SLC_ClassiRischio | SLC_ClassiRischio | Mean Difference | SE | df | t | ptukey | pbonferroni | ||||||||||
0 | - | 1 | -0.327 | 0.180 | 38.0 | -1.81 | 0.179 | 0.234 | |||||||||
- | 2 | -0.585 | 0.208 | 38.0 | -2.82 | 0.020 | 0.023 | ||||||||||
1 | - | 2 | -0.258 | 0.251 | 38.0 | -1.03 | 0.563 | 0.930 | |||||||||
[4]
Estimated Marginal Means - SLC_ClassiRischio | |||||||||
---|---|---|---|---|---|---|---|---|---|
95% Confidence Interval | |||||||||
SLC_ClassiRischio | Mean | SE | Lower | Upper | |||||
0 | 2.16 | 0.0796 | 2.00 | 2.32 | |||||
1 | 2.49 | 0.1620 | 2.16 | 2.81 | |||||
2 | 2.74 | 0.1917 | 2.36 | 3.13 | |||||
[4]
Model Fit Measures | |||||
---|---|---|---|---|---|
Model | R | R² | |||
1 | 0.00 | 0.00 | |||
Model Coefficients - SAS_Ansia | |||||||||
---|---|---|---|---|---|---|---|---|---|
Predictor | Estimate | SE | t | p | |||||
Intercept | . | . | . | . | |||||
sessoM0F1 | . | . | . | . | |||||
Model Fit Measures | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Overall Model Test | |||||||||||||
Model | R | R² | F | df1 | df2 | p | |||||||
1 | . | . | . | . | . | . | |||||||
2 | . | . | . | . | . | . | |||||||
Model Comparisons | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Comparison | |||||||||||||||
Model | Model | ΔR² | F | df1 | df2 | p | |||||||||
1 | - | 2 | . | . | . | . | . | ||||||||
Model Coefficients - WART | |||||||||
---|---|---|---|---|---|---|---|---|---|
Predictor | Estimate | SE | t | p | |||||
Intercept | . | . | . | . | |||||
SAS_Ansia | . | . | . | . | |||||
sessoM0F1 | . | . | . | . | |||||
Model Coefficients - WART | |||||||||
---|---|---|---|---|---|---|---|---|---|
Predictor | Estimate | SE | t | p | |||||
Intercept | . | . | . | . | |||||
SAS_Ansia | . | . | . | . | |||||
sessoM0F1 | . | . | . | . | |||||
sexBYansia | . | . | . | . | |||||
ANOVA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | |||||||
Model Fit Measures | |||||
---|---|---|---|---|---|
Model | R | R² | |||
1 | . | . | |||
Model Coefficients - … | |||||||||
---|---|---|---|---|---|---|---|---|---|
Predictor | Estimate | SE | t | p | |||||
Intercept | . | . | . | . | |||||
ANOVA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | |||||||
SLC_ClassiRischio | 1.80 | 2 | 0.899 | 4.90 | 0.013 | ||||||
Residuals | 6.98 | 38 | 0.184 | ||||||||
[3] |
Model Fit Measures | |||||
---|---|---|---|---|---|
Model | R | R² | |||
1 | . | . | |||
Model Coefficients - … | |||||||||
---|---|---|---|---|---|---|---|---|---|
Predictor | Estimate | SE | t | p | |||||
Intercept | . | . | . | . | |||||
ANOVA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F | p | |||||||
One-Way ANOVA (Welch's) | |||||||||
---|---|---|---|---|---|---|---|---|---|
F | df1 | df2 | p | ||||||
Model Fit Measures | |||||
---|---|---|---|---|---|
Model | R | R² | |||
1 | . | . | |||
Model Coefficients - … | |||||||||
---|---|---|---|---|---|---|---|---|---|
Predictor | Estimate | SE | t | p | |||||
Intercept | . | . | . | . | |||||
Correlation Matrix | |||||||
---|---|---|---|---|---|---|---|
WART | SAS_Ansia | ||||||
WART | Pearson's r | — | |||||
p-value | — | ||||||
95% CI Upper | — | ||||||
95% CI Lower | — | ||||||
SAS_Ansia | Pearson's r | 0.609 | — | ||||
p-value | < .001 | — | |||||
95% CI Upper | 0.772 | — | |||||
