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Parametric v. non parametric

With respect to parametric inference, non parametric entails

▶ few assumptions

▶ in�nite dimensional models

Example: estimate the distribution function from a sample
X1, . . . ,Xn ∼ F ()

▶ parametric: assume F ∈ F = {Fθ() : θ ∈ Rd} estimate θ through, for
example, maximum likelihood, Fθ̂ is the estimate of the distribution
function.

▶ non parametric: assume F is a valid distribution function; a good
estimate is the empirical distribution function.
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Parametric v. non parametric

With respect to parametric inference, non parametric entails

▶ few assumptions

▶ in�nite dimensional models

Example: estimate the regression function E (Y |X = x) from a sample
(xi ,Yi ), i = 1, . . . , n

▶ parametric: assume E (Y |X = x) = β1 + β2x (or any more
complicated functional form depending on a possibly multidimensional
parameter θ), estimate θ through, for example, maximum likelihood.

▶ non parametric: assume E (Y |X = x) = f (x) where f belongs to a
�exible class of functions (no parameters of direct interest).
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Regression problem

We have a regression problem when we observe (Yi , xi ) and we are
interested in

E (Y |X = x)

Standard tools to deal with this situation are

▶ the linear model
Y |X = x ∼ N()

E (Y |X = x) = βT x

▶ the generalized linear model

Y |X = x ∼< member of expon family >

g(E (Y |X = x)) = βT x

and extension such as (generalized) mixed models (see Torelli's course).
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(Generalized) linear models limitation

The key assumption is that relationship between the covariates and

▶ either the conditional expectation

E (Y |X = x) = βT x

▶ or a known function of the conditional expectation

g(E (Y |X = x)) = βT x

is linear in the parameters.

Non parametric regression relaxes this assumption, avoiding speci�cation of
a precise shape of the relationship.
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Non parametric regression

We assume that
E (Y |X = x) = f (x)

where f is a �regular� function (continuous with continuous derivatives up
to a certain order).

Two main approaches may be taken

▶ �local� approach
▶ if we had many observations for each value x0 of X we could estimate

f (x0) as a sample mean.
▶ in general we have one observation for each value of X , we may use

nearby points
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Non parametric regression

We assume that
E (Y |X = x) = f (x)

where f is a �regular� function (continuous with continuous derivatives up
to a certain order).

Two main approaches may be taken

▶ �local� approach: estimate E (Y |X = x0) using points near to x0.
▶ �global� approach (spline)

▶ we de�ne a set of functions f (x ;θ) which is �exible enough to
approximate any regular function f (·)

▶ we estimate f by choosing the best �tting f (x ;θ)
▶ (This may be more appropriately called a semiparametric approach as

we have a parameter θ, it is not a parametric problem because of the
dimension of θ which may be high and variable.)
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where f is a �regular� function (continuous with continuous derivatives up
to a certain order).

Two main approaches may be taken

▶ �local� approach: estimate E (Y |X = x0) using points near to x0.
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Non parametric regression

We assume that
E (Y |X = x) = f (x)

where f is a �regular� function (continuous with continuous derivatives up
to a certain order).

Two main approaches may be taken

▶ �local� approach: estimate E (Y |X = x0) using points near to x0.

▶ �global� approach (spline): de�ne a �exible model f (x ;θ)

One crucial issue in both methods is to decide the degree of smoothness of
the estimate, which translates into

▶ deciding how near is near

▶ deciding how �exible should the model f (x ;θ) be

As we will see a trade o� between bias and variance arises.
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Motivating example: lidar data
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LIDAR = light detection and ranging

▶ Is a technique to detect chemical
compounds in the atmosphere

▶ x : distance traveled before re�ection

▶ y : log of the ratio of received light
between two laser sources

▶ We want to estimate

f (x) = E (Y |X = x)

▶ Well known example of non linear relationship where polynomial
regression does non work very well.
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Cosmic microwave background

▶ Genovese, C. R., Miller, C. J., Nichol, R. C., Arjunwadkar, M., &
Wasserman, L. (2004). Nonparametric inference for the cosmic

microwave background. Statistical Science, 308-321.

▶ Cosmic microwave background is electromagnetic radiation which is
observed almost uniformly in all universe.

▶ It was discovered in 1964 by Penzias and Wilson.

