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Finite precision arithmetic

• We have studied various structures for the implementation of digital filters. These structures are

equivalent to each other when we operate with infinite precision arithmetic, but they exhibit different

properties with finite precision arithmetic.

• DSP systems are typically implemented using floating-point or fixed-point arithmetic.

• In floating-point arithmetic, the number x is represented using an exponent γ and a mantissa m, such

that 0.5 < |m| < 1 and x = m · 2γ .

• In fixed-point arithmetic, the number x is assumed to belong to a certain interval and is represented

with a fixed number of bits, with the decimal point occupying a fixed position within these bits.

• For example, values between −1 and +1 are represented using 1 sign bit and b bits after the decimal

point.

The smaller the value of |x |, the fewer significant bits are available in the representation of x (thus

resulting in a larger relative error in the representation).
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Finite precision arithmetic

• When using floating-point arithmetic with a high number of binary digits, we can reach conditions similar

to infinite precision arithmetic.

• However, in cases where finite precision arithmetic is employed (common in hardware or software DSP

implementations), it’s essential to account for the effects of finite precision.

• In particular, we need to consider:

1. The effects of quantization of filter coefficients,

2. the A/D conversion noise,

3. the uncorrelated noise due to rounding or truncation during multiplications,

4. the overflow in additions,

5. the limit cycles.
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Filter coefficients quantization

• Filter design is typically conducted using infinite precision arithmetic or arithmetic with very high precision.

• However, in practical implementation, we must quantize the filter coefficients.

• As a result, the implemented filter no longer matches the transfer function we designed but rather

approximates it to varying degrees, depending on the precision of the arithmetic used and the sensitivity of

the realization to coefficient variations.

• From this perspective, the direct-form structure of IIR filters exhibits poor behavior, as coefficient

quantization can easily lead to system instability.

• Conversely, lattice filters demonstrate better robustness to coefficient quantization.

• In situations where quantization involves a very limited number of bits, it becomes necessary to adopt

structures highly robust to quantization.

• Moreover, it is essential to appropriately select the quantized parameters to meet the filter specifications;

in this case, the quantized coefficients are directly designed.
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Filter coefficients quantization

5-bit quantization
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Filter coefficients quantization

5-bit quantization
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Filter coefficients quantization

5-bit quantization
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A/D conversion noise

• The process of analog-to-digital conversion inevitably introduces an error due to signal quantization.

• e(n) = sQ(n)− s(n).

• The error introduced by analog-to-digital conversion, called granular noise, depends on the number of

quantization levels and the type of quantization performed.

• The signal-to-quantization-noise ratio is influenced by the number of quantization levels.

• The A/D conversion noise is analyzed using a statistical approach.
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A/D conversion noise

• The input-output relationship of the quantizer is illustrated by the following diagrams:

Rounding Truncation

• In case of rounding: −1

2
a ≤ e(n) <

1

2
a.

• In case of truncation: 0 ≤ e(n) < a.

• The expressions assume there is no saturation of the A/D converter, i.e., no clipping of the input signal;

otherwise, the error can be much larger than a. We must as much as possible avoid saturations.
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A/D conversion noise

• The quantization errors can be interpreted as generated by a random process akin to white stationary

noise, with a constant probability density within the interval [− a
2
,+ a

2
] or [0, a].

• It is assumed that this noise is uncorrelated with the signal.

• For rounding, we have:

me = E [e(n)] = 0.

σ2
e = E [(e(n)−me)

2] =

∫ + a
2

− a
2

x2 1

a
dx =

a2

12
.

• For truncation, we have:

me = E [e(n)] = a
2
.

σ2
e = E [(e(n)−me)

2] =
a2

12
.
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A/D conversion noise

• To evaluate the impact of additive quantization noise on the input signal s(n), we can compute the

Signal-to-Quantization-Noise Ratio (SNR) in decibels (dB), which is defined as:

SNRA/D = 10 log10

(
σ2
s

σ2
e

)
dB.

