Risultati

ANOVA

ANOVA
 Sum of SquaresdfMean SquareFpη²
SLC_ClassiRischio1.8020.8994.900.0130.205
Residuals6.98380.184   
[3]

 

ANOVA

ANOVA
 Sum of SquaresdfMean SquareFpη²
SLC_ClassiRischio1.8020.8994.900.0130.205
Residuals6.98380.184   
[3]

 

Assumption Checks

Test for Homogeneity of Variances (Levene's)
Fdf1df2p
0.9622380.391
[3]

 

Post Hoc Tests

Post Hoc Comparisons - SLC_ClassiRischio
Comparison
SLC_ClassiRischio SLC_ClassiRischioMean DifferenceSEdftptukeypbonferroni
0-1-0.3270.18038.0-1.810.1790.234
 -2-0.5850.20838.0-2.820.0200.023
1-2-0.2580.25138.0-1.030.5630.930

 

[4]

Estimated Marginal Means

SLC_ClassiRischio

Estimated Marginal Means - SLC_ClassiRischio
95% Confidence Interval
SLC_ClassiRischioMeanSELowerUpper
02.160.07962.002.32
12.490.16202.162.81
22.740.19172.363.13

 

[4]

Linear Regression

argument is of length zero

Model Fit Measures
ModelR
10.000.00

 

Model Coefficients - SAS_Ansia
PredictorEstimateSEtp
Intercept....
sessoM0F1....

 

Linear Regression

there are aliased coefficients in the model

Model Fit Measures
Overall Model Test
ModelRFdf1df2p
1......
2......

 

Model Comparisons
Comparison
Model ModelΔR²Fdf1df2p
1-2.....

 

Model Specific ResultsModel 1Model 2

Model Coefficients - WART
PredictorEstimateSEtp
Intercept....
SAS_Ansia....
sessoM0F1....

 

Model Coefficients - WART
PredictorEstimateSEtp
Intercept....
SAS_Ansia....
sessoM0F1....
sexBYansia....

 

ANOVA

ANOVA
 Sum of SquaresdfMean SquareFp
 

 

Linear Regression

Model Fit Measures
ModelR
1..

 

Model Coefficients - …
PredictorEstimateSEtp
Intercept....

 

ANOVA

ANOVA
 Sum of SquaresdfMean SquareFp
SLC_ClassiRischio1.8020.8994.900.013
Residuals6.98380.184  
[3]

 

Linear Regression

Model Fit Measures
ModelR
1..

 

Model Coefficients - …
PredictorEstimateSEtp
Intercept....

 

ANOVA

ANOVA
 Sum of SquaresdfMean SquareFp
 

 

One-Way ANOVA

One-Way ANOVA (Welch's)
 Fdf1df2p
 

 

Linear Regression

Model Fit Measures
ModelR
1..

 

Model Coefficients - …
PredictorEstimateSEtp
Intercept....

 

Correlation Matrix

Correlation Matrix
  WARTSAS_Ansia
WARTPearson's r 
 p-value 
 95% CI Upper 
 95% CI Lower 
SAS_AnsiaPearson's r0.609
 p-value< .001
 95% CI Upper0.772
 95% CI Lower0.370

 

Moderation

Moderation Estimates
 EstimateSEZp
SLC_centrato0.22730.044665.09< .001
SD3_NARC_centrato0.02500.008812.840.005
SLC_centrato ✻ SD3_NARC_centrato-0.01060.00899-1.180.236

 

Simple Slope Analysis

Simple Slope Estimates
 EstimateSEZp
Average0.2270.04505.05< .001
Low (-1SD)0.2760.06334.36< .001
High (+1SD)0.1790.05853.050.002
Nota. shows the effect of the predictor (SLC_centrato) on the dependent variable (WART) at different levels of the moderator (SD3_NARC_centrato)

 

Simple Slope Plot

One-Way ANOVA

One-Way ANOVA
  Fdf1df2p
WARTWelch's9.49216.20.002
 Fisher's6.872760.002

 

Group Descriptives
 SLC_ClassiRischioNMeanSDSE
WART0572.190.4110.0544
 1152.460.3640.0939
 272.700.2870.1086

 

Post Hoc Tests

Tukey Post-Hoc Test – WART
  012
0Mean difference-0.265-0.506
 t-value-2.32-3.21
 df76.076.0
 p-value0.0590.005
1Mean difference -0.241
 t-value -1.34
 df 76.0
 p-value 0.379
2Mean difference  
 t-value  
 df  
 p-value  