▶ It can be thought as the `echo' of the events occurred at the time of
the formation of the �rst atoms (when the universe was 380 000 years
old) and shortly after.

▶ As a consequence, studying the characteristics of CMB today allows to
verify hypotheses on the formation of the universe.
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Cosmic microwave background: observations

Raw measures of CMB at increasing
resolution.

CMB measures having subtracted
milky way signal.

The inhomogeneities are what mostly interests to extract information on
the characteristics of the universe at the beginning.
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Cosmic microwave background: power spectrum

▶ The power spectrum is a transformation of the above data.
▶ The number of peaks in the spectrum gives information on the

existence of dark matter

▶ (Dark matter is a matter which is not visible due to the fact that it
does not emit nor re�ect light and whose existence would explain
various phenomena.)

▶ In particular, the existence of
three or more peak in the
spectrum would be coherent
with the dark matter hypotheses.

▶ On the right, the theoeretical
shape of the spectrum (with
three peaks) and some
observations.
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Power spectrum: theory and raw data

Theoretical three peaks spectrum Raw data from the most recent
experiment.

Are there three peaks?
Let's estimate

y = f (x) + ε
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BPD data

Bronchopulmonary dysplasia (BPD) is a lung disease typical of premature
babies, its presence may be related to birthweight.

For 223 babies we have observed

▶ birthweight

▶ presence of bronchopulmonary
dysplasia (BPD)
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The response is a Bernoulli r.v., so generalized linear model will have to be
used.
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Epidemiology: relationship between pollutants and mortality

It is widely believed that high
pollutant concentrations may lead to
higher mortality.

In analyzing such a relationship, it
must be kept in mind that mortality
is also a�ected by other factors such
as, for example, the temperature.
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Air pollution and death in Chicago

The following variables were observed daily from 1/1/1987 to 31/12/2000

▶ death total deaths (per day).

▶ pm10medianmedian particles in 2.5− 10 per cubic m

▶ pm25medianmedian particles < 2.5 mg per cubic m (more dangerous).

▶ o3medianOzone in parts per billion

▶ so2median Median Sulpher dioxide measurement

▶ time time in days

▶ tmpd temperature in fahrenheit
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A look at the data
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Data on temperatures of US cities

Dataset uscities contains minimum temperatures of some US cities
together with their longitude and latitude.
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Brain scan

Observations of brain activity level at
1564 locations are available.
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Brain scan

Price of houses sold in New York,
with location.

Estimate a spatial model for the
price.
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Plan

1. Smoothing: local smothers and general issues (bias variance trade o�,
GCV, inference)

2. Splines: univariate and multivariate splines, GAM

3. Spline as mixed e�ect models

Books:

▶ Wasserman: Non-parametric statistics

▶ Azzalini, Bowman: Applied Smoothing Techniques

▶ Wood: Generalized Additive Models: An Introduction with R

▶ Ruppert, Wand, Carroll: Semiparametric regression
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LIDAR data: linear model

Assume
y = Xβ + ε

where X ∈ Mn×p, β ∈ Rp,
ε ∼ N(0, σ2I ),
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Using ML

β̂ = (XTX )−1XT y

so that the smoothed version is

ŷ = X β̂ = X (XTX )−1XT y

where H = X (XTX )−1XT is called
the hat matrix and is the projection
matrix from Rn in the subspace
generated by the columns of X , note
that

traceH = p
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Not very satisfying as a smoother,
and does not seem to describe the
relationship well.
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LIDAR data: linear model

Assume
y = Xβ + ε

where X ∈ Mn×p, β ∈ Rp,
ε ∼ N(0, σ2I ),
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Not very satisfying as a smoother,
and does not seem to describe the
relationship well.

Note that

ŷ = X β̂y = X (XTX )−1XT y

means that the estimated conditional
expectation is

̂E (Y |X = x) = f̂ (x) =
n∑

i=1

hi (x)Yi

where

h(x)T = xT (XTX )−1XT

Francesco Pauli �Local� methods 21 / 71



• Non parametric regression • Smoothing • Kernel regression • Inference •

LIDAR data: bin smoother

The bin smoother is based on a partition of the covariate space, let the cut
points be

−∞ = c0 < c1 < . . . < cK−1 < cK = +∞
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and let

f̂ (x) =

∑K−1
k=0

∑n
i=1 yi I[ck ,ck+1](xi )∑K−1

k=0

∑n
i=1 I[ck ,ck+1](xi )
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LIDAR data: bin smoother

