
4.5 Quantum Phase estimation 47

4.5 Quantum Phase estimation

The framework of quantum phase estimation (QPE) is the following. Consider a unitary operation Û where the
state | i is one of its eigenstates. In particular, one has

Û | i = e2⇡i' | i . (4.39)

Then, the task is to determine the phase ' with a certain given precision.

4.5.1 Single-qubit quantum phase estimation

The Hadamard test described in Sec. 4.1.1 can be used to implement a single qubit phase estimation. Indeed,
from Eq. (4.39) one gets that

h |Û | i = e2⇡i'. (4.40)

Then, by merging with Eq. (4.21) one has

P (|0i) = 1
2 (1 + cos(2⇡')), (4.41)

which implies

' = ±arccos (1 � 2P (|0i))
2⇡

+ 2⇡k, (4.42)

where k 2 N. Notice that such a circuit cannot distinguish the sign of '. Conversely, using both Eq. (4.21) and
Eq. (4.24), one has

' = arctan

✓
1 � 2P (|0i)
1 � 2P̃ (|0i)

◆
. (4.43)

Now, for the sake of simplicity, let us restrict to the case of ' 2 [0, 1[. Suppose we would like to estimate
the value of ' with a single run of the circuit in Eq. (4.17). Then, if the outcome is +1 (i.e., the state collapses
on |0i), we have P (|0i) = 1. Conversely, with the outcome being �1 we have P (|0i) = 0. Then, by employing
Eq. (4.42) we obtain

outcome P (|0i) '̄ 'v

+1 1 0 [0, 1/2[
�1 0 1/2 [1/2, 1[

(4.44)

where '̄ gives the best estimation for the real value of the phase 'v. Since there are no other possible outcomes
with a single run, the phase is estimated with an error ✏ = 1/2, namely 'v 2 ['̄, '̄ + ✏[. This is a really low
accuracy for a deterministic algorithm. To improve this accuracy, one should run the algorithm several times
(namely, a number of times that scales as O(1/✏2), where ✏ is the target error bound), or consider alternative
methods, as the N-qubit quantum phase estimation described below.

4.5.2 Kitaev’s method for single-qubit quantum phase estimation

In the fixed point representation, a natural number k can be represented with a real number ' 2 [0, 1[ by
employing d bits, i.e.

' = (.'d�1 . . .'0), (4.45)

where 'k 2 {0, 1}, as far as k  2d � 1.
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Example 4.3
To make an explicit example of the fixed point representation, the value of k = 41 corresponds to the d = 6
bit’s string [101001] and can be represented with ' = 0.640625 being equivalent to (.101001). Indeed, by
employing the following expression with the string ' = (.'d�1 . . .'0) = (.101001) one has

d�1X

i=0

'i2
i�d = '52

�1 + '42
�2 + '32

�3 + '22
�4 + '12

�5 + '02
�6 = 2�1 + 2�3 + 2�6 = 0.640625. (4.46)

Such a value, when multiplied by 26 gives exactly 41.

In the simplest scenario of d = 1, one has ' = (.'0) with '0 2 {0, 1}. Thus, when performing once the real
Hadamard test, one has P (|0i) = 1 if '0 = 0 (i.e., '̄ = 0), and P (|0i) = 0 if '0 = 1 (i.e., '̄ = 1/2).

Next, we consider the case of d bits, where ' = (.0 . . . 0'0). Here, the first d bits are 0 and the last one is '0.
To determined the value of '0 one needs to reach a precision of ✏ < 2�d. This would require O(1/✏2) = O(22d)
repeated applications of the single-qubit quantum phase estimation, or number of queries to Û . The observation
from Kitaev’s method is that if we can have access to Û j for a suitable power j, then the number of queries to
Û can be reduced. If one substitutes Û j to Û , with the corresponding circuit being

|0i

| i

H H

U j

(4.47)

then the probability changes in
P (|0i) = 1

2 (1 + cos(2⇡j')). (4.48)

Importantly, every time one multiplies a number by a factor 2, the bits in the fixed point representation are
shifted to the left. To make an example,

2 ⇥ (.00'0) = (.0'0). (4.49)

Then, one has that 2d�1' = 2d�1(.0 . . . 0'0) = (.'0). Thus, applying the circuit in Eq. (4.47) with j = d� 1 to
estimate (.0 . . . 0'0) is equivalent to apply the circuit in Eq. (4.17) to estimate (.'0).

