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What can be computed without using a prior,              
with only the frequentist definition of P?

Not P(constant of nature is in some specific interval | data) 

Not P(SUSY is true | data) ; Not P(SM is false | data) 

1) Confidence Intervals for constants of nature, parameter 
values, as defined in the 1930’s by Jerzy Neyman. 

Statements are made about probability properties of 
ensembles of intervals (what fraction contains unknown true 
value)

2) Likelihood ratios, the basis for a large set of techniques for 
point estimation, interval estimation, and hypothesis testing.

Both can be constructed using the frequentist definition of P.

Notation: x is observable, m is parameter;                               
p(x|m) is pdf characterizing the experiment apparatus, called 
“the statistical model”, or simply “the model”, by statisticians.
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Confidence Intervals
“Confidence intervals”, and this phrase to describe them, were 
invented by Jerzy Neyman in 1934-37.  Statisticians mean 
Neyman’s intervals (or an approximation) when they say 
“confidence interval”.  In HEP the language is a little loose.

I highly recommend using “confidence interval” (and 
“confidence regions” when multi-D) only to describe intervals 
and regions corresponding to Neyman’s construction (or good 
approximations thereof), described below.
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Confidence Intervals
Next many slides:

1. Introduce basic notions, illustrated by upper/lower limits and 
closely related central confidence intervals

2. Discuss Neyman’s more general construction (used e.g. by 
Feldman and Cousins).

3. Make connection to hypothesis testing of particular value of 
parameter vs other values.
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Basic notions of confidence intervals

Given the model p(x|m) and the observed value x0, for what values 
of m is x0 an “extreme” value of x?  Include in the confidence 
interval [m1,m2] those values of m for which x0 is not “extreme”.

In order to define “extreme”, one needs to choose an ordering 
principle for x applicable to each m: high rank means not extreme.
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Some common ordering choices in 1D (when p(x|m) is such that 
higher m implies higher average x):

1. Order x from largest to smallest.                                                 
So smallest values of x are most extreme.                            
Given x0, the confidence interval containing m for which x0 is 
not extreme will typically not contain largest values of m.   
Leads to confidence intervals known as upper limits on m.

2. Order x from smallest to largest.  Leads to lower limits on m. 

3. Order x using smallest central quantile of p(x|m) containing x0.  
Leads to central confidence intervals for m.

N.B. These three apply only when x is 1D. 

(4th ordering, LR ratio used by F-C, still to come.)
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Basic notions of confidence intervals (cont.)

Given model p(x|m) and ordering of x, one chooses a fraction of 
highest-ranked values of x that are not considered as “extreme”.

This fraction is called the confidence level (C.L.), say 68% or 95%.

We also define  = 1 – C.L., the lower-ranked fraction, “extreme”.

The confidence interval [m1,m2] contains those values of m for 
which x0 is not “extreme” at the chosen C.L. (given the ordering).

E.g., at 68% C.L., [m1,m2] contains those m for which x0 is in the 
highest-ranked (least extreme) 68% values of x.*

*In this talk, 68% is more precisely 68.27; 84% is 84.13%; etc.
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Basic notions of confidence intervals (cont.)

The endpoints of central confidence intervals at C.L. are the same 
as upper/lower limits with 1 – (1 – C.L.)/2.  E.g.: 

84% C.L. upper limit m2 excludes m for which x0 is in the lowest 
16% values of x.

84% C.L. lower limit m1 excludes m for which x0 is in the highest 
16% values of x. 

Then [m1,m2] includes the central 68% quantile of x values ordered 
from high to low; it is a 68% C.L. central confidence interval (!)
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Gaussian pdf p(x|m,s) with s a function of m: s = 0.2 m

Suppose x0 = 10.0 is observed.

What can one say about m ?
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p(x|m,s) with m=10.0,  s = 0.2 :

p(x|m,s)
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Gaussian pdf p(x|m,s) with s a function of m: s = 0.2 m

Suppose x0 = 10.0 is observed.

L (m) for observed x0 = 10. : 

mML= 9.63

What is confidence interval for m?
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L (m)

p(x|m,s) with m=10.0,  s = 0.2 :
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Find m1 such that 84% of p(x|m1,s=0.2m1) is 
below x0 = 10.0; 16% of prob is above.  
Solve: m1 = 8.33. 