The bin smoother is based on a partition of the covariate space, let the cut
points be

−∞ = c0 < c1 < . . . < cK−1 < cK = +∞
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and let

f̂ (x) =

∑K−1
k=0

∑n
i=1 yi I[ck ,ck+1](xi )∑K−1

k=0

∑n
i=1 I[ck ,ck+1](xi )

Kind of better, not really smooth,
depends crucially on the choice of
bins.
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LIDAR data: running mean

If we are ready to assume that the function f (x) is continuous, then it is
reasonable to estimate f (x) with the mean of those value of Yi

corresponding to xi which lie near x .
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In particular we may use the xi lying
in a neighbourhood of radius h
centered in x

f̂ (x) =

∑n
i=1 yi Ih(|x − xi |)∑n
i=1 Ih(|x − xi |)

Alternatively one can use the mean of
the k nearest neighbours of x , let

Nk(x) = {xi : |x − xi | ≤ d(k)}

where di = |x − xi | and
d(1) ≤ . . . ≤ d(n) are the ordered
distances, then

f̂ (x) =
1

k

n∑
i=1

yi INk (x)(xi )
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Error and bias-variance trade o�: estimation error at x

We need to de�ne an error of f̂n() as an estimate of f (), the squared error
is a common choice

L(f (x), f̂ (x)) = (f (x)− f̂ (x))2

An overall measure of the error is given by the mean squared error

MSEx = R(f (x), f̂ (x)) = E (L(f (x), f̂ (x)))

which, for the quadratic error, can be decomposed as

= (f (x)− E (f̂ (x)))2 + V (f̂ (x))

= bias2 + variance
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Error and bias-variance trade o�: overall estimation error

The errors at each x can be combined to give the mean integrated
square error (MISE)

MISE =

∫
R(f (x), f̂ (x))dx

or the average mean square error

R(f , f̂ ) =
1

n

n∑
i=1

R(f (xi ), f̂ (xi ))
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Average MSE and prediction error

The MSE is related to the prediction error, suppose we observe a new
Y ∗
i = f (xi ) + ε∗i corresponding to xi and use f̂ (xi ) for prediction.

Then the prediction error is

(Y ∗
i − f̂ (xi ))

2

which, on average, is

MSEx + V (εi )

While the predictive risk is

E

(
1

n

n∑
i=1

(Y ∗
i − f̂ (xi ))

2

)
= R(f , f̂ ) +

1

n

n∑
i=1

V (ε∗i )
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Smoothing and error

Consider the k-neighborhood smoother

f̂ (x) =
1

k

n∑
i=1

yi INk (x)(xi )

where Nk(x) = {xi : |x − xi | ≤ d(k)}.

Depending on k the estimate of f̂ (x) is based on di�erent observations:
the greater k ,
▶ the more observations are used

▶ thus there will be less variability: lower variance

▶ on the other hand farther observations are used

▶ depending on the shape of f () in a neighbourhood of x , the mean of
the observations may di�er more markedly from E (Y |X = x) = f (x):
estimate will be more biased

The trade o� between bias and variance is a distinguishing feature of
smoothers.
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Shape of f and bias
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Smoothing and error: theoretical derivation

Let Nk(x) = {xi : |x − xi | ≤ d(k)}, the k-neighborhood smoother is

f̂ (x) =
1

k

n∑
i=1

yi INk (x)(xi )

Then (assuming V (Yi ) = σ2 for all i)

V (f̂ (x)) =
1

k

k∑
i=1

V (Yi ) =
σ2

k
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Smoothing and error: theoretical derivation

Let Nk(x) = {xi : |x − xi | ≤ d(k)}, the k-neighborhood smoother is

f̂ (x) =
1

k

n∑
i=1

yi INk (x)(xi )

The bias is

E (f̂ (x))− f (x) =
1

k

∑
Nk (x)

(f (xi )− f (x))

≈ 1

k

∑
Nk (x)

(
f ′(x)(xi − x) +

1

2
f ′′(x)(xi − x)2

)

assuming the covariates equispaced: xi+1 − xi = ∆

≈ 2k(k + 2)(k + 1)

6k
f ′′(x)∆2
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Smoothing and error: theoretical derivation

Let Nk(x) = {xi : |x − xi | ≤ d(k)}, the k-neighborhood smoother is

f̂ (x) =
1

k

n∑
i=1

yi INk (x)(xi )

