
Statistical Analysis of Networks

Lecture 6  – Basic concepts



NETWORK CENTRALIZATION
- combining centrality measures at node level to obtain an aggregate measure of 

network centralization 

- the larger the meausure (index): more likely a single node is ‘central’ with the 
others considerably less central (in the periphery of a centralized system)

- index of centralization:  how variable (heterogenous) the node centralities are

General formula for a centralization index: CA (i*) = highest centrality index in the 
observed  network
CA (i) = centrality index of node i

CA  = 0 : all nodes have the same centrality 
index (circle graph)
CA  = 1 : only one node has the  maximun 
centrality index (star graph)
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For proofs and computational details, see Freeman (1979)

(NETWORK) CENTRALIZATION INDECES
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[𝐶!" 𝑖 =	normalized closness index]  

[𝐶#" 𝑖 =	normalized betweeness index]   



star graph

𝐶$ = 1
𝐶!  = 1
𝐶# = 1

line graph

𝐶$ = .1666667
𝐶!  = .4222222
𝐶# = .4166667

Y-graph

𝐶$ = .5833333
𝐶!  = .6351852
𝐶# = .7083333

circle graph

𝐶$ = 0
𝐶!  = 0
𝐶# = 0

(NETWORK) CENTRALIZATION COMPARISON



FLORENTINE FAMILIES: CENTRALITY INDECES

rather small: not very great difference 
between the largest and smallest 
values (little variability)

n = 16 n = 15 

Medici is the 
most central wrt 
CD (i) and CB(i)
larger value wrt 
other next most 
central families 
(Guadagni and 
Strozzi)

Medici is the most central  (with 
several other families almost as 
central: Albizzi, Guadagni, 
Ridolfi,…)
 
What about Strozzi (or Guadagni)?

What about comparison of the 
three indeces ?

Less variation in closeness centrality values than degree centrality 
values: more uniform spread of closeness 



EIGENVECTOR CENTRALITY (BONANICH CENTRALITY, 1972)
It is an improvement on the concept of degree centrality 

Main idea: 
In degree centrality, each neighbor contributes equally to centrality
Bonacich centrality: important nodes contribute more

A node is central if it is connected to other central nodes.
More precisely, centrality of a node is proportional to the sum of scores of its neighbors.

                                                                           
                                        where 𝜆 is a constant

It can be determined by finding the principal eingvector in the adjancecy matrix with eigenvalue λ: (𝑨𝒙 = 𝝀𝒙) 

If centralities have to be non-negative, it can be shown (using the Perron–Frobenius theorem) that λ must be 
the largest eigenvalue of the adjacency matrix and x the corresponding eigenvector.

This notion of centrality is closely related to ways in which scientific journals are ranked based on citations.



EIGENVECTOR CENTRALITY

many other variations on the above definitions:  such as PageRank in Google search (more ‘important’ websites 
are likely to receive more links from other websites) which is related to Katz-Bonacich (centrality based on 
the number of walks emanating from a node i, each exponentially discounted based on their length) and 
eigenvector centralities (see the PageRank algorithm in igraph)



- centrality indeces: usually referred to nodes
- in some contexts, centrality of edges can be of major concern (often 

related to edge weight/strenght)

- Betweeness centrality is also defined for edges:
- number of the shortest paths that go through an edge in a graph or network 

(Girvan and Newman, 2002)

- Not so straightforward for the other meausures:
- specific definitions and solutions (community detection issues)

NODE CENTRALITY AND EDGES CENTRALITY



- degree distribution fd summarizes node degree variation in a 
network

- networks can have the same degree distribution but differ in the 
way the nodes are associated

- degree correlation: basic structural metric that calculates the 
likelihood that nodes link to nodes of similar or dissimilar nodal 
degree 

- in many network, hubs - high degree nodes - tend to have ties to other 
hubs (e.g.: network of Celebrities, CEOs of major corporations)

- in other networks, hubs tend to link to many small-degree nodes, 
generating a hub-and-spoke (star) pattern 

DEGREE CORRELATION



DEGREE CORRELATION MEASURES
f(k1, k2) Joint Degree Distribution 
(frequency with which the 2 vertices at the end of an arbitrarily selected edge have a given 
pairs of degrees)
probability that an edge connects k1- and k2-degree nodes

f(k1, k2) = L(k1, k2)/L if k1 = k2 

f(k1, k2) = L(k1, k2)/2L if k1 ≠ k2 

with L(k1, k2) = # of edges connecting nodes of degrees k1 and k2 

On JDD and its marginal distributions (Kolaczyk, 2009, pp. 86-88):
Pearson correlation coefficient r(x, y) with X = ki  and Y = kj



Assortative mixing (or homophily) is the tendency of vertices to connect 
to others that are like them in some way (e.g: with respect to a specific 
node attributes as gender, race, age, income, type of node, … ) 

Assortative mixing by degree: the high-degree nodes will be preferentially 
connected to other high-degree vertices, and the low to low (positive degree 
correlation)

(in a social network, for example, we have assortative mixing by degree if people with many friends 
(gregarious) are friends of others with many friends while the hermits have links with other hermits. 

Disassortative mixing by degree: the gregarious people were hanging out with 
hermits and vice versa.

Mixing by degree  is itself a property of the network structure not 
involving exogenous node attributes/characteristics.

ASSORTATIVE MIXING BY DEGREE (A VARIATION ON THE CONCEPT OF CORR. COEFFICIENT)



This structural property gives rise to some interesting features in networks:

- in an assortative network by degree (high-degree nodes tend to stick 
together) one expects to get a clump or core of such high-degree nodes in 
the network surrounded by a less dense periphery of nodes with lower-
degree. 

- core/periphery structure is a common feature of social networks, many of which 
are found to be assortatively mixed by degree

- in a disassortative network by degree (high-degree nodes tend to connect 
to low-degree ones) star-like features are often readily visible. 
- disassortatively networks do not usually have a core/periphery split but are 

instead more uniform.

(DIS)ASSORTATIVE MIXING BY DEGREE



ASSORTATIVE AND DISASSORTATIVE NETWORKS BY DEGREE 

A network that is assortative by degree,
displaying the characteristic dense core of 
high-degree vertices surrounded by a 
periphery of lower-degree ones

A disassortative network, displaying the star-like 
structures characteristic of this case

Newman and Girvan (2003) 



E-I INDEX
Given a partition of a network into a number of mutually exclusive groups (also defined by some 
attribute)

the E-I index is the number of ties external to the groups minus the number of ties that are internal to the 
group divided by the total number of ties:

EI can range from 1 to -1.
EI = -1: complete homophily - the node only has relationships with nodes of the same “type” as they 
themselves are. 
EI = 1: complete heterophily - all the alters are of a different “type” than they themselves are.
EI = 0: an equal number of alters are of both the same “type” as the node, and different types.

(EI is also calculated for each group and for each individual node) 



E-I INDEX
number of ties external to the groups minus the number of ties that are internal to the group divided by the total number 
of ties

= -0.43 = -0.14

whole network: EI = (1-6)/7 = -0.71



Structural analysis of network graphs
two broad categories can be distingished:

1. characterization of individual nodes and edges

2. characterization of network cohesion (involving more than just 
individual nodes and edges)

DESCRIPTIVE ANALYSIS OF NETWORK GRAPH CHARACTERISTICS
(NETWORK STATISTICS/METRICS)


