
Geophysical Fluid Dynamics

Lecture V, VI, VII: Conservation Laws

1 Leibniz Theorem for time derivative of volume integrals
2 Conservation of Mass - Continuity Equation

• Conservation Equation for a tracer
• Advection-Diffusion
• Diffusion

3 Conservation of Momentum
• Cauchy
• Navier-Stokes Equations
• Euler Equation
• The case of a rotating frame (towards the GFD Eq.)

4 Conservation of Energy
• Kinetic, Mechanical, Potential and Total Energy
• First and Second law of thermodynamics
• Bernoulli’s Equation - Principle



Geophysical Fluid Dynamics

Lecture VI: Conservation Laws

1 Conservation of Momentum
• Cauchy
• Navier-Stokes Equations
• Euler Equation
• The case of a rotating frame (towards the GFD Eq.)



Conservation of Momentum: Forces in Fluids

1 BODY FORCES: without physical contact. They exist
because the medium is in a force field (gravitational,
magnetic, electrostatic, electromagnetic, ...). We denote a
body force by f.

2 SURFACE FORCES: forces exerted on an area element by the
surrounding through direct contact. They can be normal or
tangential to the area (we know this).

τn ≡
dFn
dA

,τs ≡
dFs
dA

(1)



Conservation of Momentum

We simply apply Newton’s law of motion to an infinitesimal fluid
element. (The net force on the element must equal mass times the
acceleration of the element)



Conservation of Momentum

Considering the torque on a centroid axis and the motion for an
infinitesimal fluid element, the sum of the Surface Forces in the x1
direction then becomes
(τ11 + ∂τ11

∂x1
dx1
2 − τ11 + ∂τ11

∂x1
dx1
2 )dx2dx3 + (...)dx1dx3 + (...)dx1dx2.

Reducing to

(
∂τ11

∂x1
+

∂τ21

∂x2
+

∂τ31

∂x3

)
dx1dx2dx3 =

∂τj1

∂xj
dV (2)



Conservation of Momentum: Cauchy’s Equation

(
∂τ11

∂x1
+

∂τ21

∂x2
+

∂τ31

∂x3

)
dx1dx2dx3 =

∂τj1

∂xj
dV (3)

So generalizing, the i-component of the SURFACE FORCE per

unit volume is
∂τij

∂xj

[We can prove that the stress tensor is symmetric, so that τji = τij ]
Newton’s law gives

ρ
Dui
Dt

= fi +
∂τij

∂xj
(4)



Conservation of Momentum: Cauchy’s Equation

Equation of motion relating acceleration to the net force at a point
and holds for any continuum, solid or fluid, no matter how the
stress tensor τij is related to the deformation field.

ρ
Dui
Dt

= fi +
∂τij

∂xj
(5)

where f is a BODY FORCE per unit mass (like Newtonian gravity),
so that ρf is the body force per unit volume. This is the
CAUCHY’S EQUATION.



Constitutive Equation for Newtonian Fluids

A relation between stress and deformation in a continuum is called
a constitutive equation. It linearly relates the stress to the rate of
strain in a fluid medium.
In a fluid at rest, there are only normal forces / stresses. And we
know that the stress tensor is isotropic. A second-order isotropic
tensor is the Kronecker delta δ . Any isotropic tensor must be
proportional to δ . Therefore, in static, the stress must take the
form

τij =−pδij , (6)

where p is thermodynamic pressure, f (ρ,T ). The negative sign is
because the normal components of τ are considered positive if they
indicate tension, rather than compression.



Constitutive Equation for Newtonian Fluids
A moving fluid develops more components of stress due to
viscosity, and shear stresses develop. The diagonal terms of τij are
now unequal.

τij =−pδij + σij . (7)

σij is the deviatoric stress tensor, nonisotropic, related to the
velocity gradient tensor ∂ui/∂xj :

∂ui/∂xj = eij + rij (8)

The rotation tensor, the antisymmetric part, can not generate
stress as it represents fluid rotation and not deformation.
Stresses are generated by the strain rate tensor eij .

eij ≡
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(9)

... Now a few assumptions (and jumps) ...



Constitutive Equation for Newtonian Fluids

• Hypothesis of Newtonian Fluid: We assume a linear
relationship between shear stresses and deformations
τ = µ(du/dy), so that we have

σij = Kijmnemn. (10)

Kijmn is a 4th order tensor (81 components) that depends on
the thermodynamic state of the medium. This says that each
stress component is linearly related to all nine component of
eij → 81 constants are needed for this.



Constitutive Equation for Newtonian Fluids

• Hypothesis of isotropic medium: from 81 coefficients of
Kijmn we go down to 3!

• Hypothesis of symmetric σij : from 3 coefficients of Kijmn

we go down to 2!

• Stokes’ Hypothesis: pressure p of the fluid is equal to the
thermodynamic pressure or to that of the static fluid, p̂. From
2 coefficients of Kijmn we go down to 1!



Constitutive Equation for Newtonian Fluids
So from here:

τij =−pδij + σij .

we get to the final form of the constitutive equation, which is

τij =−(p+
2

3
µ∇ ·u)δij + 2µeij (11)

• The linear relation between τ and e is consistent with
Newton’s definition of viscosity coefficient in a parallel flow
u(y), so that Eq.(??) gives a shear stress of τ = µ(du/dy).
Hence, this only applies to Newtonian fluids.

