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The plasma membrane allows the cell to sense and adapt to changes in the extracellular environ-

ment by relaying external inputs via intracellular signaling networks. One central cellular

signaling pathway is the Hippo pathway, which regulates homeostasis and plays chief roles in

carcinogenesis and regenerative processes. Recent studies have found that mechanical stimuli

and diffusible chemical components can regulate the Hippo pathway primarily through receptors

embedded in the plasmamembrane.Morphologically defined structureswithin the plasmamem-

brane, such as cellular junctions, focal adhesions, primary cilia, caveolae, clathrin-coated pits, and

plaques play additional key roles. Here, we discuss recent evidence highlighting the importance

of these specialized plasma membrane domains in cellular feedback via the Hippo pathway.

Cellular Regulation by the Hippo Pathway

The plasmamembrane is essential for cell integrity and serves as an interface to sense and respond to

changes in the extracellular environment [1]. A large variety of plasma membrane domains, such as,

adherens and tight junctions (see Glossary), focal adhesions (FAs), clathrin-coated pits (CCPs) or pla-

ques, caveolae, and primary cilia [2–8], allow the cell to dynamically relay chemical and mechanical

stimuli, which are translated into direct cellular responses. The plasma membrane as a whole, but

FAs in particular, strongly interacts with the extracellular matrix (ECM) [9]. The ECM is a dynamic

noncellular matrix surrounding cells and tissues that acts as a scaffold for cell anchorage and mecha-

notransduction [9]. The signals perceived by plasma membrane elements are integrated and trans-

mitted by a variety of signaling pathways. One central pathway, which enables the cell to respond

to various signals, is the Hippo pathway (Box 1) [10–13]. By highly context specific responses the Hip-

po pathway regulates cellular homeostasis and plays central roles in carcinogenesis and regenerative

processes [10,12,13]. The Hippo pathway is extracellularly regulated by mechanical stimuli and diffus-

ible chemicals. These signals are sensed in great part by receptors, such as G-protein coupled recep-

tors (GPCRs) and adherence complexes embedded in the plasma membrane [1,10–16]. To ensure a

highly specific response, junctional complexes and receptors accumulate in distinct membrane struc-

tures and their plasma membrane abundance is furthermore dynamically regulated by exo- and

endocytosis [3,4,7,17]. Junctional complexes provide robust cellular sensitivity of Hippo signaling

to cell polarity and cell–cell contacts [10,15,16]. Catenins [18,19], protein tyrosine phosphatase non-

receptor (PTPN)14 [20,21], and the angiomotin family [22–26] play central roles in this regulation as

direct YAP-binding proteins. Both PTPN14 and AMOT interact via PPxY motifs with WW domains

of YAP and TAZ, and consequently, this interaction does not directly require YAP and TAZ Hippo-

pathway-mediated phosphorylation [20–23]. Several of the Hippo pathway components temporally

localize to junctional complexes, including YAP and TAZ, KIBRA, LATS1/2, neurofibromatosis type

2 (NF2), and MST1/2 [24,26–29]. At the junctional location the upstream Hippo pathway components

are activated, and consequently, YAP/TAZ are inhibited. As cellular junctions function as mechanical

cellular transducers, this spatiotemporal localization of Hippo pathway components brings them

proximal to sense the exerted forces. The interplay between cellular junctions and the Hippo pathway

is well established [10,15,16]. Here, we discuss recent evidence highlighting that additional plasma

membrane domains, such as FAs, CCPs and plaques, caveolae, and primary cilia provide cellular

feedback via the Hippo pathway.
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Clustering of integrins increases the avidity of the multivariant interactions with the ECM substrate

[30,31]. FAs are large dynamic multiprotein complexes comprised of several distinct layers of proteins

with the integral components integrins, vinculin, talin, and focal adhesion kinase (FAK) [6], and
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Box 1. The Hippo Pathway and Regulation of YAP/TAZ

The core Hippo pathway signaling cascade in mammals is comprised of a serine/threonine kinase cascade con-

sisting of MST1/2 (homologs of the Drosophila kinase Hippo), interacting with the scaffolding proteins Salva-

dor homolog 1 (SAV1) and neurofibromatosis type 2 (NF2/Merlin), as well as LATS1/2, which interact with MOB

kinase activator 1A and B (MOB1A and B) [10,16,154,155] (Figure I). In the canonical Hippo pathway (compo-

nents highlighted in magenta), MST1/2 interact with SAV1 and phosphorylate LATS1/2, which are activated

and phosphorylate YAP/TAZ on five (YAP) and four (TAZ) conserved serine residues. These inhibitory phos-

phorylations of YAP and its paralog TAZ is a signal for the cytoplasmic retention and YAP/TAZ binding to

14-3-3 protein or YAP/TAZ degradation [10,154]. This activation of MST1/2 and LATS1/2 denotes the Hippo

pathway on state, where YAP/TAZ are inactive. In addition, Hippo (MST1/2)-independent, LATS1/2-mediated

regulation of YAP/TAZ also occurs via the MAP4K kinase family [154], as well as by STK25 [156]. Under certain

circumstances the nuclear dbf2-related1/2 kinases (NDR1/2), substrates of MAP4K, MST1/2, and STK24

(MST3), directly phosphorylate and inhibit YAP [157–161]. This additional network of kinases (highlighted in

blue in Figure I) provides additional means for signal input, cellular adaptability, and robustness. Unphos-

phorylated YAP/TAZ translocate into the nucleus where they primarily interact with TEAD1–4 to regulate

gene transcription [13,49,59,162]. The activity of the Hippo pathway core kinases is regulated by various stim-

uli; for example, cell–cell contact, extracellular signals, cell polarity, metabolic state, andmechanotransduction

[10,11,33,59]. In addition, SRC-activating phosphorylation of YAP and SRC-inhibitory phosphorylation of LATS

facilitate YAP nuclear localization and induction of gene transcription [32,36,61,163,164]. Additional kinase

mediated regulation of YAP/TAZ via NLK [119,120], 50 AMP-activated protein kinase (AMPK), cyclin-dependent

kinase (CDK), and others are also incorporated [13,16,154]. The quality of the integrated signals leads either to

activation or inhibition of the cotranscriptional activators YAP and TAZ, and allows a specific and timely regu-

lation of gene transcription [10,11,13,16,162].

