
1/558 – Data Model ImplementationADM

Lecture 8 – Data Model Implementation

Advanced Data Management
Data Science and Scientific Computing / UniTS – DMG
Scientific and Data-Intensive Computing / UniTS – DMG

2/558 – Data Model ImplementationADM

Data model implementation

Once we have designed a data model in UML, we need to convert the
diagrams into machine readable formats

To perform additional validations to the data model, e.g. homogeneity,
common naming rules

To be able to persist objects and relations which are compliant with the
designed data model

The implementation depends on the underlying technology:

For relational databases: database schema

For document oriented databases: the XML Schema Language (XSD) or
the JSON Schema (JavaScript Object Notation)

Document based systems can also be built on top of relational
databases

In this lecture we will focus on the relational database schema.

3/558 – Data Model ImplementationADM

Object-relational impedance mismatch

A set of conceptual and technical difficulties that are often encountered when
a relational database management system is been served by an application
program written in an object oriented language

We have already discussed some solutions when comparing the UML model
with the IE model in the previous lecture

Additional difficulties:
Hierarchical structure:

In UML, we can define complex hierarchical structures. A class can “aggregate”
instances of other classes. The relational model only “accepts” atomic types for the
entity attributes and relations

In the relational model, children point to their parent, while in the hierarchical model
parents point to their children

Inheritance:
Not directly supported by the relational model. Several mappings can be implemented to
keep the inheritance information

Class normalization vs data normalization

4/558 – Data Model ImplementationADM

Examples

Many-to-many associations, when
mapped to a relational schema,
require an additional table, i.e. an
additional relation

In the relational schema we cannot
define an upper limit on the
multiplicity

Abstract classes have multiple
mapping options, each one with
some limitations

5/558 – Data Model ImplementationADM

Specialization and generalization

We consider here only the single inheritance

To convert each specialization with m subclasses {S1, S2, …, Sm} and superclass
C, where the attributes of C are {k, a1, a2, …, an} and k is the primary key, into a
relation schema, the options are:

Multiple relations - superclass and subclasses. Create a relation L for C with
attributes Attrs(L) = {k, a1, …, an} and PK(L) = k. Create a relation Li for each subclass
Si, with attributes Attrs(Li) = {k} ∪ {attributes of Si} and PK(Li) = k.

Multiple relations – subclass only. Create a relation Li for each subclass Si, with the
attributes Attrs(Li) = {attributes of Si} ∪ {k, a1, …, an} and PK(Li) = k.

Single relation with one type attribute. Create a single relation schema L with
attributes Attrs(L) = {k, a1, …, an} ∪ {attributes of S1} ∪ … ∪ {attributes of Sm} ∪ {t} and
PK(L) = k. The attribute t is called type (or discriminating) attribute whose value
indicates the subclass to which each tuple belongs

Single relation multiple type attributes. As above, but instead of a single type
attribute t, there is a set {t1, t2, …, tm} of m boolean type attributes indicating wether or
not a tuple belongs to subclass Si.

6/558 – Data Model ImplementationADM

Object-Relational Mapping (ORM)

Object-relational mapping (ORM) uses different tools, technologies
and techniques to map data objects in a target programming language
to relations and tables of a RDBMS

An ORM solution consists of the following four pieces:

7/558 – Data Model ImplementationADM

ORM solutions

An ORM abstracts your application away from the underlying SQL database and
SQL dialect

If the tool supports a number of different databases (and most do), this confers a
certain level of portability on your application

Several programming languages have at least one ORM solution
Java: it provides both a standard specification, named Java Persistence API (JPA), and
several implementations of the specification (Hibernate, EclipseLink)

C++: possible ORM solutions are
ODB: https://www.codesynthesis.com/products/odb

QxOrm: https://www.qxorm.com/qxorm_en/home.html

Python:
SQLAlchemy: https://www.sqlalchemy.org/

The Django framework: https://docs.djangoproject.com/en/2.1/topics/db/

Pony: https://ponyorm.com/

Ruby: ActiveRecord, DataMapper, Sequel

Rust: rbatis, SeaORM

https://www.codesynthesis.com/products/odb
https://www.qxorm.com/qxorm_en/home.html
https://www.sqlalchemy.org/
https://docs.djangoproject.com/en/2.1/topics/db/
https://ponyorm.com/

8/558 – Data Model ImplementationADM

Django

Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic
design https://www.djangoproject.com