This idea can be extended to general phases with d bits, i.e. ' = (.'d�1 . . .'0). Indeed, one has

Ûe2⇡i' | i = Ûe2⇡i(.'d�1...'0) | i = e2⇡i('d�1.'d�2...'0) | i = e2⇡i'd�1e2⇡i(.'d�2...'0) | i , (4.50)

but e2⇡i'd�1 = 1 independently from the value of 'd�1. Thus

Ûe2⇡i' | i = e2⇡i(.'d�2...'0) | i , (4.51)

i.e. the application of Û shifts the bits and allows the evaluation of the first bit after the decimal point.

4.5.3 n-qubit quantum phase estimation

Notably, both the previous algorithms necessitate an important classical post-processing. Employing n ancillary
qubits allow the reduction of such post-processing. This is based on the application of the Inverse Quantum
Fourier Transform F̂ †.
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Recall 4.1 (Quantum Fourier transform)
The discrete Fourier transform of a N -component vector with complex components { f(0), . . . , f(N � 1) }
is a new complex vector { f̃(0), . . . , f̃(N � 1) }, defined as

F (f(j), k) = f̃(k) = 1p
N

N�1X

j=0

e2⇡ijk/Nf(j). (4.52)

The Quantum Fourier transform (QFT) acts similarly: it acts as the unitary operator F̂ on a quantum
register of n qubits, where N = 2n, in the computational basis as

F̂ |ji = 1p
2n

2n�1X

k=0

e2⇡ijk/2
n

|ki , (4.53)

where |ji = |jn�1 . . . j0i and |ki = |kn�1 . . . k0i. Namely, the application of the quantum Fourier transform
F̂ to the state |ji = |jn�1 . . . j0i gives

F̂ |ji = 1p
2n

⇣
|0i + e2⇡i(0.j0) |1i

⌘ ⇣
|0i + e2⇡i(0.j1j0) |1i

⌘
. . .

⇣
|0i + e2⇡i(0.jn�1...j0) |1i

⌘
. (4.54)

In the case of a superposition | i =
P

j f(j) |ji, one has

| ̃i = F̂ | i =
2n�1X

k=0

f̃(k) |ki , (4.55)

where the coe�cients f̃(k) are the discrete Fourier transform of the coeficients f(j).
The inverse quantum Fourier transform F̂ † acts as

F̂ † |ji = 1p
2n

2n�1X

j=0

e�2⇡ijk/2n |ki , (4.56)

in a completely similar way as Eq. (4.53) but with negative phases.

Example 4.4
The application of the quantum Fourier transform F̂ to the state |ji = |10i = |j1 = 1, j0 = 0i gives

F̂ |ji = 1
2

⇣
|0i + e2⇡i(0.j0) |1i

⌘ ⇣
|0i + e2⇡i(0.j1j0) |1i

⌘
,

= 1p
2
(|0i + |1i) 1p

2
(|0i � |1i).

(4.57)

The algorithm implementing the (standard) quantum phase estimation uses a first register of n ancillary
qubits and a second register of which we want to compute the phase. The first register is initially prepared in
the |0i state for all the qubits. The circuit implementing the algorithm is the following
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|0i . . .

...

|0i . . .

|0i . . .

|0i . . .

| i . . . | i

First register,
n qubits

H

F †H

H

H

Second register,
t qubits U20 U21 U22 U2n�1

end first step

(4.58)

In particular, the state of the first register after the end of the first part of the algorithm (see red dashed line)
reads

1p
2n

⇣
|0i + e2⇡i(2

n�1') |1i
⌘
. . .

⇣
|0i + e2⇡i(2

0') |1i
⌘
. (4.59)

Now, by considering the binary representation of ' = ('n�1 . . .'0), the latter expression becomes

1p
2n

⇣
|0i + e2⇡i(0.'0) |1i

⌘ ⇣
|0i + e2⇡i(0.'1'0) |1i

⌘
. . .

⇣
|0i + e2⇡i(0.'n�1...'0) |1i

⌘
, (4.60)

which is exactly equal to F̂ |ji in Eq. (4.54) for |ji = |'i. Thus, applying the inverse Fourier transform F̂ † one
gets |'i, which is then measured.
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