Figure I. The Hippo Pathway and Regulation of YAP/TAZ.

Glossary
Adherens and tight junctions:
distinct cell–cell transmembrane
protein complexes that provide
adhesive contacts between
neighboring cells [8,15]. The
extracellular adhesive contacts
between cells are directly linked
to the intracellular actin cytoskel-
eton. A range of intracellular
signaling molecules, such as cat-
enins (adherens junctions) and
zonula occludens (ZO) proteins
(tight junctions) relay the cellular
information. In vertebrate epithe-
lial cells, tight junctions localize
just apical to adherens junctions.
Tight junctions contribute to the
establishment and maintenance
of the apical–basal polarity. Both
types of junctions are regulators
of gene transcription and major
regulators of many signaling
pathways, including the Hippo
pathway [8,15].
Caveolae: 50–80-nm plasma
membrane invaginations
[166,167] involved in a variety of
cellular tasks: endocytosis, main-
tenance of the membrane lipid
composition, metabolism, cell
signaling, and mechanosensing/-
protection [2,5,17,96].
Clathrin-coated pits (CCPs):
80–100-nm clathrin-coated in-
vaginations at the plasma mem-
brane, including a range of
adaptor proteins, which accumu-
late receptors and are able to
pinch off, in a highly regulated
and dynamin dependent manner,
in a process termed clathrin-
mediated endocytosis [80]. CCPs
perform selective vesicular uptake
of cargo [4]. The molecular build-
ing blocks of CCPs are the clathrin
triskelions [184], each composed
of three clathrin heavy chains and
three light chains [4,165]. The
triskila form the polyhedral lattice
coat that makes up the character-
istic clathrin coat [75,165,184].
Clathrin-coated plaques/struc-
tures/lattices (CCSs): unlike
CCPs, plaques are patches of
clathrin accumulated at the
plasma membrane. CCSs have
diverse functions, ranging from
endocytosis to cell adhesion and
mechanotransduction. In some
instances, CCPs form at the rim of
plaques [3,75,84].
Desmosomes: (also known as
maculae adherents) are widely
expressed and composed of the
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thereby relay mechanical responses from large integrin complexes at the plasma membrane. FAs

thereby provide mechanical links between the intracellular cytoskeleton and the ECM. These protein

complexes function as mechanosensors and -integrators and coordinate a diverse array of signaling

molecules [6], including the Hippo pathway [32].

Integrins, via the tyrosine kinase SRC, as well as FAK activate YAP [32–37]. Increased ECM stiffness,

relayed especially via b1 integrins, activates FAK, which in turn activates the tyrosine kinase SRC.
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single transmembrane proteins
desmogleins (Dsgs) and desmo-
collins (Dscs), as well as the cyto-
plasmic localized tarmadillo
family proteins, plakoglobin
(g-catenin), and the plakophilins
(Pkp1–3). Desmosomes tether in-
termediate filaments to the
plasma membrane and neigh-
boring cells and are essential for
stable intercellular cohesion [148].
Extracellular matrix (ECM):
noncellular matrix present in all
tissues and central for cell ho-
meostasis. The composition of the
ECM includes proteoglycans and
fibrous proteins (e.g., collagens,
laminins, fibronectins, and elas-
tins). The ECM provides a com-
plex physical 3D scaffold, that
functions as a cellular anchor. Re-
sponding to mechanical and
chemical stimuli, the ECM is
actively remodeled and mediate
mechanical stresses within and
between cells and tissues [9].
Focal adhesions (FAs): clusters of
proteins; mainly integrins, FAKs,
talins, vinculins, paxilins, etc. FAs
are located in the plasma mem-
brane and interact with the ECM
and the cytoskeleton. They pro-
vide an interface with the ECM
and transmit mechanical stimuli
through multiple cellular signaling
pathways [6].
Integrins: heterodimeric trans-
membrane adhesion receptors
composed of a and b subunits,
forming 24 different mammalian
integrins, which differ in their
binding capacity and cell-type-
dependent expression [30,31].
The adhesion receptors are cen-
tral in several types of plasma
membrane complexes, FAs, and
clathrin-coated structures. In-
tegrins bind ECM fibrils while the
intracellular portion interacts with
the cytoskeleton. Integrins can be
bidirectionally activated by
receiving signals from the ECM as
well as the cytoskeleton [30,31].
Primary cilia: plasma membrane
organelle formed during growth
arrest. It is nonmotile and com-
prises a set structure of microtu-
bules [7,135]. Due to the dynamic
localization of specific receptors,
ion channels, and transporters,
this membrane evagination has a
central role in cell signaling.
Consequently, primary cilia serves
as a sensory cellular extension that
coordinates key cellular functions
[7,135,142].
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SRC subsequently phosphorylates and activates YAP while also phosphorylating and inhibiting

LATS1/2. Consequently, this activates YAP via two separate means (Figure 1A, Box 1) [32,35–37].

Conversely, upon FAK inhibition, YAP nuclear localization and activity are reduced even upon fibro-

nectin stimulation (Figure 1B) [32]. PAK-family kinases are serine/threonine kinases that regulate FA

dynamics and also inhibit LATS-mediated YAP phosphorylation. FAK activates PAK1 via AKT serine/

threonine kinase 1 or the small GTPases, CDC42 or RAC. PAK1 phosphorylates and inactivates the

upstream Hippo kinase activator NF2. As a result, LATS-mediated inhibitory YAP phosphorylation

is downregulated (Figure 1C) [36,38,39]. RAP2 (Ras-related GTPase) facilitates integrin-mediated

cell adhesion [40]. RAP2 is an upstream regulator of the Hippo pathway in response to mechanical

stimuli and transmits changes in ECM stiffness to the cell and regulates YAP/TAZ activity [41]. At

low ECM rigidity, RAP2 activates RhoGTPase-activating protein (RhoGAP), ARHGAP29, andMAP4Ks,

which leads to LATS1/2 activation and inhibitory phosphorylation of YAP/TAZ (Figure 1D) [41–43].