Here, σ2
s represents the input signal variance (i.e., the power of the input signal), and σ2

e denotes the

variance of the quantization noise (i.e., the power of the quantization noise).
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A/D conversion noise

• Consider a quantization scheme with 2b+1 levels between −M and +M.

• In this case:

a =
2M

2b+1
=

M

2b
=⇒ σ2

e =
M2

12 · 22b
.

• This leads to the Signal-to-Quantization-Noise Ratio as:

SNRA/D = 10 log10

(
12 · 22b ·σ2

s

M2

)
= 6.02 b + 10.79 + 10 log10

(
σ2
s

M2

)
dB.

• This equation can help us determine the minimum number of bits b required to achieve a specific

signal-to-noise ratio.

• Notably, we observe that the SNR increases by 6 dB for each additional unit of b.
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A/D conversion noise

• Is it always possible to prevent saturation of the analog-to-digital converter?

• In most cases, our signals are random signals with a certain distribution, and there exists a non-zero

probability of exceeding a predefined range.

• Suppose our input signal follows a Gaussian distribution with a zero mean and standard deviation σs .

The likelihood of a particular analog sample remaining within the range [−σsK ,+σsK ] is given by:

2Φ(K)− 1 =

√
2

π

∫ K

0

e−y2/2dy , (1)

where Φ(.) is the cumulative probability of a zero mean unit variance Gaussian distribution.

• For K = 2, the probability of an analog sample remaining within the range [−2σs,+2σs] is 0.9544. On

average, out of every 10, 000 input samples, approximately 456 samples fall outside this range.

• For K = 3, the probability of an analog sample remaining within the range [−3σs,+3σs] is 0.9973.

On average, out of every 10, 000 input samples, approximately 37 samples fall outside this range.

• For K = 4, the probability of an analog sample remaining within the range [−4σs,+4σs] is 0.999936.

On average, out of every 1, 000, 000 input samples, approximately 64 samples fall outside this range.

This range is generally considered more than sufficient to prevent clipping during conversion.
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A/D conversion noise

• To prevent saturation of the analog-to-digital converter, scaling the input signal is a common approach.

• Let’s explore its impact. Assuming we scale the input signal by a factor A, the variance of the scaled

input, As(n), becomes A2σ2
x .

• Consequently, the expression for signal-to-quantization noise ratio (SNR) transforms to:

SNRA/D = 10 log10

(
12 · 22b ·A2 ·σ2

s

M2

)
= 6.02 b + 10.79 + 10 log10

(
σ2
s

M2

)
+ 20 log10(A).

• When A > 1, the SNR increases, but so does the probability of overflow.

Conversely, A < 1 reduces the probability of overflow but also lowers the SNR.

• To attain the highest possible SNR without distorting the signal, it’s essential to align the analog sample

range as closely as possible with the full-scale range of the A/D converter.
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A/D conversion noise

• The quantized signal is commonly processed using a linear time-invariant discrete-time system H(z).

• Modelling the quantized signal as the sum of the unquantized signal s(n) and a quantization error e(n),

assuming linearity along with uncorrelation between s(n) and e(n), the output comprises two

components:

y(n) associated with the unquantized input s(n), and v(n) associated with the quantization error e(n).

• While e(n) can be assumed to exhibit characteristics of white noise, v(n) does not.
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A/D conversion noise

• Specifically,

v(n) =
+∞∑

m=−∞

h(m)e(n −m),

where the quantization noise is convolved with the impulse response of the filter. The mean of the output

noise v(n) is

mv = meH(e j0)

and the variance σ2
v is

σ2
v =

σ2
e

2π

∫ +π

−π

|H(e jω)|2dω = σ2
e

+∞∑
m=−∞

|h(m)|2.

• The noise output power spectrum is given by

Pvv (ω) = σ2
e |H(e jω)|2.

A. Carini Digital Signal and Image Processing 16 / 43



Uncorrelated noise due to rounding or truncation in multiplications

• This noise is analyzed similarly to quantization noise.

• When two numbers with N digits are multiplied, the result typically has 2N − 1 digits.