Hence the MSE is

E ((f̂ (x)− f (x))2) ≈
(
2k(k + 2)(k + 1)

6k
f ′′(x)∆2

)2

+
σ2

k

that is

▶ the bias grows with k and with f ′′

▶ the variance decreases with k

Francesco Pauli �Local� methods 29 / 71



• Non parametric regression • Smoothing • Kernel regression • Inference •

Smoothing and error: theoretical bias and variance example

Consider the simulated observations below, where the true f is depicted
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Estimate the MSE

In general, we can not obtain the error through simulations since we do not
know the generating mechanism and the true curve (the error distribution
and f ()).

Also the theoretical formulas do not really help since they are an
approximation and also require knowledge of the function f (of its second
derivative actually, which is worse).

We need an estimator for the error from which we will obtain an estimator
for the optimal level of smoothing.
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Linear smoothers

We discuss error estimation for a class of smoothers which comprises those
de�ned above and many others: linear smoothers, that is, smoothers for
which there exist a vector ℓ(x) = (ℓ1(x), . . . , ℓn(x))

T for each x such that

f̂ (x) =
n∑

i=1

ℓi (x)Yi

which means that

f̂ =

f̂ (x1)...

f̂ (xn)

 =

ℓ1(x1) · · · ℓn(x1)
...

ℓ1(xn) · · · ℓn(xn)

Y = LY

The matrix L is the smoothing matrix, we de�ne the e�ective degrees
of freedom of the smoother as

ν = tr(L)
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Linear smoothers

Note that the previous smoothers are of the linear type, it is relevant to
�gure how the L matrix is, below some general indications (assuming
without loss of generality that the xi be ordered).

▶ For the regressogram the L matrix is a diagonal block matrix assuming
value equal to the reciprocal of the number of observations in the
block.

▶ For the k-neighbours the L matrix has a non-zero diagonal `stripe'
valued 1/k

▶ For the local average the L matrix is analogous to the k-neighbours if
the xi are regularly spaced, otherwise it will be irregular.
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Estimator of risk

The linear smoothers de�ned above (and also those which will be de�ned
later) depend on some parameter h, whose optimal value is the minimum of

R(h) = E

(
1

n

n∑
i=1

(f̂h(xi )− f (xi ))

)2

Since R(h) is not known (as clari�ed above) we resort to minimize an
estimate of R(h).

The �rst guess would be the average RSS

1

n

n∑
i=1

(Yi − f̂h(xi ))
2

but this is obviously biased downward and its use would lead to over�tting
(undersmoothing).
(In fact, the point is that we use the data twice, once to estimate f , once
to estimate the error.)
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Loo-cv for smoothers

A better estimate for R(h) is

CV = R̂(h) =
1

n

n∑
i=1

(Yi − f̂h,−i (xi ))
2

where f̂h,−i (xi ) is the smoother estimated without the i-th observation.
Note that

E (Yi − f̂h,−i (xi ))
2 = E (Yi − f (xi ) + f (xi )− f̂h,−i (xi ))

2

= σ2 + E (f (xi )− f̂h,−i (xi ))
2

≈ σ2 + E (f (xi )− f̂h(xi ))
2

that is, R̂ is an approximately unbiased estimator of the predictive risk

E (R̂) ≈ R + σ2
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Loo-cv for linear smoothers

If the smoother is linear with smoothing matrix L then

CV = R̂(h) =
1

n

n∑
i=1

(Yi − f̂−i (xi ))
2 =

1

n

n∑
i=1

(
Yi − f̂ (xi )

1− Lii

)2

So that one does not need to recompute the smoother but only to know
the value of Lii (which may not require to know the full matrix, otherwise
the advantage would be minor).