Django follows the model-template-view (MTV) architectural pattern
An object-relational mapper, defining a data model as python classes (Models)

A system for processing HTTP requests (Views) with a web templating sytem (Template)

A regular-expression-based URL dispatcher (Url)

Django comes with a lightweight standalone web server for development and testing

A serialization system that can produce and read XML and/or JSON representation of Django models

Lot of reusable packages provided by the community:
https://djangopackages.org/

https://www.djangoproject.com/
https://djangopackages.org/

9/558 – Data Model ImplementationADM

Example from the Euclid mission

M2 mission in the framework of ESA Cosmic Vision Program

Euclid mission objective is to map the geometry and understand the nature
of the dark Universe (dark energy and dark matter)

Federation of 8 European + 1 US Science Data Centers and a Science
Operation Center (ESA)

Large amount of data produced by the
mission

Due to reprocessing

Large amount of external data needed
(ground based observations)

Grand total: 90 PB

Two instruments on board:
VIS: Visible Imager

NISP: Near Infrared Spectro-Photometer

10/558 – Data Model ImplementationADM

A NISP instrument simulated image

The NISP focal plane is
composed of a matrix of 4×4
2040×2040 18 micron pixel
detectors

The photometric channel is
equipped with 3 broad band
filters (Y, J and H)

The spectroscopic channel is
equipped with 4 different low
resolution near infrared grisms
(three red and one blue) but no
slit

The image on the right shows a
NISP frame composed by its 16
detectors (photometric channel, 1
band)

11/558 – Data Model ImplementationADM

Metadata content (simplified)

We need to define the metadata associated to a NISP image (a single exposure)

Since Euclid also needs images from ground-based telescopes, the dictionary of types used to
model the metadata information should be homogeneous among them and reuse a common
base set of type definitions

All images have a common set of information
Exposure time, image category and purpose (is it a simulation, a calibration image, a sky image, etc.)
and image dimensions, some statistics on the image, to quickly check if there are anomalies, and we
need to keep the information about the instrument used to acquire a given image

However, for ground-based telescopes we need also the geographical location of the telescope, so the
telescope information requires more properties.

Space telescopes can perform surveys of the sky, hence the observation can be identified by the
observation ID. Moreover, for a given field, they can execute a dithering pattern, in order to increase the
signal-to-noise ratio and reduce cosmic-ray hits. So we need also to store the dither number. Additional
information needed are the observation date and time and the commanded pointing (right ascension,
declination and telescope orientation)

Then we have information specific to the Euclid instruments. The NISP instrument has both a filter
wheel and a grism wheel. The images from all detectors should be stored in a single file, to
simplify its retrieval and the analysis. However, each detector has some specific properties: gain,
readout noise. Then, for each detector we need to compute the mapping from pixel indexes to
sky coordinates (RA, DEC), i.e. its own astrometric solution.

12/558 – Data Model ImplementationADM

The NISP image data model (simplified)

13/558 – Data Model ImplementationADM

Django Implementation (1)

Each class inherits models.Model

All fields use a Django Model Data Type
https://www.webforefront.com/django/modeldatatypesandvalidation.html

models.CharField(max_length = 20)

models.BooleanField()

models.FloatField()

models.DateTimeField()

…

Attributes in the Data Model Type are used to set options for fields
null = True

primary_key = True

Foreign keys
https://docs.djangoproject.com/en/5.0/ref/models/fields/#django.db.models.ForeignKey

Related names
https://docs.djangoproject.com/en/5.0/topics/db/queries/#backwards-related-objects

instrument = models.ForeignKey(Instrument)

rawFrame = models.ForeignKey('NispRawFrame', related_name='detectors', on_delete=models.CASCADE)

https://www.webforefront.com/django/modeldatatypesandvalidation.html
https://docs.djangoproject.com/en/5.0/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/5.0/topics/db/queries/#backwards-related-objects

14/558 – Data Model ImplementationADM

Django Implementation (2)

By enumerated type we mean a type that provides a set of possible
values through the choices parameter (option) available to all field
types

Model Meta options is “anything that’s not a field”

Abstract class

Ordering

Candidate key of multiple columns

...