• To represent this result with N digits, rounding or truncation is necessary.

• This rounding or truncation process introduces noise, which is statistically treated similarly to

quantization noise.

• The noise is assumed to originate from a white stationary noise source with a constant probability density

distribution.

• It’s worth noting that these various noise sources are assumed to be uncorrelated with each other and

with the input signal.
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Uncorrelated noise due to rounding or truncation in multiplications

• For instance, in the case of a second-order Infinite Impulse Response (IIR) filter, there exists a noise

source associated with each multiplier operation.

• From the selection of the quantization level, it becomes feasible to ascertain the output signal-to-noise

ratio resulting from rounding or truncation.

• It’s worth noting that different filter structures generally exhibit distinct noise propagation properties.
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Uncorrelated noise due to rounding or truncation in multiplications
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Overflow in additions

• This issue is especially significant when operating with fixed-point arithmetic.

• When dealing with numbers between 0 and 1 in fixed-point representation, the sum of two such numbers

may exceed 1, leading to overflow beyond the representation limits (assuming the maximum value is 1).

• Overflow typically manifests as an impulsive noise with high amplitude at the output of the system.

• It’s essential to design the system in advance to minimize the occurrence of overflows or to ensure that

they have minimal probability of happening.

• To prevent overflows, it is crucial to appropriately scale all signals using constant multiplicative factors.
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Overflow in additions

• For example:

• If the input signal satisfies −1 ≤ x(n) ≤ +1, then after processing, the output signal y(n) may range from

−1.2 to 1.2, posing a risk of overflow when using fixed-point arithmetic with a maximum value of 1.

• However, by multiplying the input signal x(n) by 1
1.2

, we obtain an output signal that is always bounded

between −1 and 1.

• This scaled output signal is identical to the original signal but scaled by a factor of 1
1.2

.

• This scaling ensures that the output remains within the representable range without the risk of overflow.
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Overflow in additions

• While completely avoiding the overflow problem by appropriately scaling the input signal is indeed

possible, it often comes at the cost of significantly penalizing the signal-to-quantization-noise ratio, as it

reduces σ2
s .

• In general, we can minimize the probability of overflow at internal nodes by inserting scaling multipliers at

selected points in the digital filter structure to appropriately scale the internal signal levels.

• In many cases, most of these scaling multipliers can be absorbed by the existing multipliers in the

structure.
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Dynamic range scaling

• Let’s consider a digital filter structure, and for a given node r , let the signal to be scaled be denoted as

ur (n).

• We assume that all fixed-point numbers are represented as binary fractions and that the input sequence

x(n) is bounded by unity, i.e., |x(n)| ≤ 1 for all n.

• The objective of scaling is to ensure that

|ur (n)| ≤ 1

for all nodes r and time instances n.

• Let’s define the scaling transfer function Fr (z) as the transfer function from the input to the r -th node.

• Its inverse z-transform fr (n) represents the impulse response from the filter input to the r -th node.

• ur (n) can be expressed as the convolution of fr (n) and x(n):

ur (n) =
+∞∑

k=−∞

fr (k)x(n − k)
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Dynamic range scaling: an absolute bound

• Then,

|ur (n)| =

∣∣∣∣∣
+∞∑

k=−∞

fr (k)x(n − k)

∣∣∣∣∣ ≤
+∞∑

k=−∞

|fr (n)|.

• Thus, we have |ur (n)| ≤ 1 if
+∞∑

k=−∞

|fr (n)| ≤ 1.

• It can be proven that the above condition is both necessary and sufficient to guarantee no overflow.

• If it is not satisfied by the unscaled realization, we can scale the input signal with a multiplier K , where

K =
1

maxr
∑+∞

k=−∞ |fr (n)|
.

• This scaling rule is based on a worst-case bound and significantly reduces the output SNR.
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Dynamic range scaling

• More practical and easy-to-use scaling rules can be derived in the frequency domain if some information

about the input signals is known a priori.