A further simpli�cation is the generalized cross validation criterion
where we substitute Lii with its average

GCV =
1

n

n∑
i=1

(
Yi − f̂ (xi )

1− ν/n

)2
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Derivation of GCV

We did not de�ne precisely f̂−i (xi ), given that

f̂ (xi ) =
n∑

j=1

ℓj(xi )yj

and assuming that
∑n

j=1 ℓj(xi ) = 1 (that is, the smoother preserves
constants, which is reasonable), we may de�ne

f̂−i (xi ) =

∑
j ̸=i ℓj(xi )yj∑
j ̸=i ℓj(xi )

=

∑
j ̸=i ℓj(xi )yj

1− ℓi (xi )
=

∑
j ̸=i ℓj(xi )yj

1− Lii

Note that we may de�ne f̂−i () as the smoother re-estimated without
observation (xi , yi ), this is the same as above for the radius smoother, not
for the k−neighborhood.
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Derivation of GCV (continua)

Using the above formula we get

yi − ŷ−i = yi −
1

1− Lii

∑
j ̸=i

ℓj(xi )yj

= yi −
1

1− Lii

 n∑
j=1

ℓj(xi )yj − Liiyi


= yi −

1

1− Lii
(ŷi − Liiyi )

=
1

1− Lii
((1− Lii )yi − ŷi + Liiyi ) =

1

1− Lii
(yi − ŷi )

hence the GCV formula.
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Other criteria

Note that, since (1− x)−2 ≈ 1+ 2x in a neighbourhood of 0, the GCV is
approximately the same as Mallow's Cp.

GCV =
1

n

n∑
i=1

(
Yi − f̂ (xi )

1− ν/n

)2

≈ 1

n

n∑
i=1

(
Yi − f̂ (xi )

)2
+

2νσ̂2

n
= Cp

More generally, many common bandwidth selection criteria have the form

B(h) = Λ(n, h)
1

n
+

n∑
i=1

(
Yi − f̂ (xi )

)2
for some function Λ(·, ·)
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Asymptotic properties

Let

▶ h0 = argminR(h)

▶ ĥ0 = argminL(h) = argmin 1
n

∑n
i=1(f̂ (xi )− f (xi ))

2

▶ ĥ = argminB(h)

then, under appropriate conditions it can be shown that,

i. ĥ, ĥ0, h0 are o(n−1/5)

ii. n3/10(ĥ − ĥ0) → N(0, σ2
1)

iii. n3/10(h0 − ĥ0) → N(0, σ2
2)

iv. ĥ−ĥ0
ĥ0

= Op

(
n3/10

n1/5

)
= Op

(
n−1/10

)
v. ĥ−ĥ0

h0
= Op

(
n3/10

n1/5

)
= Op

(
n−1/10

)
These results show how hard it is to estimate the optimal bandwidth!
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Kernel regression

In the above methods as we move on the x axis we compute f̂ (x) as a
mean of di�erent groups of yi .

This leads to some roughness in the �nal estimate.

One way to reduce this roughness is to use a weighted average which gives
less weight to those values which are farther from x .
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Nadaraya-Watson estimator

The Nadaraya-Watson estimator is a linear smoother

f̂ (x) =
n∑

i=1

ℓi (x)Yi

in which

ℓi (x) =
K
(
x−xi
h

)∑n
j=1 K

(
x−xj
h

)
K () being a kernel (see density estimation).
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Kernel functions

The estimate is a rather un-smooth
function, it can be made smoother by
using a di�erent kernel

f̂n(x) =

∑n
i=1 K

(
x−Xi
h

)
Yi∑n

i=1 K
(
x−Xi
h

)
where the kernel function K is such
that

▶ K (x) ≥ 0

▶
∫
K (x)dx = 1

▶
∫
xK (x)dx = 0

▶
∫
x2K (x)dx > 0

Possible kernels include
K (u)

Uniform 1
2 I[−1,1](u)

Triangle (1− |u|)I[−1,1](u)
Triweight 35

32(1− u2)3I[−1,1](u)
Quartic 15

16(1− u2)2I[−1,1](u)

Gaussian 1√
2π
e−u2/2

Epanechnikov 3
4(1− u2)I[−1,1](u)

Cosine π
4 cos

(
π
2u
)
I[−1,1](u)
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Kernel functions

Uniform

0.0

0.5

−1 0 1

Triangle

0

1

−1 0 1

1
2 I[−1,1](u) (1− |u|)I[−1,1](u)

Triweight

0

1

−1 0 1

Quartic

0

1

−1 0 1

35
32(1− u2)3I[−1,1](u)

15
16(1− u2)2I[−1,1](u)

Cosine

0

1

−1 0 1

Epanechnikov

0

1

−1 0 1

π
4 cos

(
π
2u
)
I[−1,1](u)

3
4(1− u2)I[−1,1](u)

Gaussian

0.0

0.4

−1 0 1

1√
2π
e−u2/2
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Nadaraya-Watson estimator: risk

