
Chapter 4

Circuit model for quantum computation

In quantum computation, the basic ingredients are qubits and gates. The composition of di↵erent gates acting
on a series of qubits is what we called an algorithm. While the single qubit is just a two-dimesional quantum
system (see for example Sec. 1.5), here we introduce quantum gates and some algorithms.

4.1 Qubit gates

The single qubit algebra can be described in terms of the identity 1̂ and Pauli �̂x, �̂y and �̂z operators. All
single qubit gates are a linear composition of these. In particular, they can be visualised as rotations of the state
| i on the Bloch sphere. The three elementary rotations by an angle ✓ around the Cartesian axes are defined
as R̂j(✓) = e�i✓�̂j/2 for j = x, y, z. In particular, in the computational basis, which is the one mainly used in
quantum computation, one has

Rx(✓) =

✓
cos(✓/2) �i sin(✓/2)

�i sin(✓/2) cos(✓/2)

◆
,

Ry(✓) =

✓
cos(✓/2) � sin(✓/2)
sin(✓/2) cos(✓/2)

◆
,

Rz(✓) =

✓
exp(�i✓/2) 0

0 exp(i✓/2)

◆
.

(4.1)

Then, the rotation of an angle ✓ around the unit axis n is given by

R̂n(✓) = e�i✓n·�̂/2 = cos(✓/2)1̂ � i sin (✓/2)n · �̂. (4.2)

Beside the rotations, there are six important single-qubit gates that are standard. These are X, Y , Z and

H =
1p
2

✓
1 1
1 �1

◆
, S =

✓
1 0
0 i

◆
, T =

✓
1 0
0 ei⇡/4

◆
. (4.3)

In particular, X, Y and Z are respectively the Pauli operators �̂x, �̂y and �̂z represented in the computational
basis, and H is known as the Hadamard gate.

Eventually, the state of the qubit is measured. In particular, this is always the measurement of �̂z and one
always obtains one of the two discrete outcomes: “0” or “1”. Given the generic state | i = ↵ |0i + � |1i, with
↵ and � being complex and |↵|2 + |�|2 = 1, then one has a probability p0 = |↵|2 to have the outcome “0” and
p1 = |�|2 to have the outcome “1”.
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Example 4.1
The gate X flips states. Indeed,

X

✓
↵
�

◆
=

✓
0 1
1 0

◆ ✓
↵
�

◆
=

✓
�
↵

◆
. (4.4)

Example 4.2
The Hadamard gate H generates uniform superpositions. In particular, one has

H

✓
1
0

◆
=

1p
2

✓
1 1
1 �1

◆ ✓
1
0

◆
=

1p
2

✓
1
1

◆
,

H

✓
0
1

◆
=

1p
2

✓
1 1
1 �1

◆ ✓
0
1

◆
=

1p
2

✓
1

�1

◆
.

(4.5)

Namely, one has
Ĥ |0i = |+i , and Ĥ |0i = |�i , (4.6)

where |±i = (|0i ± |1i)/
p

2. Notably, the Hadamard gate maps the basis of �̂z in that of �̂x, and back.

Exercise 4.1
Express the Hadamard gate as a rotation.

Exercise 4.2
Prove that, given two fixed non-parallel normalised vectors n and m, any unitary single qubit gate Û can
be expressed as

Û = ei↵R̂n(�)R̂m(�)R̂n(�), (4.7)

with ↵,�, �, � 2 R.

It is common to represent quantum circuits with diagrams with the time running from left to right, where
lines correspond to qubits and boxes to gates. For example, the following diagram

|0i H RZ(✓) (4.8)

corresponds to the following logical consecutive operations

0) Prepare the qubit in the ground state |0i.
1) Apply the Hadamard gate H.
2) Apply a rotation of an angle ✓ around the z axis.
3) Measure the state of the qubit.

When one is working with more than one qubit, there is the need to construct the representation of the states
the common computational basis. In the case of two qubits, the basis is given by { | 00i, | 01i, | 10i, | 11i },
whose representation in the common computational basis is

|00i ⇠

0

BB@

1
0
0
0

1

CCA , |01i ⇠

0

BB@

0
1
0
0

1

CCA , |10i ⇠

0

BB@

0
0
1
0

1

CCA , |11i ⇠

0

BB@

0
0
0
1

1

CCA , (4.9)

where the symbol ⇠ indicates that the state | i was represented on the computational basis. This is constructed
through the tensor product, i.e.



42 4 Circuit model for quantum computation

| �i ⇠
✓
 1

 2

◆
⌦

✓
�1
�2

◆
=

0

BB@

 1�1
 1�2
 2�1
 2�2

1

CCA . (4.10)

Owning the computational representation, we can introduce some 2-qubit gates. One of the most useful
among these gates is the CNOT or control-NOT gate:

CNOT =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA , (4.11)

and is represented as

or equivalentely as
X

(4.12)

It acts on a target qubit (qubit 1) in a way that depends on the state of a control qubit (qubit 0). Namely, it
applies an X gate to the qubit 1 if the state of qubit 0 is 1, otherwise it does not change the state:

CNOT |00i = |00i , CNOT |01i = |01i , CNOT |10i = |11i , CNOT |11i = |10i . (4.13)

Exercise 4.3
Prove that CNOT can generate entanglement.