Consequently, upon RAP2 deletion YAP/TAZ remain active, even at low ECM stiffness [41]. Rho-

GTPases, integral parts of FA assembly and stability, activate YAP and TAZ [34,44,45]. The p190 Rho-

GAPs p190A and p190B are RhoAGAPs and predominantly function through RhoA inactivation. Loss-

of-functionmutations of p190A, encoded byARHGAP35, are a frequent occurrence in cancers such as

uterine, bladder, stomach, and lung cancers. Depletion of epithelial p190A and/or p190B (encoded

byARHGAP5) leads to increased RhoA activity [46,47], which causes YAP activation [48]. The epithelial

p190A/p190B-deficient cells do not have any gross defects in adherens or tight junction formation,

but instead have increased FAs [48]. Both p190A and p190B are repressors of contact inhibition of

proliferation (CIP) [47,48]. Likewise, YAP/TAZ activity is repressed upon cell–cell contact [18,49].

p190 RhoGAPs inhibit the Rho–ROCK pathway, which activates LATS1/2 and represses YAP activity

and consequently promotes CIP [48].

Upon mechanical stress, the PDZ and LIM domain containing Enigma proteins bind to a-actinin and

actin stress fibers at FAs. Enigma proteins appear to serve as binding platforms for YAP. Association

of YAP with this complex facilitates the SRC-mediated activating tyrosine phosphorylation. This pro-

tein complex enables YAP nuclear translocation and consequently YAP-mediated gene transcription

[50]. The combined cellular depletion of the two Enigma proteins (encoded by PDLIM5 and PDLIM7)

renders YAP cytosolic and intriguingly even appears to override the Hippo-pathway-mediated regu-

lation of YAP [50].

Additional levels of mechanoregulation of YAP occurs directly at the nuclear pore, some of which

might be FA mediated. The nucleus is elongated upon increased substrate stiffness and tensile

stresses, which, via the linker of nucleoskeleton and cytoskeleton (LINC) complex [51], provides a

three-way feedback between the adhesions, cytoskeleton, and nucleus [52,53]. This response

originates from ECM–FA interactions and is relayed via stress fibers that stretch the nucleus

[52,53], resulting in the widening of the nuclear pore, allowing YAP to enter the nucleus and activate

gene transcription [54]. However, the nucleus is itself mechanosensitive, as exerting tension on iso-

lated nuclei induces stiffening of the nucleus [55], and stretching of the nuclear membrane directly

leads to YAP nuclear translocation [54] implying that FAs, under certain circumstances, are not

needed for this nuclear-mediated YAP filtering. It is still unclear how the nuclear pore retains selec-

tivity upon stretching, and also what role the Enigma proteins (if any) might play in this process [54].

Remodeling of the actin cytoskeleton directly affects FA dynamics and is also a key mediator of YAP/

TAZ activity [33,34,37]. In both mammals and zebrafish, YAP/TAZ activation regulates RhoGAPs,

which consequently remodels the cytoskeleton, and this in return affects the initiation and mainte-

nance of FAs [32,33,56]. YAP/TAZ induction of ARHGAP18 causes increased cytoskeletal tension

[57], while YAP induced activation, in a cell-type-dependent manner, of either ARHGAP28 or

ARHGAP29, results in F-actin destabilization [37,58,59]. Besides interaction with the cytoskeleton,

regulation of FA components via YAP/TAZ is key for FA integrity and dynamics [37,56,60,61]. Expres-

sion of distinct integrins (e.g., aVb1 and aVb3) and FA components are directly or indirectly regulated

by YAP/TAZ–TEAD. Loss of YAP/TAZ–TEAD activity therefore dramatically changes the overall

cellular composition of integrins [56,59]. Furthermore, loss of YAP induces disruption of integrin

subunit interaction [56]. In YAP-deficient cells integrin heterodimer formation is reduced and
34 Trends in Cell Biology, January 2020, Vol. 30, No. 1



Figure 1. Hippo Pathway and Focal Adhesions (FAs).

FAs are mechanotransducing hubs that integrate and relay mechanical cues arising from the extracellular milieu to the cellular cytoskeleton. Interactions

between the Hippo pathway components YAP and TAZ and FAs are multitude and mediated via focal adhesion kinase (FAK) and frequently constitute a

feedforward loop. (A) Increased extracellular matrix (ECM) stiffness is sensed by FAs, which activate SRC and inhibit LATS1/2, and consequently, YAP is

activated. (B) FAK inhibition causes YAP inactivation. (C) FAs activation prompt PAK1 activation that phosphorylates (and thereby inhibits) NF2, which

causes inactivation of LATS1/2, and consequently, YAP is activated. (D) A decrease in ECM stiffness is sensed via FAs and relayed via the GTPase RAP2,

which bind to and stimulate the MAP4Ks causing LATS1/2 activation and YAP inhibition. (E) YAP–TEAD induces THBS1 that engages FAs and activate

FAK. (F) FAs, via FAK and through CDC42, decrease the LATS-mediated inhibitory Ser397 phosphorylation of YAP.
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consequently the number of FAs is decreased [56,61]. Moreover, YAP deficiency leads to decreased

transcription of genes encoding FA components (e.g., vinculin and zyxin) as well as diminished S157

phosphorylation of the actin docking protein (VASP); a site that is required for VASP localization at

FAs. As a consequence, the interaction between FAs and the cytoskeleton is disrupted and subse-

quently reduces FAs in YAP-deficient cells [56]. YAP–TEAD in breast cancer cells directly induces

expression of the adhesive matrix glycoprotein thrombospondin (THBS)1, which activates FAK [60]