It is a good practice to override the default name of objects

IMAGE_CATEGORY = ('SCIENCE', 'CALIBRATION', 'SIMULATION')

category = models.CharField(max_length=20, choices=[(d, d) for d in IMAGE_CATEGORY])

class Meta:
 abstract = True

class Meta:
 ordering = ['surname']

class Meta:
 unique_together = (("fiscalCode1", "fiscalCode2"),)

def __str__(self):
 return self.name

15/558 – Data Model ImplementationADM

Prerequisites

The simplest way to install Django is to download and install the Python
Anaconda Distribution, with Python version 3.x:
https://www.anaconda.com/download

Then you need to install some additional python packages for the following
exercise/hands-on:

To install the Django framework use the following command line:

Additional packages are needed, not available in Anaconda but installed with the
“pip” command:

The full Anaconda distribution already provides Jupyter notebooks, used in one
example

conda create -n orm_django django

pip install django-extensions djangorestframework
pip install django-composite-field django-ufilter
pip install django-phonenumber-field phonenumbers
pip install Pillow

https://www.anaconda.com/download

16/558 – Data Model ImplementationADM

ORM project example - Euclid

The entire examples can be retrieved at the following link:

https://www.ict.inaf.it/gitlab/odmc/orm_example

You can clone the project with the git version control system, i.e. with the
command:

The Diango project for the Euclid example has been already created using the
following commands (so you don’t need to execute them):

which creates a project folder, named euclid_example, with additional files and
then an application, named imagedb, inside the project.
It automatically creates skeleton files needed by a django project and application

git clone https://www.ict.inaf.it/gitlab/odmc/orm_example.git
cd orm_example/django_example_euclid

django-admin startproject euclid_example ./
python manage.py startapp imagedb

https://www.ict.inaf.it/gitlab/odmc/orm_example
https://www.ict.inaf.it/gitlab/odmc/orm_example.git

17/558 – Data Model ImplementationADM

Project structure

django_example_euclid/
├── imagedb
│ ├── admin.py
│ ├── apps.py
│ ├── migrations
│ ├── models.py
│ ├── tests.py
│ └── views.py
├── manage.py
└── euclid_example
 ├── settings.py
 ├── urls.py
 └── wsgi.py

File containing the app data model

Views on the data model classes

Project settings: app list and
configuration

Site urls declaration

18/558 – Data Model ImplementationADM

The Django ORM

From the data model class to a Django ORM model class

Each model is represented by a
class that subclasses
django.db.models.Model

ImageBaseFrame here is
abstract: no table instantiated

That’s why we define the stats
attribute as a Foreign Key to
the ImageStatistics class and not
vice versa

from django.db import models

class ImageBaseFrame(models.Model):
 exposureTime = models.FloatField()
 imgNumber = models.PositiveSmallIntegerField()
 naxis1 = models.PositiveIntegerField()
 naxis2 = models.PositiveIntegerField()
 imageType = ImageType()
 stats = models.OneToOneField(
 ImageStatistics,
 models.SET_NULL,
 blank=True,
 null=True,
)

 class Meta:
 abstract = True

19/558 – Data Model ImplementationADM

Composite fields

Sometime we would like to define a model class attribute as a multi-column
field in the same table (i.e. a non-atomic type) instead of creating a 1-to-1
relation (a second table with the attribute columns and a foreign key)

Many ORM systems provide such feature:
JPA: named as embeddable classes
odb: named as Composite Value Types

SQLAlchemy: named as Composite Column Types

Django ORM does not provide directly this feature. However there is a
package provided by the community, called django-composite-field, which
provides an “acceptable” solution

Composite fields provide an implementation of a “part-of” relationship, i.e.
what in the UML class diagram is called composition

20/558 – Data Model ImplementationADM

The ImageType class
IMAGE_CATEGORY = (
 'SCIENCE',
 'CALIBRATION',
 'SIMULATION'
)

IMAGE_FIRST_GROUP = (
 'OBJECT',
 'STD',
 'BIAS',
 'DARK',
 'FLAT',
 'LINEARITY',
 'OTHER'
)

IMAGE_SECOND_GROUP = (
 'SKY',
 'LAMP',
 'DOME',
 'OTHER'
)

from composite_field import CompositeField

class ImageType(CompositeField):

 category = models.CharField(
 max_length=20,
 choices=[(d, d) for d in IMAGE_CATEGORY]
)

 firstType = models.CharField(
 max_length=20,
 choices=[(d,d) for d in IMAGE_FIRST_GROUP]
)

 secondType = models.CharField(
 max_length=20,
 choices=[(d,d) for d in IMAGE_SECOND_GROUP]
)

