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4.6 Harrow-Hassidim-Lloyd algorithm

The Harrow-Hassidim-Lloyd (HHL) algorithm allows for the resolution of linear system problems on a quantum
computer. To be precise, the problem to be solved is described as finding the Nb complex entries of x that solve
the following problem

Ax = b, (4.61)

where A is an hermitian and non-singular Nb ⇥Nb matrix and b is a Nb vector, both defined on C. Classically,
the solution is given by

x = A�1
b. (4.62)

The question is then how one can implement this on a quantum computer.
First, let us assume that the entries of b are such that ||b|| = 1. Then, b can be stored in a nb-qubit state

|bi, through the following mapping:

b =

0

B@
b0
...

bNb�1

1

CA $ b0 |0i + · · · + bNb�1 |Nb � 1i = |bi , (4.63)

where Nb = 2nb . For example, this can be done via a unitary operation Ûb. Now, we define |xi = Â�1 |bi,
where Â in the computational representation gives the classical matrix A. Notably, the state |xi needs to be
normalised to be stored in a quantum register. Thus, one has

|xi =
Â�1 |bi

||Â�1 |bi ||
, (4.64)

where the normalisation problem can be tackled in a second moment.
Consider the spectral decomposition of Â:

Â |vji = �j |vji , (4.65)

where �j and |vji are respectively the eigeinvalues and eigeinstates of Â. We also assume that the ordering of
the eigeinvalues is such that

0 < �0  · · ·  �Nb�1 < 1. (4.66)

In general this will not be the case, but one can remap the problem in order to fall within this case. We also
assume that all the Nb eigeinvalues have an exact d-bit representation.

By applying what in Sec. 4.5, we can query Â via an unitary operation Û = e2⇡iÂ using QPE. For example,
suppose |bi = |vji, then we have

ÛQPE |0i⌦d |vji = |�ji |vji . (4.67)

In particular, the (not-normalised) solution of the linear system problem would be

Â�1 |bi = Â�1 |vji = 1
�j

|vji . (4.68)

More generally, one can decompose the state |bi on the basis of Â, i.e.

|bi =
2nb�1X

j=0

�j |vji , (4.69)

where �j are a linear combination of bj . Then the QPE procedure gives
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ÛQPE |0i⌦d |bi =
X

j

�j |�ji |vji , (4.70)

and the solution of the problem is given by

Â�1 |bi =
2nb�1X

j=0

�j
�j

|vji . (4.71)

The aim of the HHL algorithm is to generate the normalised version of the state in Eq. (4.71) from the general
state |bi as shown in Eq. (4.69).

The algorithm works with three registers. The first one is an ancillary register made of a single qubit, the
second is also an ancillary register but made of d qubits, the third register is made of nb qubits and will encode
the solution of the problem. The HHL circuit is the following

d

nb

|0i

|0i⌦d |0i⌦d

|0i⌦nb |xi

R

UQPE U�1
QPE

Ûb

| 5i | 6i| 4i | 9i| 1i

(4.72)

The algorithm works as the following. Initially, all the qubits are prepared in |0i:

| 0i = |0i |0i⌦d |0i⌦nb , (4.73)

then the information about b is encoded in the last register:

| 1i = 1̂ ⌦ 1̂
⌦d ⌦ Ûb | 0i = |0i |0i⌦d |bi . (4.74)

We apply the QPE procedure, which is here broke down in the corresponding three steps. The first is the
application of the Hadamard gate:

| 2i = 1̂ ⌦ Ĥ⌦d ⌦ 1̂ | 1i = |0i 1
2d/2

(|0i + |1i)⌦d |bi . (4.75)

This is followed by the controlled unitary Û j :

| 3i = 1̂ ⌦ C(U j) | 2i = |0i 1
2d/2

2d�1X

k=0

e2⇡ik' |ki |bi , (4.76)

where Û |bi = e2⇡i' |bi with ' 2 [0, 1[. Finally, we apply the inverse Fourier transform to the second register

| 4i = 1̂ ⌦ F̂ † ⌦ 1̂
⌦nb | 3i ,

= |0i 1
2d/2

2d�1X

k=0

e2⇡ik'F̂ † |ki |bi ,

= |0i 1
2d

2d�1X

k=0

e2⇡ik'
2d�1X

y=0

e�2⇡iyk/2d |yi |bi .

(4.77)
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However, one has that
2d�1X

k=0

e2⇡ik('�y/2d) =

(P2d�1
k=0 e0 = 2d, if ' = y/2d,

0, if ' 6= y/2d,
(4.78)

meaning that the k sum selects the value of y = '2d. Thus,

| 4i = |0i |'2di |bi . (4.79)

In general, |bi is in a superposition of |vji, then

Û |vji = e2⇡iÂ |vji = e2⇡i�j |vji . (4.80)

Then, the entire QPE gate maps

| 1i = |0i |0i⌦d
2nb�1X

j=0

�j |vji
UQPE���! | 4i = |0i

2nb�1X

j=0

�j |�j2di |vji . (4.81)

We apply a controlled rotation on the first register, such that

| 5i = C(R) ⌦ 1̂
⌦nb | 4i =

2nb�1X

j=0

�j

✓r
1 � C2

�2
j

|0i + C
�j

|1i
◆

|�j2di |vji , (4.82)

where C 2 R is an arbitrary constant. At this point we perform the measurement of the first register. If the
outcome is +1 and the state collapses in |0i then we discard the run; if the outcome is �1 with the state
collapsed in |1i then we retain the run. To increase the probabilities of having the outcome �1, we make C as
large as possible. After the collapse of the first register in |1i, the state of the second and third register is

| 6i =
1

⇣P2nb�1
j=0 |�j/�j |2

⌘1/2

2nb�1X

j=0

�j

�j
|�j2di |vji , (4.83)

where we exploited that C 2 R. Now, we apply the inverse QPE, which has also three steps. The first is the
application of the QFT:

| 7i = F̂ ⌦ 1̂
⌦nb | 6i ,

=
1

⇣P2nb�1
j=0 |�j/�j |2

⌘1/2

2nb�1X

j=0

�j

�j
F̂ |�j2di |vji ,

=
1

⇣P2nb�1
j=0 |�j/�j |2

⌘1/2

2nb�1X

j=0

�j

�j

1
2d/2

2d�1X

y=0

e2⇡iy(�j2
d)/2d |yi |vji .

(4.84)

Then, we apply the controlled unitary C(U�j), which gives

| 8i = C(U�j) | 7i ,

=
1

⇣P2nb�1
j=0 |�j/�j |2

⌘1/2

2nb�1X

j=0

�j

�j

1
2d/2

2d�1X

y=0

e2⇡iy�j |yi e�2⇡i�jy |vji ,
(4.85)

where the two phases cancel and thus
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| 8i = 1
2d/2

2d�1X

y=0

|yi
2nb�1X

j=0

�j

�j

1
⇣P2nb�1

j=0 |�j/�j |2
⌘1/2

|vji . (4.86)

Finally, the application of Hadamard’s gates on the second register gives

| 9i = Ĥ⌦d ⌦ 1̂
⌦nb | 8i = |0i⌦d

2nb�1X

j=0

�j

�j

1
⇣P2nb�1

j=0 |�j/�j |2
⌘1/2

|vji , (4.87)

where the third register is exactly in the form in Eq. (4.71) after the proper normalisation. Thus,

| 9i = |0i⌦d |xi , (4.88)

embeds the solution of the linear system Ax = b.
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