95% CI Lower | 0.370 | — | |||||
Moderation Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | SE | Z | p | ||||||
SLC_centrato | 0.2273 | 0.04466 | 5.09 | < .001 | |||||
SD3_NARC_centrato | 0.0250 | 0.00881 | 2.84 | 0.005 | |||||
SLC_centrato ✻ SD3_NARC_centrato | -0.0106 | 0.00899 | -1.18 | 0.236 | |||||
Simple Slope Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | SE | Z | p | ||||||
Average | 0.227 | 0.0450 | 5.05 | < .001 | |||||
Low (-1SD) | 0.276 | 0.0633 | 4.36 | < .001 | |||||
High (+1SD) | 0.179 | 0.0585 | 3.05 | 0.002 | |||||
Nota. shows the effect of the predictor (SLC_centrato) on the dependent variable (WART) at different levels of the moderator (SD3_NARC_centrato) | |||||||||
One-Way ANOVA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | df1 | df2 | p | ||||||||
WART | Welch's | 9.49 | 2 | 16.2 | 0.002 | ||||||
Fisher's | 6.87 | 2 | 76 | 0.002 | |||||||
Group Descriptives | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SLC_ClassiRischio | N | Mean | SD | SE | |||||||
WART | 0 | 57 | 2.19 | 0.411 | 0.0544 | ||||||
1 | 15 | 2.46 | 0.364 | 0.0939 | |||||||
2 | 7 | 2.70 | 0.287 | 0.1086 | |||||||
Tukey Post-Hoc Test – WART | |||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | |||||||
0 | Mean difference | — | -0.265 | -0.506 | |||||
t-value | — | -2.32 | -3.21 | ||||||
df | — | 76.0 | 76.0 | ||||||
p-value | — | 0.059 | 0.005 | ||||||
1 | Mean difference | — | -0.241 | ||||||
t-value | — | -1.34 | |||||||
df | — | 76.0 | |||||||
p-value | — | 0.379 | |||||||
2 | Mean difference | — | |||||||
t-value | — | ||||||||
df | — | ||||||||
p-value | — | ||||||||
Descriptives | |
---|---|
N | |
Missing | |
Mean | |
Median | |
Minimum | |
Maximum | |
Model Fit Measures | |||||
---|---|---|---|---|---|
Model | R | R² | |||
1 | 0.391 | 0.153 | |||
Model Coefficients - WART | |||||||||
---|---|---|---|---|---|---|---|---|---|
Predictor | Estimate | SE | t | p | |||||
Intercept | 2.456 | 0.102 | 24.14 | < .001 | |||||
D_MILD_LOW | -0.265 | 0.114 | -2.32 | 0.023 | |||||
D_mild_High | 0.241 | 0.180 | 1.34 | 0.185 | |||||
Misure di Adattamento del Modello | |||||
---|---|---|---|---|---|
Modello | R | R² | |||
1 | 0.514 | 0.264 | |||
Coefficienti del Modello - WART | |||||||||
---|---|---|---|---|---|---|---|---|---|
Predittore | Stima | SE | t | p | |||||
Intercettare | 1.091 | 0.252 | 4.33 | < .001 | |||||
SAS_Ansia | 0.702 | 0.144 | 4.88 | < .001 | |||||
sessoM0F1 | 0.576 | 0.437 | 1.32 | 0.192 | |||||
sexBYansia | -0.360 | 0.242 | -1.49 | 0.141 | |||||
Moderation Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | SE | Z | p | ||||||
SAS_Ansia | 0.5289 | 0.1151 | 4.595 | < .001 | |||||
sessoM0F1 | -0.0559 | 0.0811 | -0.689 | 0.491 | |||||
SAS_Ansia ✻ sessoM0F1 | -0.3600 | 0.2353 | -1.530 | 0.126 | |||||
Simple Slope Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | SE | Z | p | ||||||
Average | 0.529 | 0.117 | 4.53 | < .001 | |||||
Low (-1SD) | 0.709 | 0.145 | 4.90 | < .001 | |||||
High (+1SD) | 0.349 | 0.186 | 1.88 | 0.060 | |||||
Nota. shows the effect of the predictor (SAS_Ansia) on the dependent variable (WART) at different levels of the moderator (sessoM0F1) | |||||||||
Models Info | |||||
---|---|---|---|---|---|
Get started | Select the dependent variable | ||||
Select at least one mediator | |||||