21/558 – Data Model ImplementationADM

The ImageSpaceFrame class

The same Instrument is associated to many images, hence here we use a Foreign Key from
ImageSpaceFrame to Instrument

If the Instrument instance is deleted, also all images referring to it are automatically deleted (option
on_delete set to models.CASCADE in ForeignKey)

class Instrument(models.Model):
 instrumentName = models.CharField(max_length=100)
 telescopeName = models.CharField(max_length=100)

class Pointing(CompositeField):
 rightAscension = models.FloatField()
 declination = models.FloatField()
 orientation = models.FloatField()

class ImageSpaceFrame(ImageBaseFrame):
 observationDateTime = models.DateTimeField()
 observationId = models.PositiveIntegerField()
 ditherNumber = PositiveSmallIntegerField()
 instrument = models.ForeignKey(Instrument,
 on_delete=models.CASCADE)
 commandedPointing = Pointing()

 class Meta:
 abstract = True

22/558 – Data Model ImplementationADM

NispDetector

Many detectors (up to 16)
associated to the same
raw frame

Since NispRawFrame is
not yet defined, we pass
the class name as a
string to models.ForeignKey

But we want to access the
detector data using the
NispRawFrame class, i.e. the reverse relation.

This is the purpose of the related_name parameter. For instance we can access the
detector data using NispRawFrame.detectors

NISP_DETECTOR_ID = (
 '11','12','13','14',
 '21','22','23','24',
 '31','32','33','34',
 '41','42','43','44'
)

class NispDetector(models.Model):
 detectorId = models.CharField(
 max_length=2,
 choices = [(d,d) for d in NISP_DETECTOR_ID]
)
 gain = models.FloatField()
 readoutNoise = models.FloatField()
 rawFrame = models.ForeignKey('NispRawFrame',
 related_name='detectors',
 on_delete=models.CASCADE)

23/558 – Data Model ImplementationADM

NispRawFrame class

A models.OneToOneField is analogous to models.ForeignKey with the option unique=True but
the reverse side of the relation will directly return a single object

class DataContainer(models.Model):
 fileFormat = models.CharField(
 max_length=10
)
 formatIdentifier = models.CharField(
 max_length=20
)
 formatVersion = models.CharField(
 max_length=20
)
 url = models.URLField()

class NispRawFrame(ImageSpaceFrame):
 filterWheelPosition = models.CharField(
 max_length=10,
 choices = [(d,d) for d in NISP_FILTER_WHEEL]
)

 grismWheelPosition = models.CharField(
 max_length=10,
 choices = [(d,d) for d in NISP_GRISM_WHEEL]
)
 frameFile = models.OneToOneField(DataContainer,
 on_delete=models.CASCADE)

NISP_FILTER_WHEEL = (
 'Y',
 'J',
 'H',
 'OPEN',
 'CLOSE'
)

NISP_GRISM_WHEEL = (
 'BLUE0',
 'RED0',
 'RED90',
 'RED180'
 'OPEN'
 'CLOSE'
)

24/558 – Data Model ImplementationADM

DB Schema creation 1/2

Once we have defined our data model in imagedb/models.py we
need Django to create the corresponding DB schema

First let’s check the the project settings includes the imagedb
application, i.e. that the file orm_example/settings.py contains the
the strings highlighted in red in the box on the bottom left

To do the first migration, i.e. generation
of the DB schema, run the following
command

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'django_extensions',
 'imagedb',
 'rest_framework',
 'django_ufilter',
]

python manage.py makemigrations imagedb

Migrations for 'imagedb':
 imagedb/migrations/0001_initial.py
 - Create model DataContainer
 - Create model ImageStatistics
 - Create model Instrument
 - Create model NispRawFrame
 - Create model NispDetector
 - Create model Astrometry

command

output

Then run the command
python manage.py migrate

25/558 – Data Model ImplementationADM

DB Schema creation 2/2

26/558 – Data Model ImplementationADM

Data insertion

We can now open a python shell and interact with the data model API

We can pass a Python script to insert data

python manage.py shell

Python 3.7.0 (default, Jun 28 2018, 13:15:42)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from imagedb.models import Instrument

In [2]: instrument = Instrument(telescopeName='Euclid', instrumentName='VIS')

In [3]: instrument.save()