A second important 2-qubit gate is the SWAP, which swaps the state between two qubits. Namely

SWAP |ai ⌦ |bi = |bi ⌦ |ai . (4.14)

A SWAP operation can be constructed using a concatenation of CNOT gates. In particular:

SWAP ⇠ = = (4.15)

Similarly as the CNOT, one can construct a controlled unitary gate, where the state of the control qubit
determines if a unitary gate Û is applied to the target qubit:

C(U) ⇠

0

BB@

1 0 0 0
0 1 0 0
0 0 U00 U01

0 0 U10 U11

1

CCA ⇠
U

(4.16)

where Uij are the matrix elements of Û .
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4.1.1 Hadamard test

The Hadamard test is a useful tool for computing expectation values of a unitary, black-box operator Û with
respect to a state | i, which can be in principle a multi-qubit state. Since in general Û is not Hermitian, one
measures independently the real and immaginary part of h |Û | i.

The circuit for the real Hadamard test is

|0i

| i

H H

U

(4.17)

and it performs as follows. The first step is to generate a superposition in the first qubit (qubit 0):

|0i | i Ĥ⌦1̂���! 1p
2
(|0i + |1i) | i . (4.18)

Then, we entangle the qubits with the C(U) gate:

1p
2
(|0i + |1i) | i C(U)���! 1p

2
(|0i | i + |1i Û | i), (4.19)

and apply the Hadamard gate to qubit 0:

Ĥ⌦1̂���! 1
2

h
(|0i + |1i) | i + (|0i � |1i)Û | i

i
= 1

2

h
|0i (1̂ + Û) | i + |1i (1̂ � Û) | i

i
. (4.20)

Finally, one measures qubit 0, and the probability of finding the qubit in |0i is

P (|0i) = 1
4 h |

⇣
1̂ + Û†

⌘ ⇣
1̂ + Û

⌘
| i = 1

2

⇣
1 + < h |Û | i

⌘
. (4.21)

Thus, by measuring only one qubit (qubit 0) one has an indication of the real part of h |Û | i. To estimate the
imaginary part, the circuit is modified as follows:

|0i

| i

H S† H

U

(4.22)

Then, the state before the measurement is

1
2

h
|0i (1̂ � iÛ) | i + |1i (1̂ + iÛ) | i

i
, (4.23)

and correspondingly one has

P̃ (|0i) = 1
2

⇣
1 + = h |Û | i

⌘
. (4.24)

Notably, to well characterise these probabilities, there is the need to run the protocol several times to construct
a statistics.

Exercise 4.4
Prove that the circuit in Eq. (4.22) provides the result in Eq. (4.24).


	The Statistical Operator
	Statistical Operator and Density Matrix
	The physical meaning of the density matrix elements
	Propriesties of the Statistical Operator
	Pure states and statistical mixtures
	The Bloch Sphere
	Quantum Mechanics in the Statistical operator formalism

	The Reduced Density Matrix
	Open Quantum Systems, Partial Trace and the Reduced Density Matrix
	Quantum operations and the Kraus-Stinespring theorem
	Quantum operations on qubits

	Quantum Dynamical Semigroups
	On the linearity of the dynamics
	Strongly Continuous Semigroup
	Quantum Dynamical Semigroup
	Microscopic derivation of the Born-Markov master equation
	Born approximation
	Markov approximation

	Lindblad evolution in Quantum Information theory
	Unravelling formalism for noises

	Circuit model for quantum computation
	Qubit gates
	Hadamard test

	No-cloning theorem
	Dense coding
	Quantum teleportation
	Quantum Phase estimation
	Single-qubit quantum phase estimation
	Kitaev's method for single-qubit quantum phase estimation
	n-qubit quantum phase estimation

	Harrow-Hassidim-Lloyd algorithm

	Variational Quantum Algorithms
	The Ising model
	Mapping combinatorial optimisation problems into the Ising model
	Adiabatic Theorem
	Quantum Annealing
	Quantum Approximate Optimisation Algorithm (QAOA)
	Variational Quantum Eigensolver (VQE)

	Noisy Intermediate-Scale Quantum (NISQ) computation
	Noise and error action on a single qubit circuit
	Miscalibrated gates
	Projection noise and sampling error
	Measurement error
	Environmental noise
	Global noise action


	Quantum Error Correction and Mitigation
	Quantum Error Correction
	Classical error correction
	Quantum information context
	The 3-qubit bit-flip code
	The 3-qubit phase-flip code
	The 9-qubit Shor code
	On the redundancy and threshold

	Stabiliser formalism
	Inverting quantum channels
	Correctable errors
	Stabilisers
	Normalisers and Centralisers
	Stabiliser code

	Surface code
	Detecting errors

	Quantum Error Mitigation
	Zero noise extrapolation
	Probabilistic error cancellation


	Solutions of the exercises
	Solution to Exercise 1.1
	Solution to Exercise 1.2
	Solution to Exercise 1.3
	Solution to Exercise 1.4
	Solution to Exercise 2.1
	Solution to Exercise 3.1
	Solution to Exercise 3.2
	Solution to Exercise 3.3
	Solution to Exercise 4.1
	Solution to Exercise 4.2
	Solution to Exercise 4.3
	Solution to Exercise 4.4
	Solution to Exercise 7.1
	Solution to Exercise 7.2

	Index