[m1,] is 84% C.L. confidence interval

m1 is 84% C.L. lower limit for m.

m1 = 8.33
s = 1.67

84% 16%
x

Gaussian pdf p(x|m,s) with s a function of m: s = 0.2 m
Observed x0 = 10.0.
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Find m1 such that 84% of p(x|m1,s=0.2m1) is 
below x0 = 10.0; 16% of prob is above.  
Solve: m1 = 8.33. 

[m1,] is 84% C.L. confidence interval

m1 is 84% C.L. lower limit for m.

Find m2 such that 84% of p(x|m2,s=0.2m2) is 
above x0 = 10.0; 16% of prob is below. 
Solve: m2 = 12.5.

[ ,m2] is 84% C.L. confidence interval

m2 is 84% C.L. upper limit for m. 

Then 68% C.L. central confidence interval is 
[m1,m2] = [8.33,12.5].

m1 = 8.33
s = 1.67

m2 = 12.5
s = 2.5

84%

84%

16%

16%

x

x

Gaussian pdf p(x|m,s) with s a function of m: s = 0.2 m
Observed x0 = 10.0.
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So the 68% C.L. central confidence interval is [8.33,12.52].

This is “exact”.  Follows reasoning of E.B. Wilson, JASA 1927!

Note difference from reasoning that proceeds as: 

1) For x0 = 10.0, minimum-2 point estimate of m is m� = 10.0.

2) Then estimate s� = 0.2  m� = 2.0.

3) Then m�  s� yields interval [8.0,12.0].

For (“exact”) confidence intervals, the reasoning must always 
involve probabilities for x, calculated considering particular 
possible true values of parameters, as on previous slide!

Clearly the validity of above approximate reasoning depends on 
how much s(m) changes for m relevant to problem at hand.  
Beware!

Gaussian pdf p(x|m,s) with s a function of m: s = 0.2 m
Observed x0 = 10.0.



Let Bi(non | ntot, r) denote binomial probability of non successes 
in ntot trials, each with binomial parameter r:

Bi(non | ntot, r) = 
ntot!

non! (ntot�non)!
 r

non  
(1 − r)

(n
 
tot

 − non)

In repeated trials, non has mean ntot r and

rms deviation  ntot r (1 − r)

With observed successes non,  the M.L. point estimate r� of r is

r�  =  non / ntot .

What confidence interval [r1,r2] should we report for r?
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Confidence intervals for binomial parameter r
Directly relevant to efficiency calculation in HEP
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Suppose non=3 successes in ntot=10 trials.  

Let’s find exact 68% C.L.* central confidence interval [r1,r2].
Recall shortcut above for central intervals:

Find lower limit r1 with C.L. = 1 – (1 – 68%)/2. = 84%
I.e., Find r1 such that Bi(non < 3 | ntot=10, r1)  = 84%

Find upper limit r2 with C.L. = 84%
I.e., Find r2 such that Bi(non > 3 | ntot=10, r2)  = 84%

*Recall in this talk, 68% is more precisely 68.27; 84% is 84.13%; etc.
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Confidence intervals for binomial r (cont.)
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L (r)

r

–2 ln L (r)

r

r�ML=   3/10



non = 3 , ntot=10. 
Find r1 such that
Bi(non < 3 | r1)  = 84%
Bi(non  3 | r1)  = 16%
(lower limit at 84% C.L.)
Solve: r1 = 0.142 
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84%

Bi(non| r1)
r1 = 0.142 

84%

non

16%



non = 3 , ntot=10. 
Find r1 such that
Bi(non < 3 | r1)  = 84%
Bi(non  3 | r1)  = 16%
(lower limit at 84% C.L.)
Solve: r1 = 0.142 

And find r2 such that 
Bi(non > 3 | r2)  = 84%
Bi(non  3 | r2)  = 16%
(upper limit at 84% C.L.)
Solve: r2 = 0.508

Then [r1,r2] = (0.142, 0.508)  
is central confidence interval 
with 68% C.L.  Same as 
Clopper and Pearson (1934)
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84%

Bi(non| r1)
r1 = 0.142 

Bi(non| r2)
r2 = 0.508 

84%

non

non

16%

16%

Poisson example: Fig. 3a,b; R. Cousins, Am. J. Phys. 63 398 (1995) DOI: 10.1119/1.17901
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Gaussian approximation for binomial conf. int.
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As above, non has mean ntot r and rms deviation ntot r (1 − r).