In [4]: quit()

python manage.py shell < data_ingestion.py

2025-06-21T17:14:03.000001
2025-06-21T12:20:43.000001
2025-06-22T17:42:53.000001
…

27/558 – Data Model ImplementationADM

Django ORM and Jupyter notebook

For didactic purpose, we can use a Django extension to start a Jupyter
notebook. The orm_example project example already provides one
notebook. To use it, issue the following command:

a browser page will be opened. In this page, select the file
imagedb_objects.ipynb and execute each cell.

env DJANGO_ALLOW_ASYNC_UNSAFE=true python manage.py shell_plus --lab

28/558 – Data Model ImplementationADM

Multi-table inheritance 1/3

With django model abstract base classes, we cannot define foreign
keys referencing such base class (since no table is created for
abstract classes)

A solution is the Multi-table inheritance of Django models. In this
case the abstraction is removed from such base classes and each
class in the inheritance hierarchy will have a corresponding table in the
DB schema.

To obtain a multi-table inheritance version of the previous data model,
remove the statements
class ImageBaseFrame(models.Model):
 ...

 class Meta:
 abstract = True

class ImageSpaceFrame(ImageBaseFrame):
 ...

 class Meta:
 abstract = True

29/558 – Data Model ImplementationADM

Multi-table inheritance 2/3

generated bySchemaCrawler 15.01.03
generated on2018-10-15 16:03:08

imagedb_astrometry [table]
id INTEGER NOT NULL

auto-incremented
ctype1_coordinateType VARCHAR(4) NOT NULL
ctype1_projectionType VARCHAR(3) NOT NULL
ctype2_coordinateType VARCHAR(4) NOT NULL
ctype2_projectionType VARCHAR(3) NOT NULL
crval1 REAL NOT NULL
crval2 REAL NOT NULL
crpix1 REAL NOT NULL
crpix2 REAL NOT NULL
cd1_1 REAL NOT NULL
cd1_2 REAL NOT NULL
cd2_1 REAL NOT NULL
cd2_2 REAL NOT NULL
detector_id INTEGER

imagedb_nispdetector [table]
id INTEGER NOT NULL

auto-incremented
detectorId VARCHAR(2) NOT NULL
gain REAL NOT NULL
readoutNoise REAL NOT NULL
rawFrame_id INTEGER NOT NULL

imagedb_datacontainer [table]
id INTEGER NOT NULL

auto-incremented
fileFormat VARCHAR(10) NOT NULL
formatIdentifier VARCHAR(20) NOT NULL
formatVersion VARCHAR(20) NOT NULL
url VARCHAR(200) NOT NULL

imagedb_nisprawframe [table]
imagespaceframe_ptr_id INTEGER NOT NULL
filterWheelPosition VARCHAR(10) NOT NULL
grismWheelPosition VARCHAR(10) NOT NULL
frameFile_id INTEGER NOT NULL

imagedb_imagespaceframe [table]
imagebaseframe_ptr_id INTEGER NOT NULL
observationDateTime DATETIME NOT NULL
observationId INTEGER UNSIGNED NOT NULL
ditherNumber SMALLINT UNSIGNED NOT NULL
commandedPointing_rightAscension REAL NOT NULL
commandedPointing_declination REAL NOT NULL
commandedPointing_orientation REAL NOT NULL
instrument_id INTEGER NOT NULL

imagedb_imagebaseframe [table]
id INTEGER NOT NULL

auto-incremented
exposureTime REAL NOT NULL
imgNumber SMALLINT UNSIGNED NOT NULL
naxis1 INTEGER UNSIGNED NOT NULL
naxis2 INTEGER UNSIGNED NOT NULL
imageType_category VARCHAR(20) NOT NULL
imageType_firstType VARCHAR(20) NOT NULL
imageType_secondType VARCHAR(20) NOT NULL
stats_id INTEGER

imagedb_imagestatistics [table]
id INTEGER NOT NULL

auto-incremented
min REAL NOT NULL
max REAL NOT NULL
mean REAL NOT NULL
stddev REAL NOT NULL
median REAL NOT NULL

imagedb_instrument [table]
id INTEGER NOT NULL

auto-incremented
instrumentName VARCHAR(100) NOT NULL
telescopeName VARCHAR(100) NOT NULL

30/558 – Data Model ImplementationADM

Multi-table inheritance 3/3

Each model corresponds to its own database table and can be queried
and created individually