It can be shown that, assuming xi come from the density g(), for hn → 0
and nhn → ∞

R =
h4n
4

(∫
u2K (u)du

)2 ∫ (
f ′′(x) + 2f ′(x)

g ′(x)

g(x)

)2

dx

+
σ2
∫
K 2(u)du

nhn

∫
1

g(x)
dx + o(nh−1

n ) + o(h4n)

We note
▶ variance decreases with h
▶ bias increases with h4

▶ bias increases with f ′′

▶ bias increases with f ′(x)g
′(x)
g(x) : design bias

By obtaining the optimal h and substituting back in the expression for R
we can see that the risk is O(n−4/5), a slower rate than (most) parametric
model (O(n−1)), the slower rate being the price for making less
assumptions.
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Design bias and boundary bias
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Boundary bias
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N-W as a minimizer

We note that the N-W estimator at x , f̂ (x), is the solution of

argmin
a

n∑
i=1

Ki

(
xi − x

h

)
(Yi − a)2

that is, the N-W estimator is obtained locally as a weighted least square
estimator.

The idea is then to employ weighted least squares with a polynomial rather
than a constant, for any value of x we approximate f () in a neighbourhood
of x by the polynomial

px(u; a) = a0 + a1(u − x) +
a2
2!
(u − x)2 + . . .+

ap
p!

(u − x)p
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N-W as a minimizer → local polynomials

The idea is then to employ weighted least squares with a polynomial rather
than a constant, for any value of x we approximate f () in a neighbourhood
of x by the polynomial

px(u; a) = a0 + a1(u − x) +
a2
2!
(u − x)2 + . . .+

ap
p!

(u − x)p

We estimate a(x) (making the dependence on x explicit) by minimizing
the weighted sum of squares

â(x) = argmin
a

n∑
i=1

Ki

(
xi − x

h

)
(Yi − px(Xi ; a))

2

and de�ne the estimator of f (x) as

f̂ (x) = px(x , â) = â0(x)
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Local polynomial estimator: matrix notation

Let

Xx =

1 x1 − x · · · 1
p!(x1 − x)p

...
...

...
1 xn − x · · · 1

p!(xn − x)p


Wx = diag

{
Ki

(
xi − x

h

)
, i = 1, . . . , n

}
then the weighted sum of squares is

(Y − Xxa)
TWx(Y − Xxa)

and
â = (XT

x WxXx)
TXT

x WxY
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Local polynomial estimator: matrix notation

â = (XT
x WxXx)

TXT
x WxY

The estimator f̂ (x) = â0(x) is then

f̂ (x) = eT1 (XT
x WxXx)

TXT
x WxY

where eT1 = (1, 0, . . . , 0).
In other terms f̂ (x) is a linear smoother

f̂ (x) =
n∑

i=1

ℓi (x)Yi

where

ℓ(x)T = (ℓ1(x), . . . , ℓn(x))
T = eT1 (XT

x WxXx)
TXT

x Wx
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Local linear smoothing

Assuming p = 1, we get the local linear smoother, which has

ℓi (x) =
bi (x)∑n
j=1 bj(x)

where

bi (x) = K

(
xi − x

h

)
(Sn,2(x)− (xi − x)Sn,1(x))

Sn,j(x) =
n∑

i=1

K

(
xi − x

h

)
(xi − x)j , j = 1, 2
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Local linear smoother: bias and variance

It can be shown under regularity assumption that the risk at x for the local
linear smother is

Rx =
h4n
4

(∫
u2K (u)du

)2

f ′′(x)2 +
σ2
∫
K 2(u)du

g(x)nhn
+ o(nh−1

n ) + o(h4n)

If we compare this to the risk for the N-W estimator we note that there is
no design bias.

R =
h4n
4

(∫
u2K (u)du

)2 ∫ (
f ′′(x) + 2f ′(x)

g ′(x)

g(x)

)2

dx

+
σ2
∫
K 2(u)du

nhn

∫
1

g(x)
dx + o(nh−1

n ) + o(h4n)

Furthermore, the asymptotic bias at the boundaries is o(h2n) rather than
o(hn).
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Local linear smoother: bias and variance

It can be shown under regularity assumption that the risk at x for the local
linear smother is

Rx =
h4n
4

(∫
u2K (u)du

)2

f ′′(x)2 +
σ2
∫
K 2(u)du

g(x)nhn
+ o(nh−1

n ) + o(h4n)

If we compare this to the risk for the N-W estimator we note that there is
no design bias.