So approximate binomial by Gaussian with mean and rms
m(r) = ntot r

s (r)  =   ntot r (1 − r)

Idea is not to substitute r� for r (big mistake), but rather follow 
E.B. Wilson (1927), use above recipe for upper and lower limits: 
1)  Find r1 such that Gauss(x 3 | mean r1, s(r1) )  = 0.16
2)  Find r2 such that Gauss(x 3 | mean r2, s(r2) )  = 0.16

This consistently uses the s associated with each r. Leads to a 
quadratic equation with solution [r1,r2] = [0.18, 0.46] which is 
the approximate 68% C.L. confidence interval known as the 
Wilson score interval. 
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Avoid the Wald interval – no reason to use it
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The “Wilson score interval” needs only the quadratic formula 
but is for some reason relatively unknown. It is tempting instead 
to substitute r� = non/ntot for r in the expression for s: 

s�  = ntot 
r� (1 − r�) , obtaining the potentially disastrous 

“Wald interval”: [r1,r2]  = r�  s� .

The Wald interval does not use the correct logic for frequentist 
confidence!  In fact s�  = 0 when non = 0 (or non = ntot ).
Incredibly, failure of the Wald interval when non = 0 (or non = ntot ) 
has been used as a foundational argument in favor of Bayesian 
intervals in at least four public HEP postings (one retracted) and 
one published astro paper!  (Typically the authors did not 
understand Bayesian statistics either, and used flat prior...)



Bob Cousins, Stats in Theory II, Feb 2017

Clopper-Pearson is the standard in HEP
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In HEP, Clopper-Pearson intervals are the traditional standard: 
in Particle Data Group’s Review of Particle Physics since 2002. 

Many tables and online calculators for C-P exist, e.g., 
http://statpages.org/confint.html . 

But C-P is criticized by some as “wastefully conservative” – see 
our paper below.

For a comprehensive review of both central and non-central 
confidence intervals for a binomial parameter and for the ratio 
of Poisson means, see Cousins, Hyme, and Tucker, 
http://arxiv.org/abs/0905.3831 . Many  are implemented in 
https://root.cern.ch/doc/master/classTEfficiency.html .

For related construction of upper/lower limits and central 
interval for Poisson mean, see R. Cousins, Am. J. Phys. 63 398 (1995)



1. As mentioned, directly relevant to efficiency calculations.

2. Using a famous math identity, directly applicable to 
confidence intervals for ratio of Poisson means.

3. Then, applicable to significance (ZBi) of excess in a signal bin 
when sideband is used to estimate background. Cousins, 
Linnemann, and Tucker, http://arxiv.org/abs/physics/0702156 .

4. Can even stretch #3 (using “rough correspondence”) to 
problem of signal bin when Gaussian estimate of mean bkgnd
exists.
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HEP applications of conf. intervals for binomial param



For decades, problems with upper limits and central confidence 
intervals.  Prototype problems:

1. Gaussian measurement resolution near a physical boundary 
(e.g. neutrino mass-squared is positive)

2. Poisson signal mean measurement when observed number of 
events is less than mean expected background (so naïve 
“background-subtracted” cross section is negative)

Many ideas put forward, PDG settled on three.  Some history: 
http://www.physics.ucla.edu/~cousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf

Today in Part 2, I stick to frequentist confidence intervals.
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Issues for upper-lower limits and central conf. ints.



Beyond upper/lower limits and central confidence intervals

More general ordering choices for ordering x in p(x|m):

• Order x0 using the likelihood ratio L(x0|m) / L(x0|mbest fit).

Advocated in HEP by Feldman and Cousins in 1998               
(and in Kendall and Stuart long before and since).      
Applicable in both 1D and multi-D for x.

N.B. Ordering x by the probability density p(x|m) is dependent on 
metric of x, and hence not recommended!  Jacobian of 
transformation to y(x) alters ordering.      

(Recall from Part 1 that likelihood ratios as in F-C are 
independent of metric in x since Jacobian cancels.)
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Neyman’s Construction of Confidence Intervals

The general method for constructing 
“Confidence intervals”, and the name,
were invented by Jerzy Neyman in 1934-37. 

The next few slides give basic outline.