The inheritance relationship introduces links between the child model
and each of its parents (via an automatically-created OneToOneField)

With the multi-table inheritance, all fields of ImageBaseFrame will still
be available also in ImageSpaceFrame and NispRawFrame

If we have an ImageBaseFrame instance that is also an
ImageSpaceFrame instance, we can get from ImageBaseFrame object
to ImageSpaceFrame object by using the lower-case version of the
model name
from imagedb.models import ImageBaseFrame

obj = ImageBaseFrame.objects.get(pk=2)
obj.imagespaceframe.nisprawframe

<NispRawFrame: NispRawFrame object (2)>

31/558 – Data Model ImplementationADM

Serializing Django objects

Django’s serialization framework provides a mechanism for “translating”
Django models into other formats.

Usually these other formats will be text-based and used for sending
Django data over a wire, but it’s possible for a serializer to handle any
format (text-based or not).

Django supports a number of serialization formats, including XML and
JSON.

The Django serialize function requires, as one of the inputs, a QuerySet

However, the Django REST framework, external to the Django
framework, provides a more flexible serialization mechanism

from django.core import serializers

serializers.serialize('json',NispRawFrame.objects.filter(observationId=53877,
 filterWheelPosition='Y').order_by('ditherNumber'))

32/558 – Data Model ImplementationADM

The Django REST serializers

In particular, the Django REST framework provides a ModelSerializer
class which can be a useful shortcut for creating serializers that deal
with model instances and querysets

See ‘imagedb/serializers.py’ to check some examples

from rest_framework import serializers
from composite_field.rest_framework_support import CompositeFieldSerializer

...

class NispRawFrameSerializer(serializers.ModelSerializer):
 detectors = NispDetectorSerializer(many = True, read_only = True)
 commandedPointing = CompositeFieldSerializer()
 imageType = CompositeFieldSerializer()

 class Meta:
 model = NispRawFrame
 exclude = [f.name for g in NispRawFrame._meta.get_fields()
 if hasattr(g, 'subfields')
 for f in g.subfields.values()]
 depth = 2

33/558 – Data Model ImplementationADM

The Django REST framework

We need an Application Programming Interface (API) that let us perform
CRUD operations on the database without directly connecting to the
database

A REST (Representational State Transfer) API provides such operations
through HTTP methods:

GET, to request to a server a specific dataset

POST, to create a new data object in the database

PUT, to update an existing object in the database or create it if it does not
exist

DELETE, to request the removal of a given data object

Such methods can be applied to a specific set of endpoints (URLs)
provided by our API

The Django REST framework provides software tools to build a REST
API on top of our models

34/558 – Data Model ImplementationADM

Django REST framework ViewSets

The actions provided by the ModelViewSet class
are .list(), .retrieve(), .create(), .update(), .partial_update(), and .destroy() of
instances of a specific model we have defined

The ReadOnlyModelViewSet only provides the 'read-only' actions, .list()
and .retrieve()

In practice it returns a list of instances of a specific model or it retrieves a single
instance by its primary key value

In our orm_example projects, we have few examples in imagedb/views.py

More advanced filtering capabilities can be added with additional parameters:
https://www.django-rest-framework.org/api-guide/filtering/

from rest_framework import viewsets
from imagedb.serializers import NispRawFrameSerializer

class NispRawFrameViewSet(viewsets.ReadOnlyModelViewSet):
 queryset = NispRawFrame.objects.all()
 serializer_class = NispRawFrameSerializer

35/558 – Data Model ImplementationADM

URLs

Once we have defined viewsets on our models, we have to create endpoints (urls) to access
those views

The Django REST framework provides the so called routers, which generate automatically
url patterns based on the views we have defined

An example is found in imagedb/urls.py

will generate automatically the following url patterns:
/nisprawframes/ : it will return, in json format, all the NispRawFrame
 objects in the database
/nisprawframes/[pk]/ : it will return only the NispRawFrame object with primary key
 pk

from django.urls import re_path, include
from rest_framework.routers import DefaultRouter

from imagedb import views

router = DefaultRouter()
router.register(r'nisprawframes', views.NispRawFrameViewSet)

urlpatterns = [
 re_path(r'^', include(router.urls))
]

36/558 – Data Model ImplementationADM

Starting the Django development server

In order to test the REST API, you can start the Django server with the
following command

Now with the browser you can open the following link:
http://127.0.0.1:8000/imagedb/nisprawframes/1/

python manage.py runserver

Performing system checks...