(Figure 1E). In addition, YAP-induced ECM components, such as collagens and fibronectin, provide

an additional feed-forward loop that activates FAK [41,56,61]. YAP is required for a specialized type of

directed cell migration termed durotaxis [35]. During durotaxis, anisotropic mechanical stimulation

prompts directed motility through FA and the actomyosin cytoskeleton [41,56,61], and cells respond

to a gradient of extracellular stiffness by migrating toward increasing matrix stiffness [35,62,63]. FAs

mediate via dynamic actin polymerization an oscillating traction force, which mechanically directs this

motility, and both functional FAK as well as YAP are essential [35,62–64]. Durotaxis has wide implica-

tions in both development and cancer [35,62–64]. FAK activation in return promotes FA stability and

tumor invasiveness [60]. In flies, Yki (YAP ortholog) induces Stretchin–Mlck-mediated myosin activa-

tion, which leads to cellular tension and promotes cell growth [65]. An example of the importance

of the complex and integrated FA–YAP/TAZ–TEAD cellular interplay is that in stem cells of the mouse

incisor an integrin a3–FAK–CDC42 signaling axis leads to a decrease in the LATS-mediated inhibitory

S397 YAP phosphorylation [66] (Figure 1F). As a result, YAP translocates to the nucleus and induces

Rheb expression and consequently activates mTOR signaling [66]. Integration of mTOR with the Hip-

po pathway via YAP/TAZ–TEAD-regulated gene induction of prominent mTOR activators is a wide-

spread phenomenon [67–69], and through this it regulates metabolism, cell competition, and cell
Trends in Cell Biology, January 2020, Vol. 30, No. 1 35
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size [67–69]. YAP/TAZ–TEAD drives expression of the heterodimeric disulfide-linked plasma

membrane resident CD98 (encoded by SLC7A5 and SLC3A2) [67,69]. CD98, also known as LAT1,

is an amino acid transporter that transports essential amino acids, such as leucine, into the

cell, which activates mTOR [70], but CD98 also functions as a mediator of integrin-dependent

adhesion [70–73]. CD98 is frequently overexpressed in cancer and increased expression of CD98

activates YAP/TAZ, providing a feed-forward loop [67,69,72]. This integration with mTOR might

explain how integrin a3b1 increases proliferation and sustained tumor growth in skin cancer, and

further indicates the complexity of YAP/TAZ and FA interactions, that influence cell integrity and

cell fate [66,74].

Overall, FAs and integrins are key mechanosensory elements of the cell and regulate YAP activity in

response to mechanical cues [32,35–37]. The interplay and integrated feedback mechanism between

the ECM, integrins, FA, cytoskeleton, and Hippo pathway on multiple levels provide a robust way for

cells to differentially respond to dynamic changes.
The Hippo Pathway, YAP/TAZ, Clathrin-Coated Pits, and Clathrin-Coated
Structures/Plaques/Lattices

CCPs (Box 2) and clathrin-coated structures/plaques/lattices (CCSs) are specialized areas in the

plasma membrane with accumulations of clathrin, which are primed for selective endocytosis, but

also function as adhesion complexes [3,4,75,76]. CCPs and CCSs interact closely with the actin
Box 2. Clathrin-Coated Pits

CCPs transiently assemble at the plasma membrane and are primed to pinch off the membrane in a dynamin-

dependent and highly coordinated process termed clathrin-dependent endocytosis [3] (Figure II). This endo-

cytic process is a strictly regulated and efficient process that selects and concentrates cargo molecules (such as

receptors and ligand bound receptors); these specific extracellular constituents are then internalized

[3,4,75,80,165]. Clathrin-dependent endocytosis (CDE) is fast (the coordinated process from initiation of invag-

ination to fully pinched off vesicles frequently occurs within minutes) [76,80]. CDE is an adaptable process, as

sorting into CDE, the rate of CDE and intracellular sorting of cargo is regulated by cellular stimuli [4,75,80,165].

CDE therefore plays major roles in cellular metabolism, and the ability of cells to respond to and differentiate

between various cellular stimuli. CDE is a prominent way for cells to downregulate cell surface receptors, but

CDE is also important in absorption of essential nutrients, such as by the uptake of the well-established CDE

ligand transferrin, and the activation of intracellular signal transduction cascades [4,75,80,165].

Figure II. Clathrin-Coated Pits.
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cytoskeleton [77–80]. Actin is involved in the endocytic event and both CCPs and especially CCSs

appear to act as platforms for cytoskeletal organization [77–80]. Disruption of the actin–clathrin cross-

talk disorganizes the intermediate filament network [78,81]. CCPs are stiffer than the plasma mem-

brane, which is partly due to the rigidification of the clathrin coat by accessory proteins such as the

AP2 adaptor complex [82]. CCPs in some instances form from CCSs [3,4,75,76]. In a context- and

size-dependent manner, CCPs and CCSs regulate cell adhesion, mechanotransduction, and endocy-

tosis [3,4,75,76].

CCSs, in association with dynamin (DNM)2, a large GTPase that acts as a mechanochemical scaf-

folding molecule [3,4], sense and transduce mechanical stimuli at the plasmamembrane and regulate

YAP/TAZ activity [79]. Upon mechanical stimulation, YAP appears to associate with branching actin

filaments and accumulate around CCSs and CCPs. Importantly, YAP/TAZ interacts with the central

CCP component DNM2 [79] (Figure 2A,B). The spatiotemporal accumulation of YAP/TAZ at actin

filaments surrounding clathrin-coated structures is an additional regulatory mechanotransductive

complex. However, details on how YAP/TAZ are recruited to these plasma membrane structures

remain to be elucidated.

aVb5 integrins are central to CCS stability. The interaction of aVb5 with the ligand vitronectin and

their subsequent clustering is mediated via clathrin adaptor proteins, which is indispensable for

assembly of most CCSs [83]. Knockdown of aVb5 leads to loss of large and static CCSs, while over-

expression results in more stable CCSs [84]. aVb5 integrins are especially important as mechanotrans-

ducers on rigid surfaces. Inhibition of aVb5 reduces YAP/TAZ activity, highlighting the importance of

feedback regulation between integrins, clathrin, and the Hippo pathway (Figure 2C) [84,85].
Figure 2. Hippo Pathway and Clathrin-Coated Pits and Plaques.