It takes a bit of time to sink in – given how often 
confidence intervals are misinterpreted, the argument is 
perhaps a bit too ingenious.

In particular, you should understand that the confidence 
level does not tell you “how confident you are that the 
unknown true value is in the interval” – only a subjective
Bayesian credible interval has that property!
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Given p(x|m ) from a model:
For each value of m , one 
draws a horizontal acceptance 
interval [x1,x2] such that 
p(x  [x1,x2] | m ) =  C.L. = 1 - .  
(“Ordering principle” is used 
to well-define.)
Upon observing x, obtaining 
the value x0, one draws the 
vertical line through x0.  
The vertical confidence 
interval [m1, m2] with 
Confidence Level  C.L. = 1 - 
is the union of all values of m
for which the corresponding 
acceptance interval is 
intercepted by the vertical line.

Note: x and m need not have the same 
range, units, or (in generalization to 
higher dimensions) dimensionaliity!
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Figure from G. Feldman, R Cousins, Phys Rev D57 3873 (1998) 

Neyman’s Construction of Confidence Intervals



Important note regarding x and m

I think it is much easier to avoid confusion when x and m are 
qualitatively different. 

Louis Lyons gives the example where x is the flux of solar 
neutrinos and m is the temperature at the center of the sun. 

I like examples where x and m have different dimensions:
Neyman’s original paper has 2D observation space and 1D 
parameter space – see backup.
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Note : x and m need not have the same 
range, units, or (in generalization to 
higher dimensions) dimensionaliity!



Famous confusion re Gaussian p(x|m) where m is mass  0
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It is crucial to distinguish between the data x, which can be 
negative (no problem), and the mass parameter m, for which 
negative values do not exist in the model.  
I.e., for mass m <0,  p(x|m) does not exist!  You would not know 
how to simulate the physics of detector response for mass < 0.

Constraint m  0 has nothing to do with a Bayesian prior for m !!!
It’s in the model (and hence in L(m)).

The confusion is encouraged since 
we often refer to x as the “measured 
value of m”, and say that x<0 is 
“unphysical” – bad habits!

A proper Neyman construction 
graph has x of both signs but only 
non-negative m  0.  Example:
Construction on right is LR ordering 
advocated by Feldman-Cousins



E.g. 95% C.L. central interval for p if 
10/10 successes/trials:  (0.69,1.0)
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x = number of successes (here, 
integer 0-10 out of 10 trials)

Inner corners of the steps give 
the intervals; traditional to draw 
the curved “belts” connecting 
them, but only evaluated at the 
integers. Tricky to draw, read!

Discreteness of x typically 
requires horizontal acceptance 
intervals to contain more than 
95% probability, so there is  
over-coverage in the vertical 
confidence intervals.

Famous 1934 Construction of Clopper and Pearson: 
Central Confidence Intervals for a Binomial Parameter 



Bob Cousins, Stats in Theory II, Feb 2017 29

Partial details of construction:

Blue lines are two of the 
acceptance intervals having 
central 95% or more prob, at 
continuous r.

Note data x is discrete, so 
graph is only read at discrete x.

If you stare at it long enough, 
you will see connection 
between upper/lower limits and 
central intervals, for discrete 
data.



Confidence Intervals and Coverage

Recall: In math, one defines a vector space as a set with certain 
properties, and then the definition of a vector is “an element of 
a vector space”.                                                                               
(A vector is not defined in isolation.)

Similarly, whether constructed in practice by Neyman’s
construction or some other technique, a confidence interval is 
defined to be “a element of a confidence set”, where the 
confidence set is a set of intervals defined to have the property 
of frequentist coverage under repeated sampling:
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Confidence Intervals and Coverage

Let mt be the unknown true value of m . In repeated 
experiments, confidence intervals will have different 
endpoints [m1, m2], since the endpoints are functions of the 
randomly sampled x.                                                         

A little thought will convince you that a fraction C.L. = 1 – 
of intervals obtained by Neyman’s construction will contain 
(“cover”) the fixed but unknown mt . I.e.,  

P(mt  [m1, m2])  =  C.L. = 1 – .  (Definition of coverage)

The endpoints m1,m2 are the random variables (!). 

Coverage is a property of the set of confidence intervals, 
not of any one interval.
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Confidence Intervals and Coverage (cont.)