System check identified no issues (0 silenced).
October 15, 2018 - 21:30:57
Django version 2.1.1, using settings
'orm_example.settings'
Starting development server at
http://127.0.0.1:8000/
Quit the server with CONTROL-C.

37/558 – Data Model ImplementationADM

The browsable REST API

38/558 – Data Model ImplementationADM

More advanced filtering criteria

In order to use more advanced filtering criteria through the REST API,
rather then just the primary key, in the orm_example project we have
added the django-ufilter (https://github.com/Qu4tro/django-ufilter/)

With this filter, we can specify filtering condition directly in the url, e.g. :

http://127.0.0.1:8000/imagedb/nisprawframes/?observationId__in=53877,54349&filterWheelPosition=Y

https://github.com/Qu4tro/django-ufilter/

39/558 – Data Model ImplementationADM

Data Model for Insurance Company

Credit to Andrea Pesce

40/558 – Data Model ImplementationADM

Identifiers

Element of interest Value
name First three letters
surname First three letters
date Day, Month, Year (e.g.: 130394 for 13 March 1994)
renewal number 0 (for first contract),1,2,3,…
province ISO Code
uniqueness Random character

Identifier for Contracts

Identifier for FamilyReports

Element of interest Value
first relative fiscalCode
second relative fiscalCode

41/558 – Data Model ImplementationADM

ORM project example

The entire example can be retrieved at the following link:

https://www.ict.inaf.it/gitlab/odmc/orm_example

You can clone the project with the git version control system, i.e. with the
command:

Create the Diango project from scratch using the following commands

which creates a project folder, named insurance, with additional files and
then an application, named insurancedb, inside the project.
It automatically creates skeleton files needed by a Django project and
application

git clone https://www.ict.inaf.it/gitlab/odmc/orm_example.git
cd orm_example/django_example_insurance

django-admin startproject insurance
cd insurance
python manage.py startapp insurancedb

https://www.ict.inaf.it/gitlab/odmc/orm_example
https://www.ict.inaf.it/gitlab/odmc/orm_example.git

42/558 – Data Model ImplementationADM

Project structure

For admin.py, models.py, urls.py and views.py files we are going to use
the ones in the git repository

We must edit the settings.py

insurance/
├── insurancedb
│ ├── admin.py
│ ├── apps.py
│ ├── migrations
│ ├── models.py
│ ├── tests.py
│ └── views.py
├── manage.py
└── insurance
 ├── settings.py
 ├── urls.py
 └── wsgi.py

File containing the app data model

Views on the data model classes

Project settings: app list and
configuration

Site urls declaration

File configuring the Admin site

43/558 – Data Model ImplementationADM

DB Schema creation

Once we have defined our data model in insurancedb/models.py we
need Django to create the corresponding DB schema

First let’s check the the project settings includes the insurancedb
application, i.e. that the file insurance/settings.py contains the strings
highlighted in red in the box on the bottom left

To do the first migration, i.e. generation
of the DB schema, run the following
command

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'django_extensions',
 'insurancedb',
]

python manage.py makemigrations insurancedb

Migrations for 'insurancedb':
 insurancedb/migrations/0001_initial.py
 - Create model BMClass
 - Create model Client
 - Create model Office
 - Create model Vehicle
 - Create model Contract
 - Create model Claims
 - Create model BlackBox
 - Create model Agent
 - Create model FamilyReports

command

output
Then run the command
python manage.py migrate

44/558 – Data Model ImplementationADM

Data insertion

We can now open a python shell and interact with the data model API

You can pass a Python script to insert data

python manage.py shell

Python 3.7.0 (default, Jun 28 2018, 13:15:42)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from insurancedb.models import BMClass

In [2]: bonus = BMClass(BMClass=1, basePremium=100.00)

In [3]: bonus.save()

In [4]: quit()

python manage.py shell < ../insert.py

45/558 – Data Model ImplementationADM

Django urls.py and views.py

A clean, elegant URL scheme is an important detail in a high-quality Web
application. Django lets you design URLs however you want, with no
framework limitations

To design URLs for an app, you create a Python module informally called
a URLconf (URL configuration). This module is pure Python code and is a
mapping between URL path expressions to Python functions (your views)

A view function, or view for short, is simply a Python function that takes a
Web request and returns a Web response. This response can be:

HTML contents

A redirect

A 404 error

An XML document

An image

...