• In what follows, we will assume the input x(n) to be a deterministic signal with Fourier transform X (e jω),

and we will derive the bounds in terms of Lp-norms.

• The Lp-norm of X (e jω) is defined as

||X ||p =

(
1

2π

∫ +π

−π

|X (e jω)|pdω
)1/p

In most cases, the values of p used are 1, 2, and ∞.

• For p = 2, ||X ||2 represents the root-mean-square (rms) value of X (e jω).

• For p = 1, ||X ||1 indicates the mean absolute value of X (e jω).

• In the case of a continuous X (e jω), limp→∞ ||X ||p exists and represents the peak absolute value:

||X ||∞ = max
−π≤ω≤+π

|X (e jω)|.
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L∞-bound

• Since

ur (n) =
1

2π

∫ +π

−π

Fr (e
jω)X (e jω)e jωndω,

we have

|ur (n)| ≤
1

2π

∫ +π

−π

|Fr (e
jω)||X (e jω)|dω

≤ ||Fr ||∞
1

2π

∫ +π

−π

|X (e jω)|dω

≤ ||Fr ||∞ · ||X ||1.

• If ||X ||1 ≤ 1, then |ur (n)| ≤ 1 if

||Fr ||∞ ≤ 1.

• In general, this scaling rule is rarely used since, in practice, ||X ||1 ≤ 1 does not typically hold for most

encountered input signals.
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L2-bound

• Applying the Schwartz inequality to

ur (n) =
1

2π

∫ +π

−π

Fr (e
jω)X (e jω)e jωndω,

we obtain that

|ur (n)|2 ≤
(

1

2π

∫ +π

−π

|Fr (e
jω)|2dω,

)
·
(

1

2π

∫ +π

−π

|X (e jω)|2dω,
)
,

i.e.,

|ur (n)|2 ≤ ||Fr ||2 · ||X ||2.

• If the input signal has finite energy bounded by unity, i.e., ||X ||2 ≤ 1, then preventing adder overflow can

be achieved by scaling the filter such that the L2-norm of the transfer functions from the input to all

adder outputs are bounded by unity:

||Fr ||2 ≤ 1 ∀r .
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A more general scaling rule

• According to the Holder’s inequality,

|ur (n)|2 ≤ ||Fr ||p · ||X ||q,

for all p, q ≥ 1 satisfying (1/p) + (1/q) = 1.

• The L∞-bound is obtained for p =∞ and q = 1.

The L2-bound is obtained for p = q = 2.

• Another useful bound is the L1-bound obtained for p = 1 and q =∞.

• Provided ||X ||q < 1, then |ur (n)| ≤ 1 if

||Fr ||p ≤ 1.

• In many structures, all scaling multipliers can be absorbed into the existing feedforward multipliers

without increasing the total number of multipliers.

• Let’s consider, for example, the commonly used cascade form IIR digital filter structure.
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Scaling the Cascade form IIR filter structure

• Let us consider first the unscaled IIR filter structure.
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Scaling the Cascade form IIR filter structure

H(z) = K
R∏
i=1

Hi (z)

where

Hi (z) =
Bi (z)

Ai (z)
=

1 + b1iz
−1 + b2iz

−2

1 + a1iz−1 + a2iz−2
.

• The nodes to be scaled are those marked with (*) in the figure and correspond to the inputs of the

multipliers in each second-order section.

• The scaling transfer functions are defined as:

Fr (z) =
K

Ar (z)

r−1∏
l=1

Hl(z).
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Scaling the Cascade form IIR filter structure

• The scaled transfer function is shown in the following figure.

• The scaling process has introduced a new multiplier b̄0l in each second-order section.
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Scaling the Cascade form IIR filter structure

• Let us denote

||Fr ||p = αr ∀r

||H||p = αR+1

and let us choose the scaling constant as

K̄ = β0K ; b̄lr = βrblr l = 0, 1, 2; r = 1, 2, . . . ,R.