P(mt  [m1, m2])  =  C.L. = 1 – .  (Definition of coverage)

One of the complaints about confidence intervals is that the 
consumer often forgets (if he or she ever knew) that                  
the random variables in this equation are m1 and m2, and not mt , 
and that coverage is a property of the set, not of an individual 
interval!                                                                                        
Please don’t forget!

It is true (in precisely the sense defined by the ordering principle 
used in the Neyman construction) that the confidence interval 
consists of those values of m for which the observed x is among 
the least extreme values to be observed.

A lot of confusion might have been avoided if Neyman had 
chosen the name “coverage intervals”! 
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Classical Hypothesis Testing

In Neyman-Pearson hypothesis testing (James06), frame 
discussion in terms of null hypothesis H0 (e.g. S.M.), and an 
alternative H1 (e.g., some BSM model). 

For the null hypothesis, order possible observations x from least 
extreme to most extreme, using an ordering principle (which can 
depend on H1 as well). Choose a cutoff  (smallish number). 

Then “reject” H0 if observed x0 is in the most extreme fraction 
of observations x (generated under H0). Then

: probability (under H0) of rejecting H0 when it is true, i.e.,            
false discovery claim (Type I error)

: probability (under H1) of accepting H0 when it is false, i.e.,          
not claiming a discovery when there is one (Type II error)

m : parameters in the hypotheses (statisticians like name )
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Common for H0 to be nested in H1 to, i.e. H0 corresponds to 
particular parameter m value m0 (e.g., zero, 1, or ) in H1. 

Competing analysis methods can be compared by looking at 
graphs of  vs  at various m, and at graphs of  vs m at various 
(power function).

Similar to comparing b-tagging efficiency for signal and 
background, at different pT. Equivalent to ROC curve.
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Classical Hypothesis Testing (cont.)



Classical Hypothesis Testing (cont.)
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James06, pp. 258, 262

Where to live on the  vs  curve is a long discussion.  (Even longer when 
considered as N events increases, so curve moves toward origin.)  
Decision on whether to declare discovery requires two more inputs: 
1) Prior belief in H0 vs H1

2) Cost of Type I error (false discovery claim) vs cost of Type II error 
(missed discovery)

A one-size-fits-all criterion of  corresponding to 5s is without foundation.



Classical Hypothesis Testing: Neyman-Pearson Lemma
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If Type I error probability  is specified in a test of 
simple hypothesis H0 against simple hypothesis H1 , 
then the Type II error probability  is minimized by ordering 
according to the likelihood ratio  =  L(x| H0) /L(x| H1). 

One finds cutoff k for that  and rejects H0 if   k

Conceptual proof in Second lecture of Kyle Cranmer, February 2009 
http://indico.cern.ch/event/48426/ . See also Stuart99, p. 176

Phil. Transactions of the 
Royal Society of London. Vol. 
231, (1933), pp. 289-337

The “lemma” applies only to a very special case: no nuisance 
parameters, not even undetermined parameters of interest!
But it has inspired many generalizations, and likelihood ratios 
are a oft-used component of both frequentist and Bayesian 
methods.



Classical Hypothesis Testing (cont.)
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For rest of talk concentrate on: 
H0: m  m 0 (the “point null”, or “sharp hypothesis”) vs
H1: m  m 0 (the “continuous alternative”).

Common examples: 
Signal strength m of new physics: m0 = 0, alternative m>0

Bs
0  m+m- before discovery: 

Null hypothesis is zero rate, alternative is positive rate;

Bs
0  m +m - after discovery (essentially at same time):  null is SM 

rate, alternative is any other rate

In classical/frequentist formalism (in contrast to Bayesian 
formalism), theory of these tests maps to that of confidence  
intervals!



Classical Hypothesis Testing: Duality
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Given an ordering: 
Test if mm0 vs mm0 at significance level 
 Is m0 in confidence interval for m with C.L. = 1-  ?

“There is thus no need to derive optimum properties separately 
for tests and for intervals; there is a one-to-one correspondence 
between the problems as in the dictionary in Table 20.1” 
Stuart99, p. 175. [Table in backup slides]  E.g.,
  1 – C.L.
Equal-tailed test  central confidence intervals
One-tailed tests  Upper/lower limits 

Referred to as “inverting a test” to obtain intervals, and vice 
versa.