46/558 – Data Model ImplementationADM

Django admin.py

Django provides an automatic admin interface

It reads metadata from your models to provide a quick, model-centric
interface where trusted users can manage content on your site

You can customize the admin interface editing the admin.py

Setup an admin user

Run the Django web server

Access to http://127.0.0.1:8000/

python manage.py createsuperuser

python manage.py runserver

http://127.0.0.1:8000/

47/558 – Data Model ImplementationADM

ADDITIONAL MATERIAL

48/558 – Data Model ImplementationADM

SQLAlchemy (1)

The SQLAlchemy SQL Toolkit and Object Relational Mapper is a
comprehensive set of tools for working with databases and Python

It provides a full suite of well-known enterprise-level persistence
patterns, designed for efficient and high-performing database access

SQLAlchemy has dialects for many popular database systems
including Firebird, Informix, Microsoft SQL Server, MySQL, Oracle,
PostgreSQL, SQLite, or Sybase

The SQLAlchemy has four ways of working with database data:

Raw SQL

SQL Expression Language

Schema Definition Language

ORM

49/558 – Data Model ImplementationADM

SQLAlchemy (2)

SQLAlchemy ORM consists of several components

Engine
It manages the connection with the database

It is created using the create_engine() function

Declarative Base class
It maintains a catalog of classes and tables

It is created using the declarative_base() function and is bound to the engine

Session class
It is a container for all conversations with the database

It is created using the sessionmaker() function and is bound to the engine

https://docs.sqlalchemy.org/en/14/orm/tutorial.html

https://docs.sqlalchemy.org/en/14/orm/tutorial.html

50/558 – Data Model ImplementationADM

Prerequisites

Download and install the Python Anaconda (or Miniconda) Distribution,
with Python version 3.x:
https://www.anaconda.com/download

Then you need to install some additional python packages for the
following exercise/hands-on:

To install the Django framework use the following command line:

Clone the GIT repository and enter the directory of SQLAlchemy examples

conda create -n orm_sqlalchemy sqlalchemy
conda activate orm_sqlalchemy

git clone https://www.ict.inaf.it/gitlab/odmc/orm_example.git
cd orm_example/sqlalchemy_example

https://www.anaconda.com/download
https://www.ict.inaf.it/gitlab/odmc/orm_example.git

51/558 – Data Model ImplementationADM

ORM with SQLAlchemy: Example 1

Engines https://docs.sqlalchemy.org/en/14/core/engines.html

Declarative Base
https://docs.sqlalchemy.org/en/14/orm/extensions/declarative/

Session https://docs.sqlalchemy.org/en/14/orm/session.html

Query https://docs.sqlalchemy.org/en/14/orm/query.html

https://docs.sqlalchemy.org/en/14/core/engines.html
https://docs.sqlalchemy.org/en/14/orm/extensions/declarative/
https://docs.sqlalchemy.org/en/14/orm/session.html
https://docs.sqlalchemy.org/en/14/orm/query.html

52/558 – Data Model ImplementationADM

ORM with SQLAlchemy: Example 2

Foreign keys in SQLite
https://docs.sqlalchemy.org/en/14/dialects/sqlite.html#foreign-key-sup
port

Relationship
https://docs.sqlalchemy.org/en/14/orm/basic_relationships.html

https://docs.sqlalchemy.org/en/14/dialects/sqlite.html#foreign-key-support
https://docs.sqlalchemy.org/en/14/dialects/sqlite.html#foreign-key-support
https://docs.sqlalchemy.org/en/14/orm/basic_relationships.html

53/558 – Data Model ImplementationADM

Inheritance in Python

UML

This is a simple example of
inheritance in UML and how
can be implemented in
Python

54/558 – Data Model ImplementationADM

Inheritance in a Relational Database

IE

IE

IE

Single table inheritance

Unique ID

No JOIN necessary

Many NULL attributes

Concrete table inheritance

Not unique ID

No JOIN necessary

No NULL attributes

Joined table inheritance

Unique ID

JOIN necessary

No NULL attributes

55/558 – Data Model ImplementationADM

ORM with SQLAlchemy: Example 3

Inheritance https://docs.sqlalchemy.org/en/14/orm/inheritance.html

https://docs.sqlalchemy.org/en/14/orm/inheritance.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