R =
h4n
4

(∫
u2K (u)du

)2 ∫ (
f ′′(x) + 2f ′(x)

g ′(x)

g(x)

)2

dx

+
σ2
∫
K 2(u)du

nhn

∫
1

g(x)
dx + o(nh−1

n ) + o(h4n)

Furthermore, the asymptotic bias at the boundaries is o(h2n) rather than
o(hn).
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Graphical representation
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Graphical representation

Francesco Pauli �Local� methods 54 / 71



• Non parametric regression • Smoothing • Kernel regression • Inference •

Graphical representation: comparison
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Boundary bias

N-W versus local linear, same bandwith
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Design bias and boundary bias

0.0 0.2 0.4 0.6 0.8 1.0

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

Francesco Pauli �Local� methods 57 / 71



• Non parametric regression • Smoothing • Kernel regression • Inference •

Varying bandwith

The local estimator f̂ (x) with a kernel function with a bounded support
(for instance the tricube which is non zero on [−h, h]) is based on a varying
number of points depending on the distribution of the xi .

A variant involves choosing the scale
of the kernel so that a �xed
proportion α of points have non zero
weight, that is

hi = dk(x)

where dk(x) is the distance of the
k-th nearest neighbour from x .
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)^
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^3
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 (
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Tricube kernel

K (x) =

(
1−

(x
h

)3)3

I[−h,h](x)
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Variability bands

In principle, con�dence bands for f (x) may be obtained from the
approximate result

f̂ (x)− E (f̂ (x))

V (f̂ (x))
=

f̂ (x)− f (x)− biasx

V (f̂ (x))
∼ N(0, 1)

this, however, requires knowing the bias, which would make things
complicated.

A common strategy is to ignore bias, so that the bands are actually
variability bands around E (f̂ (x)), which a�ects interpretation.
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Con�dence interval for f (x)

Consider the generic linear smoother

f̂ (x) = Ly

then if yi = f (xi ) + εi , and V (ε) = σ2I ,

f̂ − f ∼as N (0, σ2LLT )

so a con�dence interval for f (xi ) is given by

f̂ (xi )± z1−α/2σ
√
[LLT ]ii
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Simultaneous con�dence bands: Bonferroni

We want flow , fup such that

P(flow (x) ≤ f (x) ≤ fup(x) for all x ∈ {x1, . . . , xr}) ≥ 1− α

we can obtain this using the Bonferroni correction, which uses the fact that

P(A1 ∩ . . . ∩ Ar ) ≤
r∑

i=1

P(Ai )

so in order to obtain a simultaneous c.b. of level 1− α we can use
pointwise c.i. of level 1− α/r .
This is a conservative solution and the con�dence bands are generally wide.
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Simultaneous con�dence bands: simulated

Consider again
f̂ − f ∼as N (0, σ2LLT )

we obtain a simultaneous c.b. with level 1− α as

f̂ (xi )±m1−ασ
√

[LLT ]ii

where m1−α is the (1− α)-quantile of the distirbution o

max
1≤j≤r

∣∣∣∣∣ f̂ (xj)− f (xj)

σ
√

[LLT ]ii

∣∣∣∣∣
which can be evaluated by simulation.
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Bootstrap and variability bands

Bootstrap strategies, either non parametric or semi parametric can be used
to assess the variability of f̂ (x).

▶ In non parametric bootstrap a bootstrap sample is obtained by
resmpling the pairs (xi ,Yi ).

▶ In semi parametric bootstrap we
▶ estimate f̂ (x) and compute εi = yi − f̂ (xi )
▶ sample the residuals εi to obtain (ε∗

1
, . . . , ε∗n)

▶ Obtain the bootstrap sample as

(xi ,Y
∗
i = f̂ (xi ) + ε∗i )

Whatever the sampling strategy, we repeat the procedure B times and
obtain a sample

f̂ ∗1(), . . . , f̂ ∗B()

Note that these re�ect variability around f̂ (x) (we do not allow for bias).
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Practical: bootstrap

Simulate the sample

x=sort(runif(100,0,1))

m=sin(2*pi*x^3)

y=m+rnorm(length(x),0,0.4)

Use the two bootstrap strategies and an estimator to obtain variability
bands.