Classical Hypothesis Testing (cont.)

We emphasized “new” ordering 
principle based on LR. While paper 
was “in proof”, Gary realized that 
“our” intervals were simply those 
obtained by “inverting” the LR 
hypothesis test. In fact it was all on 
1¼ pages of “Kendall and Stuart”, 
plus nuisance paramers !    
This was of course good ! 
It led to rapid inclusion in PDG RPP. 

Bob Cousins, Stats in Theory II, Feb 2017 39

Phys. Rev. D57 3873 (1998):

Test mm0 at   Is m0 in conf. int. for m with C.L. = 1- 



Above is all “pre-data” characterization of the test

How to characterize post-data? P-values and Z-values

In N-P theory,  is specified in advance.  

Suppose after obtaining data, you notice that with =0.05 
previously specified, you reject H0, but with =0.01 previously 
specified, you accept H0.  In fact, you determine that with the data 
set in hand, H0 would be rejected for   0.023.  This interesting 
value has a name:

After data are obtained, the p-value is the smallest value of  for 
which H0 would be rejected, had it been specified in advance.

Numerically (if not philosophically) the same as usual “value 
obtained or more extreme” due to Fisher. 

Large literature bashing p-values.

I defend HEP: http://arxiv.org/abs/1310.3791
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Interpreting p-values and Z-values

41

It is crucial to realize that that value of  was typically not
specified in advance, so p-values do not correspond to Type I 
error rates of the experiments which report them.      

Interpretation of p-values is a long, contentious story – beware!

In HEP, typically converted to Z-value (unfortunately commonly 
called “the significance S”), equivalent number of Gaussian 
sigma.  (E.g.., for one-tailed test, p=2.87E-7 is Z=5.)

Whatever they are, p-values are not the probability that H0 is true!

– They are calculated assuming that H0 is true, so they can 
hardly tell you the probability that H0 is true!

– Calculation “probability that H0 is true” requires prior(s)!

Please help educate press officers and journalists!
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Tentative stopping point
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Likelihood (Ratio) Intervals

Recall from above:  Likelihood L() is invariant under 
reparametrization from  to u(): L()  =  L(u()).

So likelihood ratios  L(1) /L(2)  and log-likelihood 
differences  lnL(1) - lnL(2) are also invariant.

Thus, after using maximum-likelihood method to obtain 
estimate û which maximizes L(u), one can obtain a likelihood 
interval [u1,u2] as the union of all u for which 

2lnL(û)  - 2lnL(u)   Z2,  for Z real.

Asymptotically (under some regularity conditions) this interval 
approaches a central confidence interval with C.L. 
corresponding to  Z Gaussian standard deviations
Convergence to Gaussian is faster than you might expect. See 
James06 for interesting explanation why.
But!  Regularity conditions, in particular requirement that û not 
be on the boundary, need to be carefully checked.                 
(E.g., if u0 on physical grounds, then û=0 requires care.)
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Recall example of non=3 
successes in ntot=10 trials.  

Min –2 ln L (r) = 2.64.

Obtain interval from 
–2 ln L (r) = 2.64 + 1 = 3.64

 likelihood-ratio interval 
[r1,r2] = [0.17, 0.45]

Recall: 
Copper-Pearson [r1,r2] = [0.14, 0.51]
Wilson                 [r1,r2] = [0.18, 0.46]
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–2 ln L (r)

r

Binomial Likelihood-Ratio Interval example

 = 12



Recall: 

L (m) for observed x0 = 10.0. 

mML= 9.63

Likelihood ratio interval for m at 
approximate 68% C.L.:

[m1, m2] = [8.10, 11.9].

Compare with exact confidence 
interval [8.33,12.5].
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L (m)

m
 = 12

Gaussian pdf p(x|m,s) with s a function of m: s = 0.2 m
Observed x0 = 10.0.



Poisson Likelihood-Ratio Interval example
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Approx “68% C.L.” likelihood-
ratio interval for Poisson 
process with n=3 observed:

L (m) = m3 exp(-m)/3!

Maximum at m = 3.

2lnL = 12 yields LR interval 

[m1, m2] = [1.58, 5.08]

Neyman construction central:
[m1, m2] = [1.37, 5.92] Figure from R. Cousins,             

Am. J. Phys. 63 398 (1995)



References Cited in Talk Slides

James06: Frederick James, Statistical Methods in Experimental Physics, 
World Scientific, 2006.