Clathrin-coated structures at the plasma membrane are endocytic active structures, but also function as adhesion complexes. Most interactions between

YAP/TAZ and clathrin-coated pits (A and D) as well as plaques (B and C) lead to the activation of YAP (and TAZ), in particular, as a response to

mechanical stress (A and B). (A) Mechanical stimuli induce association of YAP/TAZ with dynamin 2 and YAP/TAZ activity is increased by actin filaments

accumulated around clathrin-coated structures (CCSs). (B) Mechanical forces are transduced at clathrin-coated pits (CCPs) via associated actin filaments

and induce YAP/TAZ activity. (C) Inhibition of aVb5 integrins reduces YAP/TAZ activity. (D) Interaction of tissue inhibitor of metalloproteinase 1 (TIMP1)

with CD63 and integrin b1 activates SRC and RhoA-mediated actin assembly, leading to LATS1/2 inhibition and YAP/TAZ activation.
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Moreover, in the absence of CCSs, aVb5 integrins shuttle to FAs, functionally linking clathrin-coated

structures with FAs [84–87]. Clathrin light chain (CLC)a is required for FAK localization at the adherent

surface during cell spreading, as well as integrin-dependent FAK and SRC activation. CLCa deficiency

inhibits FA maturation, emphasizing the importance of clathrin for plasma membrane mechanotrans-

ductive complexes [88]. The direct interplay between clathrin and FAs in the context of YAP/TAZ is yet

to be explored.

Membrane-type 1 matrix metalloproteinases (MT1-MMPs) are endocytosed predominately in a cla-

thrin-dependent manner [89]. Deficiency of MT1-MMP reduces ECM fibronectin proteolysis and in-

tegrin a5b1 endocytosis. This causes an imbalance between ECM turnover and overall increased

ECM degradation [90,91]. Consequently, clathrin might influence ECM properties by mediating

MT1-MMP turnover, which in turn influences YAP/TAZ activity. Furthermore, the tissue inhibitor of

metalloproteinase (TIMP)1 complexes with MT1-MMP and blunts its enzymatic function [92]. TIMP1

expression is elevated in a range of cancers, where TIMP1 complexes with CD63 and integrin b1,

which activates SRC and promotes RhoA-mediated actin assembly. As a consequence, LATS1/2

are inhibited, leading to activation of YAP/TAZ, favoring cell proliferation (Figure 2D) [93].

The cellular internalization rate of receptors commonly taken up via clathrin, such as VE-cadherin

[94,95], shown in experiments with pulse-labeled VE-cadherin molecules at cell junctions is decreased

upon YAP/TAZ depletion [94]. YAP/TAZ therefore appear to regulate the turnover of CCPs and CCSs.

Further detailed analysis is needed to establish exactly how the endocytic machinery is regulated by

YAP/TAZ. However, YAP/TAZ drive cytoskeletal dynamics [37,57–59] and clathrin-dependent endocy-

tosis likewise relies on actin forces [4,80], and thus the cytoskeletonmight be central in this regulation.

How widespread this process is, and potential further cellular feedback still needs to be established.

CCSs and CCPs engage in a range of cell-type-dependent and dynamic mechanosensory and endo-

somal functions, and consequently, the links to the Hippo pathway and YAP/TAZ activity are likewise

expected to be versatile.
The Hippo Pathway, YAP/TAZ, and Caveolae

Caveolae are 50–80-nm invaginations of the plasma membrane and are composed of specialized

lipids and caveolin (CAV)1–3, cavin 1–4, EHD, and pacsin proteins [2,5,96]. Caveolae-deficient pa-

tients and animal models have lipid and muscular dystrophies [97–102]. A principal function of caveo-

lae is mechanosensing and -protection [96,99,103–107]. Endothelial cells, adipocytes, and myocytes

need constantly to adapt to changes in mechanical stresses, and consequently it might not be coin-

cidental that they harbor a large number of caveolae [108]. Under increased mechanical forces in

stretched cells and upon osmotic shock, caveolae appear to flatten and thereby regulate cellular sur-

face to volume ratio, which, at least in cell types with abundant caveolae, are thought to provide a

plasma membrane buffering capacity (Box 3). In the process of flattening the membrane-associated

part of the caveolar protein complex (e.g., cavins and EHDs) dissociates from the membrane

[99,105,109]. Although on the surface there appear to be overlapping functions between caveolae

and the Hippo pathway, a direct interdependence of central caveolae elements and the Hippo

pathway has only recently been identified (Figure 3) [110,111].

YAP/TAZ are, via TEAD activation, essential for caveolae expression in both mammalian cell culture

and in zebrafish [111]. In YAP/TAZ-deficient cells the expression levels of CAVIN1 and CAV1 are

decreased by >85% [111]. This dramatic effect is caused by cell intrinsic activity and mediated via

YAP/TAZ activation of TEAD. YAP/TAZ knockout therefore causes a remarkable loss of caveolae

and YAP/TAZ-deficient cells therefore lose an entire cellular organelle [111]. Shear stress induces

YAP/TAZ activity [112,113]; a process that is partly caveolae dependent [111] and transduced via

the Hippo pathway, which regulates the transcription of ECM components [59,61,111]. Caveolae pre-

vent rupture of endothelial plasma membranes under physiological hemodynamic force [103,109].

Healthy shear stress sensing and cellular response are crucial, as they shape the vascular system dur-

ing development [114]. Dysfunctioning endothelial shear stress sensing and transduction in adult life

is a major cause of atherosclerosis and vascular malformations [114]. It is possible that dysfunctioning
38 Trends in Cell Biology, January 2020, Vol. 30, No. 1



Box 3. Caveolae

Caveolae, Latin for little caves were discovered in the early 1950s by George Palade and Eichi Yamada

[166,167]. Caveolae are 50–80-nm bulb-shaped actin-linked [168–170] plasma membrane invaginations pre-

sent in the majority of cell types and most abundant in endothelial cells, myocytes, and adipocytes [2,5]. Struc-

turally, caveolae are composed of membrane-embedded caveolins, the peripheral membrane cavins, as well

as the associated elements EHDs, pacsins, and a specialized plasma membrane lipid composition [2,5,96]. The

two essential proteins for caveolae assembly and stability are CAV1 (in nonmuscle cells) and cavin1 [2,5,96].

