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A.9 Solution to Exercise 4.1

To express the Hadamard gate H as a rotation, we proceed as follows. We consider the general rotation

R̂n(✓) = cos(✓/2)1̂ � i sin (✓/2)n · �̂, (A.31)

of an angle ✓ around n, where the Pauli matrices are

X =

✓
0 1
1 0

◆
, Y =

✓
0 �i
i 0

◆
, Z =

✓
1 0
0 �1

◆
. (A.32)

From such a rotation, we want to obtain

H =
1p
2

✓
1 1
1 �1

◆
. (A.33)

First thing, we highlight that the sum X + Z gives

X + Z =

✓
1 1
1 �1

◆
, (A.34)

then it follows that

H =
X + Zp

2
= { 1p

2
, 0, 1p

2
} · �̂. (A.35)

Such an expression recalls the last term in Eq. (A.31). Finally, we need to set the angle ✓ so that the first term
in Eq. (A.31) vanishes. This is ✓ = ⇡. Then

H = iR̂n(⇡), where n = { 1p
2
, 0, 1p

2
}, (A.36)

gives the solution.

A.10 Solution to Exercise 4.2

To prove that, given two fixed non-parallel normalised vectors n and m, any unitary Û can be expressed as

Û = ei↵R̂n(�)R̂m(�)R̂n(�), (A.37)

with ↵,�, �, � 2 R, then one needs to recast Û in the form

Û = ei↵R̂t(!), (A.38)

with ↵ 2 R and t 2 R
3 suitably chosen.

The first step of the proof is to write (m · �̂)(n · �̂) in terms of a single Pauli matrix vector �̂. We have

(m · �̂)(n · �̂) = (m1�̂x + m2�̂y + m3�̂z)(n1�̂x + n2�̂y + n3�̂z),

= m · n + m1n2�̂x�̂y + m1n3�̂x�̂z + m2n1�̂y�̂x + m2n3�̂y�̂z + m3n1�̂z�̂x + m3n2�̂z�̂y.
(A.39)

By applying Eq. (A.15), Eq. (A.39) becomes

(m · �̂)(n · �̂) = (m · n)1̂ + i(m ⇥ n) · �̂. (A.40)

The second step is to consider the composition of two rotations:
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R̂m(�)R̂n(�) =
�
cos(�/2)1̂ � i sin (�/2)m · �̂

� �
cos(�/2)1̂ � i sin (�/2)n · �̂

�
,

= cos(�/2) cos(�/2)1̂ � i cos(�/2) sin (�/2)n · �̂ � i cos(�/2) sin (�/2)m · �̂
� sin (�/2) sin (�/2)(m · �̂)(n · �̂).

(A.41)

Substituting Eq. (A.40) in the last expression, we find that

R̂m(�)R̂n(�) = R̂h(✏) = cos(✏/2)1̂ � i sin (✏/2)h · �̂, (A.42)

where ✏ and h are taken such that

cos(✏/2) = cos(�/2) cos(�/2) � sin (�/2) sin (�/2)m · n,
sin(✏/2)h = cos(�/2) sin (�/2)n + cos(�/2) sin (�/2)m + sin (�/2) sin (�/2)(m ⇥ n).

(A.43)

Then, we have
R̂n(�)R̂m(�)R̂n(�) = R̂n(�)R̂h(✏) = R̂t(!), (A.44)

where we applied again the composition of two rotations, which ends the proof.

A.11 Solution to Exercise 4.3

Consider two qubits, where the first is prepared in the superposition

| 1i =
|0i + |1ip

2
, (A.45)

while the second is initialised in the ground state | 2i = |0i. The total state is

| 12i =
|0i + |1ip

2
|0i =

|00i + |10ip
2

. (A.46)

From the first expression, one clearly sees that the state is separable. By appling the CNOT gate, we find that
the state becomes

| 12i =
|00i + |11ip

2
, (A.47)

which is a fully entangled state.

A.12 Solution to Exercise 4.4

Consider the circuit

|0i

| i

H S† H

U

(A.48)

Its action is the following
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|0i | i Ĥ⌦1̂���! 1p
2
(|0i + |1i) | i

Ŝ†⌦1̂���! 1p
2
(|0i � i |1i) | i

C(U)���! 1p
2
(|0i | i � i |1i Û | i)

Ĥ⌦1̂���! 1
2

h
(|0i + |1i) | i � i(|0i � |1i)Û | i

i

= 1
2

h
|0i (1̂ � iÛ) | i + |1i (1̂ + iÛ) | i

i
.

(A.49)

Finally, one measures qubit 0, and the probability of finding the qubit in |0i is

P (|0i) = 1
4 h |

⇣
1̂ + iÛ†

⌘ ⇣
1̂ � iÛ

⌘
| i = 1

2

⇣
1 + = h |Û | i

⌘
, (A.50)

which ends the exercise.
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