Stuart99: A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of Statistics, 
Vol. 2A, 6th edition, 1999; and earlier editions by Kendall and Stuart.
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Recommended reading
Books: Among the many books available, I usually recommend the following 

progression, reading the first three cover-to-cover, and consulting the next 
two as needed:

1) Philip R. Bevington and D.Keith Robinson, Data Reduction and Error 
Analysis for the Physical Sciences (Quick read for undergrad-level review)

2) Glen Cowan, Statistical Data Analysis (Solid foundation for HEP)

3) Frederick James, Statistical Methods in Experimental Physics, World 
Scientific, 2006. (This is the second edition of the influential 1971 book by 
Eadie et al., has more advanced theory, many examples)

4) A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of Statistics, Vol. 
2A, 6th edition, 1999; and earlier editions of this “Kendall and Stuart” 
series.  (Comprehensive old treatise on classical frequentist statistics; 
anyone contemplating a NIM paper on statistics should look in here first!)

5) George Casella and R.L. Berger, Statistical Inference, 2nd, Ed. 2002. A more 
modern, less dense text on similar topics as Kendall and Stuart.

PhyStat conference series: Beginning with Confidence Limits Workshops in 
2000, links at http://phystat-lhc.web.cern.ch/phystat-lhc/ and 
http://www.physics.ox.ac.uk/phystat05/

My Bayesian reading list is the set of citations in my Comment, Phys. Rev. 
Lett. 101 029101 (2008), especially refs 2, 8, 9, 10, 11 (and 7 for model 
selection)
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End of Part 2 0



BACKUP
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68% intervals by various methods for Poisson 
process with n=3 observed
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For the Jeffreys prior (1/m), Bayesian 
central interval is (1.72, 5.27).

Frequentist intervals over-cover due to 
discreteness of n.

Adapted from Cousins05 and                    
R. Cousins,  Am. J. Phys. 63 398  (1995)

n n



Classical Goodness of Fit (g.o.f.)

If H0 is specified but the alternative H1 is not, then only the Type 
I error rate  can be calculated, since the Type II error rate 
depends on a H1. 

A test with this feature is called a test for goodness-of-fit (to H0).

The question “Which g.o.f. test is best?” is thus ill-posed.  In 
spite of the popularity of tests with universal maps from test 
statistics to  (in particular 2 and Kolomogorov tests), they 
may be ill-suited for many problems (i.e., they may have poor 
power (1- ) against relevant alternative H1’s).

In 1D, unbinned g.o.f. test question is equivalent to:             
“Given 3 numbers (e.g. neutrino mixing angles) in [0, 1], are 
they consistent with three calls to RAN() ?”    

Have fun with that!
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Goodness of Fit (cont.)

Issue in last 15 years:  need for a multi-D unbinned test.  

E.g., is it reasonable that 1000 events scattered in 5D have been 
drawn from a particular pdf (which may have parameters which 
were fit using an unbinned M.L. fit to those 1000 events.) ?

Of course this is an ill-posed question, but looking for good 
omnibus test.  Getting the null distribution from M.C. is typically 
doable, it seems.

See Aslan02 and others at past PhyStats. 

1D issues well-described in book by D’Agostino and Stephens 
(must-read for those wanting to invent a new test). 

Recent review by Mike Williams, “How good are your fits? 
Unbinned multivariate goodness-of-fit tests in high energy 
physics”, http://arxiv.org/abs/1006.3019
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Original paper has one unknown parameter 
1 and two observables x1,x2 per expt:

E is vector of observables x1, x2, … 
A() is acceptance region: P(EA) = C.L.
1 is unknown parameter

E is data actually observed in expt.

Prior to experiment , regions in E-space 
A(1) are determined for each 1 (needs 
ordering principle).  Upon obtaining data E, 
confidence interval for 1 consists of all 
values of 1 for which E is in A(1).



Classical Hypothesis Testing: Duality
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“There is thus no need to derive optimum properties separately 
for tests and for intervals; there is a one-to-one correspondence 
between the problems as in the dictionary in Table 20.1” 
Stuart99, p. 175.

Test mm0 at   Is m0 in conf. int. for m with C.L. = 1- 

Referred to as “inverting a test” to obtain intervals; vice versa.