The current detailed caveolar location of EHDs (predominantly EHD2), cavins, and caveolins is well under-

stood, whereas the location of the pacsin protein is less well characterized. Caveolae are structurally diverse,

which is dictated, at least partly, by different ratios of distinct cavin complexes [2,108,171–173] (Figure III).

Although in the past, caveolae were overwhelmingly categorized as clathrin-independent endocytic structures,

this absolute view of caveolae has now changed, mainly due to the overall limited direct evidence of the en-

docytic event, and especially the lack of any caveolae specific cargoes, in in vitro cell cultures [2,17,174], to

now include a broader role in mechanotransduction and -protection, regulation of membrane lipid composi-

tion, and cell signaling [5,96].

Upon increased cellular stretch, such as occurring under osmotic swelling and mechanical stretches, caveolae

appear to flatten [104,105,175,176] (Figure III). While the plasma-membrane-embedded caveolins are retained

in the plasma membrane, the cavin complexes and additional associated functional caveolae proteins are

released into the cytosol. In the cardiovascular system, hemodynamic forces act tangentially on endothelial

cells [152]. In endothelial cells, caveolae influence blood vessel remodeling and harbor mechanoprotective

properties [103,109]. Increased blood flow induces flattening of caveolae and the apparent release of caveolae

components, such as cavins and EHDs, into the cytoplasm [109]. In particular, proteins of the EHD family,

located at the neck of the caveolae bulb, are important mechanotransductive caveolae components

[173,177–182]. Released EHD2 is SUMOylated and translocates to the nucleus, where it binds to and in a

context-dependent manner represses or activates the transcription factors Krüppel-like factor (KLF)7

[182,183] and modulator of KLF7 activity (MoKA) [182]. This transcriptional complex activates TNF-a, K-Ras

as well as some caveolar genes, which appears to be an EHD2-mediated feedback mechanism to induce cav-

eolae reconstitution [182,183].

Figure III. Caveolae Organization and Dynamics.
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interplay between the Hippo pathway and caveolae underlies these disease states. Although the

exact mechanism by which caveolae regulate the Hippo pathway is incomplete, a few plausiblemech-

anisms exist. In myoblasts stretch-induced caveolae disassembly leads to SRC activation [106], but

whether this SRC activation mediates YAP activation via LATS inhibition, or by directly activating

phosphorylation of YAP directly (Box 1) is still to be explored. The plasmalemmal anionic lipid, phos-

phatidylserine (PS), is an important mediator of cellular signaling [115]. PS is required for caveolae for-

mation [116]. Multiple caveolae components bind to PS and especially the cytosolic recruitment of the
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Figure 3. Hippo Pathway and Caveolae.

Caveolae are composed of caveolin complexes, distinct cavin complexes, EHD, and pacsin proteins. Caveolae

regulate YAP/TAZ in a context- and cell-type-dependent manner. YAP/TAZ–TEAD transcriptionally induce the

essential caveolar genes encoding CAV1 and CAVIN1, which provide context dependent cellular feedback. As

examined in both CAV1 and CAVIN1 deficient in vitro and in vivo models, caveolae are inhibitors of the

expression of a range of extracellular matrix proteins, including various collagens.
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integral caveolar proteins, the cavins, to the plasma membrane proteins appear to depend on the

increased avidity upon PS clustering [2,115]. CAV1 deficiency results in altered cellular lipid compo-

sition, and plasma membrane PS distribution [117]. PS in recycling endosomes activates YAP [118].

The redistributed PS in CAV1-deficient cells might contribute to the altered YAP activity in CAV1-defi-

cient cells.

Hypo-osmotic stress flattens caveolae (Box 3) and also regulates the Hippo pathway. Osmotic stress

stimulates transient YAP nuclear localization by Nemo-like kinase (NLK)-mediated Ser128 phosphor-

ylation of YAP. YAP phosphorylation on Ser127 and Ser128 appears mutually exclusive [119,120]. This

antagonizes and disrupts the inhibitory complex formation between YAP and 14-3-3, and increases

YAP activity even when YAP is phosphorylated at the LATS1/2-mediated Ser127 [119,120]. However,

how and if caveolae and the Hippo pathway are interlinked in the cellular response to osmotic stress is

currently not established.

In addition, mechanoprotective properties of caveolae also take place in hemidesmosomes (HDs).

HDs are epithelial-specific plasma membrane complexes anchoring the cell’s keratin network to

the ECM and protecting the cell from mechanical stress [121]. The HD-specific a6b4 integrin [121]

is cotransported with CAV1 during remodeling processes [122]. Upon cell stretching and hypo-os-

motic shock, a6b4 is released from HDs. The subsequent trafficking of HD integrins is (indirectly)

dependent on caveolae [122], indicating that caveolae are required for HD generation and turnover.

Moreover, a6b4 activates YAP via laminin 322 [123], which additionally might link caveolae and the

Hippo pathway.

Caveolae modulate ECM homeostasis and composition. In mammary glands CAV1 knockout causes

increased expression of ECM components, such as fibronectin, tenascin C, and collagens, which in-

crease ECM stiffness [124]. Cavin1 deficiency in adipocytes likewise increases expression of fibronectin

and collagens [125]. Furthermore, CRISPR genome edited CAV1-deficient NIH3T3 cells (mouse
40 Trends in Cell Biology, January 2020, Vol. 30, No. 1
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fibroblasts) produce, due to increased gene expression, elevated levels of ECM components, such

as elastins and collagens (Figure 3) [126]. Increased levels of ECM due to decreased caveolae

abundance might underlie the lung fibrosis observed in CAV1-deficient animals and in clinical man-

ifestations such as idiopathic pulmonary fibrosis [127,128]. Codependence of protein stability

between CAV1 and CAVIN1 might therefore also explain the increase in collagen and fibronectin

expression in CAV1- and CAVIN1-deficient cell lines and animal models [97,98,108,124–126]. Caveo-

lae-dependent b1 integrin endocytosis is furthermore a mediator of fibronectin matrix turnover.