 

Descriptives

Descriptives
 
N
Missing
Mean
Median
Minimum
Maximum

 

Linear Regression

Model Fit Measures
ModelR
10.3910.153

 

Model Coefficients - WART
PredictorEstimateSEtp
Intercept2.4560.10224.14< .001
D_MILD_LOW-0.2650.114-2.320.023
D_mild_High0.2410.1801.340.185

 

Regressione Lineare

Misure di Adattamento del Modello
ModelloR
10.5140.264

 

Coefficienti del Modello - WART
PredittoreStimaSEtp
Intercettare1.0910.2524.33< .001
SAS_Ansia0.7020.1444.88< .001
sessoM0F10.5760.4371.320.192
sexBYansia-0.3600.242-1.490.141

 

Moderation

Moderation Estimates
 EstimateSEZp
SAS_Ansia0.52890.11514.595< .001
sessoM0F1-0.05590.0811-0.6890.491
SAS_Ansia ✻ sessoM0F1-0.36000.2353-1.5300.126

 

Simple Slope Analysis

Simple Slope Estimates
 EstimateSEZp
Average0.5290.1174.53< .001
Low (-1SD)0.7090.1454.90< .001
High (+1SD)0.3490.1861.880.060
Nota. shows the effect of the predictor (SAS_Ansia) on the dependent variable (WART) at different levels of the moderator (sessoM0F1)

 

GLM Mediation Analysis

Models Info
   
Get started Select the dependent variable
  Select at least one mediator
Get Started Select at least one factor or covariate as independent variable
Overal Model.The mediational model is incomplete
[5]

 

Path Model

Conceptual Diagram

[6]

Diagram notes
Red paths indicate required coefficients

 

Mediation

Indirect and Total Effects
TypeEffectEstimateSELowerUpperβzp
 

 

[7]

Moderation

Moderation Estimates
 EstimateSEZp
SAS_Ansia0.52890.11514.595< .001
sessoM0F1-0.05590.0811-0.6890.491
SAS_Ansia ✻ sessoM0F1-0.36000.2353-1.5300.126

 

Simple Slope Analysis

Simple Slope Estimates
 EstimateSEZp
Average0.5290.1174.53< .001
Low (-1SD)0.7090.1454.90< .001
High (+1SD)0.3490.1861.880.060
Nota. shows the effect of the predictor (SAS_Ansia) on the dependent variable (WART) at different levels of the moderator (sessoM0F1)

 

Regressione Lineare

Misure di Adattamento del Modello
ModelloR
10.5270.277

 

Coefficienti del Modello - WART
PredittoreStimaSEtp
Intercettare2.28100.0413655.14< .001
SD3_NARC_centrato0.02510.009472.640.010
SLC_centrato0.22740.046134.93< .001
SLCbyNARC-0.01060.00961-1.110.272

 

Moderation

Moderation Estimates
 EstimateSEZp
SD3_narcisismo0.02500.009162.730.006
SLC0.22730.044525.11< .001
SD3_narcisismo ✻ SLC-0.01060.00931-1.140.253

 

Mediation

Mediation Estimates
EffectEstimateSEZp
Indirect0.1590.06662.380.017
Direct0.4030.12273.290.001
Total0.5620.11354.95< .001

 

Moderation

Moderation Estimates
 EstimateSEZp
SAS_Ansia....
.....
SAS_Ansia....

 

Mediation

Mediation Estimates
EffectEstimateSEZp
Indirect....
Direct....
Total....

 

Moderation

Moderation Estimates
 EstimateSEZp
.....
.....
 ....

 

Riferimenti

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).

[3] Fox, J., & Weisberg, S. (2018). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.

[4] Lenth, R. (2018). emmeans: Estimated Marginal Means, aka Least-Squares Means. [R package]. Retrieved from https://cran.r-project.org/package=emmeans.

[5] Gallucci, M. (2020). jAMM: jamovi Advanced Mediation Models. [jamovi module]. Retrieved from https://jamovi-amm.github.io/.

[6] Soetaert, K. (2019). diagram: Functions for Visualising Simple Graphs (Networks), Plotting Flow Diagrams. [R package]. Retrieved from https://cran.r-project.org/package=diagram.

[7] Rosseel, Y. (2019). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. link.