▶ use di�erent strategies for the bandwidth

▶ using �xed bandwith at di�erent levels note that bias is not allowed for
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Model comparison

Suppose that we want to compare the estimated f̂ (x) to the hypothesis

H0 : f (x) = f0

Under H0 the estimate is f̂0(x) = ȳ , the model �ts may be compared
through the residual sums of squares

RSS0 =
n∑

i=1

(yi − ȳ)2

RSS1 =
n∑

i=1

(yi − f̂ (xi ))
2

using the statistic

F =
RSS0−RSS1

ν0−ν1
RSS1
ν1

where νj are the edf.
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Model comparison

F =
RSS0−RSS1

ν0−ν1
RSS1
ν1

where νj are the edf.

Unlike in linear model, however, the distribution of F is not easily
determined.

A possible strategy is then to perform a permutation test:

1. We randomly pair the observed xi and Yi leading to a sample (xi ,Y
∗
i )

2. The two models are estimated on the (xi ,Y
∗
i ) sample obtaining the

corresponding f̂ ∗0 , f̂
∗ estimates and the F ∗ statistic.

3. Steps 1 and 2 are repeated B times obtaining a sample from the
distribution of F under the null {F ∗1, . . . ,F ∗B}, the empirical p-value
of the test is obtained based on this.
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Reference bands

Related to the variability band is the idea of reference bands to compare
the non parametric estimate with a base model.

The f̂ ∗j(x) obtained through the permutation strategy above may be used
to provide a band where the non parametric regression curve is expected to
lie if the null model is correct.
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Practical

▶ simulate a sample where f (x) = m0

x=runif(100,0,1)

y=rnorm(100,0,2)

▶ use the above strategy to test the hypothesis H0 : f (x) = m0

Repeat the experiment simulating

▶ from a linear model
▶ from a trigonometric function

x=runif(100,0,1)

y=rnorm(100,sin(2*pi*x),2)

The sm.regression function does also perform the test and

bands for linearity

sm.regression(x, y, model = "linear", se = TRUE)
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Practical

▶ simulate a sample where f (x) = m0

x=runif(100,0,1)

y=rnorm(100,0,2)

▶ use the above strategy to test the hypothesis H0 : f (x) = m0

Repeat the experiment simulating
▶ from a linear model
▶ from a trigonometric function

x=runif(100,0,1)

y=rnorm(100,sin(2*pi*x),2)

The sm.regression function can be used to perform the

procedure

sm.regression(x, y, model = "no effect", se = TRUE)

The sm.regression function does also perform the test and

bands for linearity

sm.regression(x, y, model = "linear", se = TRUE)
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R functions: ksmooth (stats)

The Nadaraya-Watson kernel regression estimate.

ksmooth(x, y, kernel = c("box", "normal"),

bandwidth = 0.5,

range.x = range(x),

n.points = max(100L, length(x)), x.points)

Note that

bandwidth The kernels are scaled so that their quartiles (viewed as probability
densities) are at +/- 0.25*bandwidth.
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R functions: sm.regression (sm)

Performs local linear regression

sm.regression(x, y, h, design.mat = NA, model = "none",

weights = NA,

group = NA, ...)

Try the panel option (requires additional packages)

sm.regression(sim$x,sim$y,h = 0.07,panel=TRUE)

Francesco Pauli �Local� methods 70 / 71



• Non parametric regression • Smoothing • Kernel regression • Inference •

R functions: loess (stats)

Performs local polynomial regression

loess(formula, data, weights, subset, na.action, model = FALSE,

span = 0.75, enp.target, degree = 2,

parametric = FALSE, drop.square = FALSE, normalize = TRUE,

family = c("gaussian", "symmetric"),

method = c("loess", "model.frame"),

control = loess.control(...), ...)

Fitting is done locally. That is, for the �t at point x , the �t is made using points in a

neighbourhood of x , weighted by their distance from x (with di�erences in parametric ...

variables being ignored when computing the distance). The size of the neighbourhood is

controlled by α (set by span or enp.target). For α < 1, the neighbourhood includes

proportion α of the points, and these have tricubic weighting (proportional to

{(1-(dist/maxdist)^3)^3}). For α > 1, all points are used, with the maximum

distance assumed to be α(1/p) times the actual maximum distance for p

explanatory variables.
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