• It can be easily verified that

F̄r =

(
r−1∏
i=0

βi

)
Fr (z)

H̄ =

(
R∏
i=0

βi

)
H(z)
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Scaling the Cascade form IIR filter structure

• With the scaling we what

||F̄r ||p =

(
r−1∏
i=0

βi

)
||Fr ||p = αr

(
r−1∏
i=0

βi

)
= 1, r = 1, 2, . . . ,R

||H̄||p =

(
r−1∏
i=0

βi

)
||H||p = αR+1

(
r−1∏
i=0

βi

)
= 1.

• Solving these equations we arrive at

β0 =
1

α1
,

βr =
αr

αr+1
, r = 1, 2, . . . ,R.
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Scaling the Cascade form IIR filter structure

• There are many possible cascade realizations of a higher-order IIR transfer function achieved through

various pole-zero pairings and orderings.

• In fact, for a cascade of R second-order sections, there are (R!)2 different possible realizations.

• Each of these realizations will have different scaling and output noise power.

• What is the optimal pole-zero pairing and ordering of the sections in a cascade realization?

• There exists a simple heuristic set of rules.
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Scaling the Cascade form IIR filter structure

• For the pole-zero pairing:

• First, pair the complex pole pair closest to the unit circle with the nearest complex zero pair.

• Next, pair the complex pole pair closest to the previous set of poles with its nearest complex zero pair.

• Repeat this process until all poles and zeros have been paired.

• The above procedure will reduce the peak gain of the section characterized by the paired poles and zeros.
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Scaling the Cascade form IIR filter structure

• As for the ordering of the sections, it depends on the Lp-norm used for scaling.

• If the L2-norm is used, the ordering of the paired sections does not significantly influence the output noise

power.

• If an L∞-scaling is employed, the section with poles closest to the unit circle and exhibiting the most

pronounced magnitude response should be placed closest to the output end.

The next section should be the one with the next most pronounced magnitude response, and so on.

The first section should be the one with the least pronounced magnitude response. The same rule applies

in the general case.
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Limit cycles

• In recursive systems, the nonlinearities associated with finite precision arithmetic (such as rounding and

overflows) can induce periodic oscillations at the system output or yield a constant output, even when

the input is zero or remains constant.

• These phenomena are known as limit cycles and are directly caused by errors arising from rounding in

multiplications or overflows in additions.

• The problem is especially notable in IIR filters with poles near the unit circle.
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Limit cycles: example

• Consider the system,

y(n) = 0.95y(n − 1) + x(n),

H(z) =
1

1− 0.95z−1

with x(n) = 0 for all n ≥ 0, y(−1) = 13.

• Let us assume to round y(n) to an integer value:

n y(n) exact y(n) rounded

−1 13 13

0 12.35 12←− (12.35)

1 11.73 11←− (11.4)

2 11.14 10←− (10.45)

3 10.75 10←− (9.5)

4 10.05 10←− (9.5)

5 9.5 10←− (9.5)
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Limit cycles: example

• Another example is the first-order IIR filter depicted in the following figure, which includes a quantizer

after the multiplication

• The digital filter is assumed to be implemented using 6-bit fractional arithmetic with a quantization step

of δ = 2−5.

• The input signal is set as x(0) = 0.4, and x(n) = 0 for n > 0, with the initial condition y(−1) = 0.

A. Carini Digital Signal and Image Processing 39 / 43



Limit cycles: example

• The following figure shows the limit cycles that can be observed for α = 0.6, resulting in a constant

non-zero output, and for α = −0.6, leading to an oscillatory output.
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Limit cycles: example

• The following figure shows the limit cycles that can be observed for α = 0.6, resulting in a constant

non-zero output, and for α = −0.6, leading to an oscillatory output.
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Limit cycles

• The output signal can become entirely independent of the input in the presence of limit cycles.

• There are conditions under which these limit cycles can be avoided, such as utilizing truncation towards 0

instead of rounding, or adding a small random noise to the input.

• Generally, increasing the precision of the arithmetic improves the behavior of the recursive system, thereby

reducing the amplitude of the limit cycles.
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