• The nondiagonal terms of Eq.(??) relate the shear stress to
the shear strain rate

τ12 = µ

(
∂u1
∂x2

+
∂u2
∂x1

)



Navier-Stokes Equations

Now let’s plug the constitutive equation into the Cauchy’s
equation to get the Equation of Motion for a Newtonian Fluid

Remember Cauchy’s Eq.:

ρ
Dui
Dt

= fi +
∂τij

∂xj

and the constitutive Eq.:

τij =−(p+
2

3
µ∇ ·u)δij + 2µeij

The two give the general form of the Navier-Stokes equation:

ρ
Dui
Dt

= fi −
∂p

∂xi
+

∂

∂xj

[
2µeij −2/3µ(∇ ·u)δij

]
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Navier-Stokes Equations

ρ
Dui
Dt

= fi −
∂p

∂xi
+

∂

∂xj

[
2µeij −2/3µ(∇ ·u)δij

]
we have noted that (∂p/∂xj)δij = (∂p/∂xi ).
Viscosity µ is generally a function of the thermodynamic state. For
fluids, generally µ depends strongly on Temperature:{

µ decreases as T increases for Liquids
µ increases as T increases for Gases



Navier-Stokes Equations

- If temperature differences are small enough within the fluid, then
µ ∼ constant.
- Also, for incompressible fluids: ∇ ·u = 0, and so we can write:

ρ
Dui
Dt

= fi −
∂p

∂xi
+ 2µ

∂

∂xj
eij

which is

ρ
Dui
Dt

= fi −
∂p

∂xi
+ µ∇

2ui

or

ρ
Du

Dt
= f−∇p+ µ∇

2u



Navier-Stokes Equations

If we neglect viscous effects , which is true far from boundaries, we
obtain the Euler Equation:

ρ
Dui
Dt

= fi −
∂p

∂xi

or

ρ
Du

Dt
= f−∇p



Body forces on a Rotating frame

1 In a non-rotating frame: f = g

2 In a rotating frame: f = g +{apparent force due to rotation}

It can be easily proved that, in a rotating frame of reference (such
as the Earth), the velocities between a fixed frame of reference and
a frame of reference rotating at a uniform angular velocity Ω are
related by:

uf = ur + Ω× r, (12)

where r is the position vector. This means that, after some
manipulation (see any textbook ...),

af = a + 2Ω×u. (13)

So that the (inertial) acceleration equals the acceleration in a
rotating system plus the Coriolis acceleration.



The Coriolis force / acceleration / effect

We now have

Du

Dt
+ 2Ω×u = g− 1

ρ
∇p+ ν∇

2uij ,

where ν = µ/ρ is the kinematic viscosity.
The earth rotates at a rate

Ω = 2π rad/day = 0.73×10−4s−1

We decompose the components of the angular velocity of the earth:

2Ω×u = 2
[
(Ωyw −Ωzv)î + (Ωzu−Ωxw)ĵ + (Ωxv −Ωyu)k̂

]
(14)



Thin layer approximation on a rotating sphere

For atmosphere and oceans the depth scale of flow ∼ few
kilometers. The horizontal scale is instead ∼ hundreds/thousands
of kilometeres.
So we can make the thin layer approximation: w << u . We can
understand this from the continuity equation.
So the Coriolis components reduce to:

2Ω×u = 2
[
−Ωzv î + Ωzuĵ + (Ωxv −Ωyu)k̂

]
. (15)

Note that:

Ωz = Ωsinθ

Ωy = Ωcosθ

g =−gk̂

and let’s define f = 2Ωsinθ (twice the vertical component of Ω).



The Coriolis force / acceleration / effect

Planetary Vorticity (or Coriolis parameter, or Coriolis frequency):

f = 2Ωsinθ (16)

f is max at the poles (max spin) and zero at the Equator (only
translation).



The Equations of motion on a rotating earth

2Ω×u = 2
[
− fv î + fu ĵ−Ωsinθu k̂

]
. (17)

Du

Dt
− fv = − 1

ρ

∂P

∂x
+ ν∇

2u (18)

Dv

Dt
+ fu = − 1

ρ

∂P

∂y
+ ν∇

2v (19)

Dw

Dt
− (2Ωcosθ)u = − 1

ρ

∂P

∂z
+ ν∇

2w −g (20)

but the vertical component of the Coriolis force is negligible
compared to the dominant terms in the vertical equation of motion



The Equations of motion on a rotating earth

Du

Dt
− fv = − 1

ρ

∂P

∂x
+ ν∇

2u (21)

Dv

Dt
+ fu = − 1

ρ

∂P

∂y
+ ν∇

2v (22)

Dw

Dt
= − 1

ρ

∂P

∂z
+ ν∇

2w −g (23)

The equation of motion for a thin shell on a rotating earth.
Only the vertical component of the earth’s angular velocity appears
as a consequence of the flatness of the fluid trajectories.



Conservation laws in fluid mechanics

Du

Dt
− fv = − 1

ρ

∂P

∂x
+ ν∇

2u (24)

Dv

Dt
+ fu = − 1

ρ

∂P

∂y
+ ν∇

2v (25)

Dw

Dt
= − 1

ρ

∂P

∂z
+ ν∇

2w −g (26)

Dρ

Dt
+ ρ∇ ·u = 0 (27)

Next, conservation of Energy and Bernoulli’s Equation.


