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A.6 Solution to Exercise 3.1

Consider the map

Ts[⇢̂(0)] = ⇢̂(s) = e�4s⇢̂(0) +

�
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�

2
1̂. (A.20)

If we set s = 0, we trivially find
T0[⇢̂(0)] = ⇢̂(0), (A.21)

thus T0 = id. Then, we apply Tt to the expression in Eq. (A.20):
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(A.22)

which covers TtTs = Tt+s. Finally, limh!0 Tt+h[⇢̂(0)] = Tt[⇢̂(0)] can be obtained by applying the limit to
Eq. (A.22).

A.7 Solution to Exercise 3.2

For ✏ = i✏0 with ✏0 2 R, we have that Eq. (A.27) becomes
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where, notably, in the last term one has ✏20 in place of ✏2 = �✏20. This is due to the constraint on the conservation
of the norm for | ti, which reflects in the preservation of the trace of ⇢̂t. Similarly, the equation for h t| reads
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By following the calculations already performed, we find the following master equation
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which has the same for of Eq. (3.79) with ✏ substituted by ✏0.

A.8 Solution to Exercise 3.3

Let us consider Eq. (3.79) with L̂†
k = L̂k. In such a case, the master equation can be rewritten as



108 A Solutions of the exercises
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which can be obtained from the unravelling
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The relation between the two holds also for the specific case of L̂k = Âk � h t|Âk| ti, for which the unravelling
becomes non-linear in | ti:
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However, in such a case, in the commutators appearing in Eq. (A.26) have the following structure:

h
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i
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i
, (A.29)

which is valid for any arbitrary operator X̂. It follows that the master equation becomes
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which notably is linear in the state ⇢̂t.
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