CAV1-deficient cells have decreased levels of b1 integrin and fibronectin internalization and

increased plasma membrane b1 integrin [129]. b1 integrin is an inhibitor of LATS1/2 and conse-

quently activates YAP, but b1 integrin also appears to activate YAP independently of LATS

[36,130]. The ECM composition dictates Hippo pathway activity and increased ECM rigidity activates

YAP/TAZ [11]. It is therefore plausible that the increased activation of YAP/TAZ in some CAV1

knockout cells might be caused by increased synthesis of ECM. However, in mouse embryonic fibro-

blasts, CAV1 activates YAP in response to substrate stiffness in an actin-cytoskeleton-dependent

manner, which might be an alternate and context dependent way for the cell to adapt to changes

in ECM stiffness [110].

Mechanical cues as well as YAP/TAZ activity regulate senescence [131]. YAP/TAZ bypass senescence

induced by mechanical cues by altering nucleotide metabolism [131]. Regulation of senescence is

furthermore regulated by CAV1 and K-Ras. CAV1 deficiency reduces oncogenic K-Ras-induced pre-

mature senescence. K-Ras also induces the inhibitory interaction of CAV1 with the central detoxifier

MTH1 limiting senescence [132]. Furthermore, in pancreatic cancer, K-Ras regulates YAP activity and

YAP is a well-characterized negative regulator of senescence [133,134]. Consequently, caveolae

might also be linked to YAP activity via K-Ras and regulation of senescence; however, a potential

causative interaction is still missing.

In conclusion, both caveolae and the Hippo pathway are key regulators of central cellular processes

[5,12,110,111]. The direct regulation of essential caveolar genes by the Hippo pathway [111] high-

lights the importance of this robust cellular feedback [110,111].
The Hippo Pathway, YAP/TAZ, and Primary Cilia

Primary cilia are nonmotile plasma membrane evaginations and play central cellular roles in sensing

both mechanical (cilium bending) and chemical stimuli [7,135].

YAP/TAZ and the primary cilia are reciprocal negative regulators. Cytoplasmic retention or YAP/TAZ

deficiency correlates with cell rounding, smaller cell size, and increased cilia formation

[33,67,136–139]. The kinases LIMK2 and TESK1 are actin-remodeling factors that suppress ciliogenesis

by inhibiting ciliary vesicle trafficking at least partly via YAP/TAZ activation (Figure 4A) [139]. MST1 is

activated during ciliogenesis and localizes to the basal body of cilia, whereMST1/2 facilitate develop-

ment of mature primary cilia by promoting localization of multiple ciliary cargoes (e.g,. RAB8A, Smo,

and RPGR) [140]. Aurora kinase (AURK)A localizes to the basal body of the cilium and induces ciliary

resorption in response to growth factor stimulation [141]. MST1/2 mediate direct phosphorylation

of AURKA, which interferes with formation of the AURKA/HDAC6 cilia-disassembly complex. MST1/

2 thereby inhibit primary cilia disassembly [140] (Figure 4B). Similarly, expression of the primary cilia

disassembly factors AURKA and PLK1 are increased upon YAP activation (Figure 4C) [140]. Comple-

mentary experiments using cytochalasin D, an actin destabilizer that causes cytoplasmic YAP/TAZ,

also induces ciliogenesis and elongated cilia (Figure 4D) [139]. The cilia-associated proteins nephro-

cystin (NPHP)4 and NPHP9 inhibit the Hippo kinase cascade [137,138]. NPHP4 binds to and inhibits

LATS1, whereby NPHP4 facilitates YAP/TAZ-mediated cell proliferation (Figure 4E) [137]. Inhibition

of YAP/TAZ expression and their cytoplasmic retention have been linked to cilia disassembly, indi-

cating the prominent role of YAP/TAZ activity in suppressing ciliogenesis.

Primary cilia are cellular sensory modalities, and links between the Hippo pathway and this cellular

antenna need further exploration. YAP/TAZ drive the expression of a range of prominent signaling
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Figure 4. Hippo Pathway and Primary Cilia.

Primary cilia are microtubule-based organelles that coordinate signal transduction. Several components involved in cilia formation and cilia disassembly also

regulate YAP/TAZ activity. (A) The kinases LIMK2 and TESK1 inhibit ciliogenesis (at least partly) via YAP/TAZ activation. (B) MST1/2 facilitate development

and stability of mature primary cilia by inhibition of YAP/TAZ activity and inhibitory phosphorylation of Aurora kinase A (AURKA). (C) YAP activation increases

the expression of the primary cilia disassembly factors AURKA and PLK1. (D) The actin destabilizer cytochalasin D (CytoD) causes YAP/TAZ inactivation and

induces ciliogenesis and elongated cilia. (E) The cilia-associated protein nephrocystin-4 (NPHP4) binds to LATS1 and inhibits LATS-mediated

phosphorylation of YAP/TAZ. Consequently YAP/TAZ is activated.
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ligands and receptors [10], such as those involved inWnt, BMP, Notch, growth factors, and transform-

ing growth factor (TGF)-b signaling, which also play key roles in primary cilia biogenesis and function

[7,135,142]. Importantly, YAP/TAZ activity might be indirectly regulated by the interdependent inter-

actions between ciliogenesis and caveolae. Pacsins and EHDs stabilize and regulate the dynamics of

caveolae [2,5,96,143] as well as facilitate tubulation in ciliogenesis [144,145]. In immature cilia, pacsins

function at ciliary vesicles promoting the transition of the mother centriole to the basal body, while in

mature cilia both pacsins and EHDs are at the ciliary pocket membrane and leave the cilium via mem-

brane tubules [145]. A CAV1 isoform (CAV1a) inhibits primary cilia length elongation via ROCK-medi-

ated regulation of RhoA [146], which might be caused by a CAV1-dependent failure in resorption of

the mature primary cilia [147]. It is therefore important to acknowledge the challenges in determining

what is correlative and what is causative, in order to decipher the full molecular functional interactions

of these prominent cellular signaling nexuses with the Hippo pathway.
Concluding Remarks