Get Started | Select at least one factor or covariate as independent variable | ||||
Overal Model | . | The mediational model is incomplete | |||
[5] |
Diagram notes | |
---|---|
Red paths indicate required coefficients | |
Indirect and Total Effects | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Effect | Estimate | SE | Lower | Upper | β | z | p | |||||||||
[7]
Moderation Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | SE | Z | p | ||||||
SAS_Ansia | 0.5289 | 0.1151 | 4.595 | < .001 | |||||
sessoM0F1 | -0.0559 | 0.0811 | -0.689 | 0.491 | |||||
SAS_Ansia ✻ sessoM0F1 | -0.3600 | 0.2353 | -1.530 | 0.126 | |||||
Simple Slope Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | SE | Z | p | ||||||
Average | 0.529 | 0.117 | 4.53 | < .001 | |||||
Low (-1SD) | 0.709 | 0.145 | 4.90 | < .001 | |||||
High (+1SD) | 0.349 | 0.186 | 1.88 | 0.060 | |||||
Nota. shows the effect of the predictor (SAS_Ansia) on the dependent variable (WART) at different levels of the moderator (sessoM0F1) | |||||||||
Misure di Adattamento del Modello | |||||
---|---|---|---|---|---|
Modello | R | R² | |||
1 | 0.527 | 0.277 | |||
Coefficienti del Modello - WART | |||||||||
---|---|---|---|---|---|---|---|---|---|
Predittore | Stima | SE | t | p | |||||
Intercettare | 2.2810 | 0.04136 | 55.14 | < .001 | |||||
SD3_NARC_centrato | 0.0251 | 0.00947 | 2.64 | 0.010 | |||||
SLC_centrato | 0.2274 | 0.04613 | 4.93 | < .001 | |||||
SLCbyNARC | -0.0106 | 0.00961 | -1.11 | 0.272 | |||||
Moderation Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | SE | Z | p | ||||||
SD3_narcisismo | 0.0250 | 0.00916 | 2.73 | 0.006 | |||||
SLC | 0.2273 | 0.04452 | 5.11 | < .001 | |||||
SD3_narcisismo ✻ SLC | -0.0106 | 0.00931 | -1.14 | 0.253 | |||||
Mediation Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Effect | Estimate | SE | Z | p | |||||
Indirect | 0.159 | 0.0666 | 2.38 | 0.017 | |||||
Direct | 0.403 | 0.1227 | 3.29 | 0.001 | |||||
Total | 0.562 | 0.1135 | 4.95 | < .001 | |||||
Moderation Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | SE | Z | p | ||||||
SAS_Ansia | . | . | . | . | |||||
. | . | . | . | . | |||||
SAS_Ansia | . | . | . | . | |||||
Mediation Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Effect | Estimate | SE | Z | p | |||||
Indirect | . | . | . | . | |||||
Direct | . | . | . | . | |||||
Total | . | . | . | . | |||||
Moderation Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | SE | Z | p | ||||||
. | . | . | . | . | |||||
. | . | . | . | . | |||||
. | . | . | . | ||||||
[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.
[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).
[3] Fox, J., & Weisberg, S. (2018). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.
[4] Lenth, R. (2018). emmeans: Estimated Marginal Means, aka Least-Squares Means. [R package]. Retrieved from https://cran.r-project.org/package=emmeans.
[5] Gallucci, M. (2020). jAMM: jamovi Advanced Mediation Models. [jamovi module]. Retrieved from https://jamovi-amm.github.io/.
[6] Soetaert, K. (2019). diagram: Functions for Visualising Simple Graphs (Networks), Plotting Flow Diagrams. [R package]. Retrieved from https://cran.r-project.org/package=diagram.
[7] Rosseel, Y. (2019). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. link.