The plasma membrane is a dynamic chemical and mechanical transducer. Adaptable sensing of

extracellular signals is essential in order to ensure context-specific cell homeostasis and regulate dif-

ferentiation. Tight and adherens junctions are established major intercellular regulators of the Hippo

pathway [10,15,16]. In addition desmosomes [148], specialized adhesive protein complexes that also

localize to intercellular junctions, likewise regulate YAP/TAZ [149,150]. Dysregulation of desmosomes

causes context-dependent YAP regulation [149,150], andmultiple desmosome components are likely

YAP/TAZ–TEAD target genes, as informed by their presence in large scale chromatin immunoprecip-

itation (ChIP)-seq analysis of Tead4 target genes [151], providing further cellular feedback.
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Key Figure

Hippo Pathway and Plasma Membrane Interactions

Figure 5. Focal adhesions (FAs), clathrin-coated pits (CCPs) and plaques (CCSs), as well as caveolae and primary

cilia have strong reciprocal interactions with the Hippo pathway, resulting in a context dependent activation or

inhibition of YAP/TAZ activity directed from the plasma membrane. The weight and direction of the arrows

indicate the collective reported scale of the effects. Also depicted are cellular junctions (tight junctions,

adherens junctions, and desmosomes) as additional established regulators of the Hippo pathway.

Abbreviations: add., additional; ass., associated.

Outstanding Questions

How are the cellular Hippo

pathway components spatiotem-

porally regulated?

Subcellular localization drives

compartmentalization and protein

function. Specific Hippo pathway

components temporally localize to

junctional complexes. However,

precise and dynamic information

on the subcellular localization of

Hippo pathway components in

general, especially in vertebrates,

is currently not well established. It

is anticipated that Hippo pathway

components might also be subcell-

ularly distributed to additional

plasma membrane domains.

Genome editing, live cell imaging,

and super-resolution microscopy

at endogenous levels appear to

be fertile avenues to explore.

Caution must be taken to ensure

that genome-tagged versions of

the Hippo pathway components

conserve their cellular dynamics

and functionality. Recently devel-

oped proximity-dependent chemi-

cal biology approaches, such as

APEX, BioID, as well as bio-

orthogonal noncanonical amino

acid tagging (BONCAT) might

prompt further insights into the

interplay between these signaling

modalities.

Does the Hippo pathway alter the

plasma membrane glycocalyx and

lipid composition?

Determining the impact that YAP/

TAZ activity has on the cellular gly-

cocalyx and plasma membrane

lipid composition could reveal

fundamental new insights.

How widespread is Hippo pathway

‘moonlighting’?

It is becoming clear that Hippo

pathway core kinase components

integrate additional seemingly in-

dependent substrates into

context-specific signaling. The field

might need to brace itself for sur-

prising discoveries, where Hippo

pathway components moonlight in

distinct functions away from direct

regulation of the core Hippo

pathway. However, it remains
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Additional, highly specific plasma membrane elements, such as FAs, CCPs and plaques, caveolae,

and primary cilia are key to enable a defined localized response to a large variety of signals [3–7].

Those plasma membrane structures dynamically sense and transmit chemical and mechanical stimuli

to the Hippo pathway (Figure 5, Key Figure) [2–8,11]. Most cell types, in particular endothelial cells,

myocytes, and bone cells, constantly experience mechanical forces through shear stress and tension

[6,9,11,152]. The Hippo pathway is a nexus and integrator of cellular responses to tension, stretching,

and changes of ECM properties [11,33] and contains multiple levels of robust cellular feedback loops,

which ensures cellular homeostasis [37,111,153]. YAP/TAZ–TEAD also directly regulate the expres-

sion of central components of additional cell signaling pathways, such as Wnt, TGF, Notch, and

BMP [10], and several of these have direct roles in for instance the primary cilia [7,135,142]. Impor-

tantly, the central plasma membrane components discussed here also interact with each other in or-

der to respond to complex stimuli. This widespread spatiotemporal interplay between prominent

members of apparent distinct plasma membrane domains highlight the intricate complexity of the

plasma membrane, and therefore, also ultimately their dynamic interactions with the Hippo pathway.

Furthermore, due to the wide range of transcriptionally regulated YAP/TAZ target genes, and conse-

quently, the central role of YAP/TAZ in most cellular processes, it remains challenging to study the

effect of potential additional roles of upstream Hippo pathway kinases and scaffolding proteins in

regulating these cellular plasma membrane domains separately and independently of YAP/TAZ
Trends in Cell Biology, January 2020, Vol. 30, No. 1 43



challenging to study these moon-

lighting functions, as the parallel

transcriptional regulation via YAP/

TAZ drives a multitude of cellular

processes.

Does the Hippo pathway regulate

endocytosis?

Endocytosis is a major cellular

regulating hub. The various types

of endocytosis help regulate the

plasma membrane abundance of

receptors, and function to inter-

nalize ligands and nutrients. Many

toxins, bacteria, and viruses hijack
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regulation. It should be acknowledged that obtaining mechanistic insights to decipher the impor-

tance of one type of regulation and to distinguish that from other inputs is conceptually challenging.

The chemical and mechanical clues cells respond to are diverse. Interconnecting plasma membrane

structures play central roles in sensing and relaying extracellular signals to the Hippo pathway. This

compartmentalization allows for a dynamic and context-specific response. However, our current un-

derstanding of how this delicate and dynamic interplay is regulated is far from complete (see

Outstanding Questions). Future discoveries will provide mechanistic insights into cellular processes

relevant in development, regenerative medicine, and disease.
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and usurp the cellular entry machin-

ery. One could hypothesize that

pathogens might have evolved to
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